首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The association of glucocorticoid-receptor complexes with other components in vivo has been evaluated by chemical crosslinking of hormone-treated cells. When cells were incubated with hormone at 2 degrees C, before being subjected to crosslinking, most glucocorticoid-receptor complexes were found untransformed, as judged by DEAE-cellulose chromatography, and sedimented as 11-6 S oligomers in sucrose gradients containing 0.3 M NaCl. If crosslinking was performed after cells were treated with hormone at 37 degrees C, about 60% of cytosolic glucocorticoid-receptor complexes were found transformed, and sedimented as 4 S monomers.  相似文献   

2.
A technique of measuring of the light-induced transients of the gramicidin-mediated electric current across a membrane in the presence of a photosensitizer has been applied for the study of the effect of agents modifying the dipole potential of a bilayer lipid membrane (phloretin, 6-ketocholestanol, and RH421) on the processes of the gramicidin channel dissociation and formation. It is shown that phloretin, known to lower the dipole potential, decelerates the flash-induced decrease in the current, whereas 6-ketocholestanol and RH421, known to raise the dipole potential, accelerate the current decrease. It is revealed that the addition of phloretin leads to a decrease in the dissociation rate constant, whereas addition of either 6-ketocholestanol or RH421 causes an increase in this constant. Single-channel data show that phloretin brings about an increase in the lifetime of the gramicidin channels, whereas RH421 produces a more complicated effect. It is conclude that the dipole potential affects the process of channel dissociation, presumably via the influence on the movement of the dipoles of gramicidin molecules through the layer of the dipole potential drop near the membrane-water interface.  相似文献   

3.
4.
Increasing evidence points to a role for catalytic forms of iron and copper in mediating oxidative damage associated with degenerative processes.  相似文献   

5.
6.
7.
In order to investigate the activation of lipoxygenase and to clarify the role of the oxygenation product hydroperoxide in this process, the effect of 13-hydroperoxylinoleic acid (P, 0-35 microM) on linoleic acid (S, 1-80 microM) oxygenation catalysis by 12 nM lipoxygenase-1 from soybean was studied at pH 10, 25 degrees C, and 240 microM O2 with rapid kinetic techniques. The following observations were made: (1) Iron(II) and iron(III) lipoxygenases are kinetically different: reactions started with the Fe(II) enzyme form show a lag phase, whereas iron(III) lipoxygenase induces an initial burst. (2) Oxidation of the enzyme alone is not sufficient to abolish the lag phase: at [S] greater than 50 microM, the initial burst in the iron(III) lipoxygenase curves is still followed by a lag. The lag phase disappears completely only in the presence of micromolar quantities of P. (3) The approximate dissociation constants for S and P are 15 and 24 microM, respectively, 1 order of magnitude smaller than the corresponding values in the absence of oxygen. The observed kinetics are predicted by numerical integration of the rate equations of a model based on the single lipid binding site mechanism for the anaerobic lipoxygenase reaction [Ludwig et al. (1987) Eur. J. Biochem. 168, 325-337; Verhagen et al. (1978) Biochim. Biophys. Acta 529, 369-379]. A quasi-steady-state approximation of the model suggests that a high [S]/[P] the fraction of active iron(III) lipoxygenase is small and that, therefore, a lag phase is intrinsic to the mechanism.  相似文献   

8.
The effects of various nucleotides and sodium molybdate on the activation of glucocorticoid-receptor complexes (GRC) isolated from tissue cytosol of 6- and 25-month-old rats was studied. It was shown that nucleoside triphosphates activate GRC in the livers of 6-month-old rats, the activating effect being decreased in the following order: UTP greater than or equal to ATP greater than GTP greater than or equal to CTP. Nucleoside di- and monophosphates exert a far lesser stimulating effect. These effects of nucleotides decrease with ageing. Molybdate ions exert a 3-fold effect on the activation of GRC from various rat tissues, i.e., stimulating, inhibiting and zero effects.  相似文献   

9.
Effect of polypeptide chain length on dissociation of ribosomal complexes   总被引:1,自引:0,他引:1  
R J Beller  N H Lubsen 《Biochemistry》1972,11(17):3271-3276
  相似文献   

10.
We previously described a heat-stable factor from WEHI-7 mouse thymoma, rat liver, spleen, and human chronic lymphocytic leukemia cells that prevents degradation of glucocorticoid-receptor complexes (GRC) in cytosols from rat thymus and acute non-lymphocytic leukemia cells. We now show that the factor has many properties in common with calpastatin, a naturally occurring inhibitor of a family of neutral calcium-activated proteases called calpains. Liver GRC-stabilizing activity and calpastatin activity, in addition to surviving boiling, co-chromatography on columns of DEAE-cellulose ion exchange or agarose A-0.5M gel filtration matrices, and have identical isoelectric points of 5.1. This factor should be especially useful for studying GRC function in the presence of calcium.  相似文献   

11.
Summary The investigation on hydrodynamic parameters of molybdate-stabilized glucocorticoid-receptor complexes from HeLa cell cytosol permitted resolution of four distinct forms. The first one could be detected in concentrated cytosols at low salt concentrations, and had the following properties: sedimentation coefficient = 9 S; R s = 9.3 nm; M r = 357,800; f/f o = 1.83; axial ratio (prolate ellipsoid) = 16. When these cytosol extracts were diluted, a second form could be detected with sedimentation coefficient = 8.3 S; R s = 9.05 nm; M r = 320,700;f/f o = 1.84; axial ratio = 16. Under high salt conditions, glucocorticoid-receptor complexes in concentrated cytosol had the following properties: sedimentation coefficient = 6.4 S; R s, = 6.7 nm; M r = 183,100;f/f o = 1.64; axial ratio = 12. When either these cytosol extracts were diluted, or glucocorticoid-receptor complexes were subjected to repeated analysis, a fourth form was detected with sedimentation coefficient = 3.76 S; R s = 5.67; M r = 91,000; f/f o = 1.75; axial ratio = 14. Besides salt concentration and dilution, the time elapsed between sample dilution and analysis appeared to affect the hydrodynamic properties of glucocorticoid-receptor complexes. On the basis of our findings, it has been concluded that the most likely structure of molybdate-stabilized glucocorticoid-receptor complexes of HeLa cell cytosol can be represented by association of monomers in homodimers, and homotetramers. A homotrimer form could not be deduced from our findings, and the 320,700 glucocorticoid-receptor complex we observed has been suggested to represent an unresolved mixture of trimers and tetramers.  相似文献   

12.
Timothy M. Lohman 《Biopolymers》1983,22(7):1697-1713
We present a quantitative model for the irreversible dissociation kinetics of cooperatively bound nonspecific protein–nucleic acid complexes. The model assumes that the major pathway of dissociation is via singly contiguously bound protein that “peels” off the ends of clusters of bound protein. It should therefore be most applicable for proteins that bind nucleic acids with high cooperativity (w > 103). Furthermore, the model assumes that no redistribution of bound protein occurs during the time course of the dissociation. Solutions to the rate equations are presented for the entire time course of the dissociation. Under initial conditions such that the nucleic acid is less than fully saturated with protein, a single-exponential decay is predicted (if w is large). However, when the nucleic acid lattice is initially fully saturated, zero-order kinetics, corresponding to a constant rate of protein dissociation, is predicted. The experimental observation of zero-order dissociation kinetics in a cooperative protein–nucleic acid system is a good qualitative indicator for the dissociation mechanism discussed here. A discussion of the analysis of experimental data that enables one to extract molecular rate constants is presented. Furthermore, comparisons are made between the nonredistributing model presented here and Epstein's model [Epstein, I. R. (1979) Biopolymers 18 , 2037–2050] in which protein can translocate infinitely quickly while bound to the nucleic acid, and hence protein clusters redistribute during dissociation and maintain an equilibrium distribution on the nucleic acid at all times.  相似文献   

13.
14.
S Panda  A Kar 《Life sciences》1999,65(12):PL137-PL141
An investigation was made to find out the importance of gugulu (Commiphora mukul) in thyroid function of mice and to reveal the possible involvement of lipid peroxidation (LPO), if any. While no marked change in the concentrations of serum thyroxine (T4) was observed, triiodoth yronine (T3) concentration and T3/T4 ratio were enhanced following the administration of gugulu extract (0.2 g/kg b. wt./d for 15 days). A concomitant decrease in LPO was also noticed in liver, the principal site of T3 generation, suggesting that gugulu induced increase in T3 concentration is LPO mediated.  相似文献   

15.
The effect of X-radiation (0.21 C/kg) on a lipid component of aminoacyl-tRNA-synthetase complexes from rat liver (for instance, phospholipids, neutral lipids, and prostaglandins) has been studied. The content of prostaglandins and lysophosphatidyl choline increases and that of phospholipids and neutral lipids decreases 60 min after irradiation. In 24 h, the content of prostaglandins, fatty acids, cholesterol, and phosphatidyl ethanolamine approaches the control level.  相似文献   

16.
Calf intestinal alkaline phosphatase was found to stimulate the rate of in vitro activation of rat liver glucocorticoid-receptor complexes. This effect was registered both at 0 and 25 degrees C and could be prevented by sodium molybdate. The resulting change in sedimentation behaviour (shift of sedimentation coefficient from 9.6 S to 4.8 S for molybdate-stabilized and alkaline phosphatase-treated complexes, respectively) was similar to that observed after heat activation.  相似文献   

17.
Cytosols from rat thymus cells incubated with glucocorticoid contain nonactivated and activated receptors and mero-receptor complexes, in relative amounts that depend on the incubation conditions. These forms can be separated by a rapid minicolumn chromatographic technique based on their differential affinities for DNA, DEAE, and hydroxylapatite. We have used this method to examine the effects of ATP, pyrophosphate (PPi), and related compounds on cytosolic complexes. In addition to ATP, already known to promote activation at 0 degrees C, PPi, ADP, and other triphosphates at millimolar concentrations promoted activation of nonactivated complexes. AMP and Pi had little effect. ATP and PPi at millimolar concentrations also reduced binding of activated complexes to DNA. Characterization of the ATP- and PPi-activated complexes by gel filtration and ion exchange chromatography revealed two DNA-binding forms. One was essentially identical (Stokes radius of approximately 5.4 nm, elution from DEAE at approximately 50 mM KCl) to the normal activated complex obtained directly from cells incubated at 37 degrees C. The other had a Stokes radius of approximately 3.1 nm and had no affinity for DEAE. Analysis by minicolumns and gel filtration showed that ATP and PPi prevented formation of mero-receptor complexes, a process which occurs relatively rapidly in untreated thymus cytosols. These compounds did not alter properties of preformed mero-receptor. The accumulation of 3.1-nm complexes in thymus cytosols in which formation of mero-receptor is prevented suggests that this form is an intermediate, normally short-lived, in the conversion of 5.4 nm complexes to mero-receptor.  相似文献   

18.
19.
Dissociation kinetics of triplexes formed by molecules of peptide nucleic acid (PNA) and DNA have been studied. The complexes consisted of oligomeric PNA containing 10 thymine bases and the dA(10) target incorporated in single-stranded (ssDNA) or double-stranded DNA (dsDNA). Their dissociation was followed by means of the gel mobility shift assay at various temperatures and sodium ion concentrations. In all experiments, the dissociation kinetics of triplexes were exponential; the effective lifetime of a triplex, tau, depended on temperature in accordance with the Arrhenius law. The tau values for T(10) PNA complexes with ss- and dsDNA were equal within the accuracy of experiments. The activation energy, U, value for T(10) PNA-DNA complexes did not change when the NaCl concentration was increased from 50 to 200 or 600 mM. Conversely, the tau values decreased with the increase in NaCl concentration. The equal lifetimes of the T(10) PNA-DNA triplexes containing ss- and dsDNA suggest that the loop formed in dsDNA does not noticeably affect the triplex structure. The decrease in the triplex lifetime tau with an increase in ionic strength was accounted for by the fact that the PNA backbone is neutral. The lack of relationship between the activation energy of dissociation and salt concentration suggests that the dissociation enthalpy does not depend on the ionic strength. Thus, the effect of ionic strength on the lifetime is entropic by its nature. Contrary to this, for complexes of ssDNA with bis-PNA 1743, which also consists of 10 thymine bases but contains 2 additional positive charges inside the sequence in 1 of the PNA arms, an increase of the dissociation enthalpy at low salt concentration was observed. We suggest that this effect is a result of a direct electrostatic interaction of the positive charges of the PNA with the DNA backbone. Finally, our results allow an estimate of the lifetime of a 10-mer triplex invasion complex in dsDNA at 37 degrees C in excess of several hundred days.  相似文献   

20.
Prp19p is an integral component of the heteromeric protein complex (the NineTeen complex) in the nucleus, and it is essential for the structural integrity of NineTeen complex and its subsequent activation of the spliceosome. We identified Prp19p, which has never been reported in relation to any function outside of the nucleus, as a member of proteins associated with lipid droplets. Down-regulation of Prp19p expression with RNA interference in 3T3-L1 cells repressed lipid droplet formation with the reduction in the level of expression of perilipin and S3-12. The levels of expression of SCD1 (stearoyl-CoA desaturase-1), DGAT-1 (acyl-CoA diacylglycerol acyltransferase-1), and glycerol-3-phosphate acyltransferase were also reduced in Prp19p down-regulated cells, and a significant decrease in triglycerides was observed. Unlike perilipin, which is one of the most extensively studied lipid droplet-associated proteins, Prp19p is not essential for cAMP- and hormone-sensitive lipase-dependent lipolysis pathways, even though Prp19p is a component of the lipid droplet phospholipid monolayer, and down-regulation of Prp19p represses fat accretion significantly. These results suggest that Prp19p or Prp19-interacting proteins during lipid droplet biogenesis in adipocytes may be considered as another class of potential targets for attacking obesity and obesity-related problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号