首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In Escherichia coli, L-fucose is dissimilated via an inducible pathway mediated by L-fucose permease, L-fucose isomerase, L-fucose kinase, and L-fuculose 1-phosphate aldolase. The last enzyme cleaves the six-carbon substrate into dihydroxyacetone phosphate and L-lactaldehyde. Aerobically, lactaldehyde is oxidized to L-lactate by a nicotinamide adenine dinucleotide (NAD)-linked dehydrogenase. Anaerobically, lactaldehyde is reduced by an NADH-COUPLED REDUCTASE TO L-1,2-propanediol, which is lost into the medium irretrievably, even when oxygen is subsequently introduced. Propanediol excretion is thus the end result of a dismutation that permits further anaerobic metabolism of dihydroxy-acetone phosphate. A mutant selected for its ability to grow aerobically on propanediol as a carbon and energy source was reported to produce lactaldehyde reductase constitutively and at high levels, even aerobically. Under the new situation, this enzyme serves as a propanediol dehydrogenase. It was also reported that the mutant had lost the ability to grow on fucose. In the present study, it is shown that in wild-type cells the full synthesis of lactaldehyde dehydrogenase requires the presence of both molecular oxygen and a small molecule effector, and the full synthesis of lactaldehyde reductase requires anaerobiosis and the presence of a small molecule effector. The failure of mutant cells to grow on fucose reflects the impairment of a regulatory element in the fucose system that prevents the induction of the permease, the isomerase, and the kinase. The aldolase, on the other hand, is constitutively synthesized. Three independent fucose-utilizing revertants of the mutant all produce the permease, the isomerase, the kinase, as well as the aldolase, constitutively. These strains grow less well than the parental mutant on propanediol.  相似文献   

2.
NAD-dependent lactaldehyde dehydrogenase, catalyzing an oxidation of lactaldehyde to lactate, was purified approximately 70-fold from cell extracts of Saccharomyces cerevisiae with a 28% yield of activity. The enzyme was homogeneous on polyacrylamide gel electrophoresis. The relative molecular mass of the enzyme was estimated to be 40 000 on Sephadex G-150 column chromatography and on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The enzyme was most active at pH 6.5, 60 degrees C and specifically oxidized L-lactaldehyde to L-lactate in the presence of NAD. The Km values for L-lactaldehyde and NAD were 10 mM and 2.9 mM, respectively. The purest enzyme was extremely unstable and almost completely inactivated during storage at -20 degrees C, pH 7.5. For the reactivation of the enzyme, halide ions such as Cl-, I- and Br- were required.  相似文献   

3.
Catabolism of the six-carbon compound L-fucose results in formation of dihydroxyacetone phosphate (C-1-to-C-3 fragment) and L-lactaldehyde (C-4-to-C-6 fragment) as intermediates. The fate of lactaldehyde depends on the respiratory growth conditions. Aerobically, lactaldehyde is oxidized to L-lactate by an NAD-linked dehydrogenase (ald product). L-Lactate, in turn, is converted to pyruvate, which enters the general metabolic pool. Anaerobically, lactaldehyde is reduced to L-1,2-propanediol by an NADH-linked oxidoreductase (fucO product). L-1,2-Propanediol is excreted as a terminal fermentation product. In a previous study, we showed that retention of the C-4-to-C-6 fragment of fucose depended on the competition for lactaldehyde by aldehyde dehydrogenase and propanediol oxidoreductase (Y. Zhu and E.C.C. Lin, J. Bacteriol. 169:785-789, 1987). In this study, we compared the wild-type strain and isogenic mutant strains defective in ald, fucO, or both for ability to accumulate radioactivity when incubated with fucose labeled at either the C-1 or the C-6 position. The results showed that although blocking the oxidation of lactaldehyde prevented its assimilation, rapid exit of the 3-carbon unit occurred only when the compound was reduced to propanediol. Moreover, growth experiments on fucose indicated that a double ald fucO mutant accumulated inhibiting concentrations of lactaldehyde. The inner cell membrane therefore appears to be much more permeable to the 3-carbon alcohol than to the 3-carbon aldehyde. The almost instantaneous exit of propanediol appears to be a facilitated process.  相似文献   

4.
Escherichia coli K-12 converts L-fucose to dihydroxyacetone phosphate (C-1 to C-3) and L-lactaldehyde (C-4 to C-6) by a pathway specified by the fuc regulon. Aerobically, L-lactaldehyde serves as a carbon and energy source by the action of an aldehyde dehydrogenase of broad specificity; the product, L-lactate, is then converted to pyruvate. Anaerobically, L-lactaldehyde serves as an electron acceptor to regenerate NAD from NADH by the action of an oxidoreductase; the reduced product, L-12-propanediol, is excreted. A strain selected for growth on L-galactose (a structural analog of L-fucose) acquired a broadened inducer specificity because of an altered fucR gene encoding the activator protein for the fuc regulon (Y. Zhu and E. C. C. Lin, J. Mol. Evol. 23:259-266, 1986). In this study, a second mutation that abolished aldehyde dehydrogenase activity was discovered. The L-fucose pathway converts L-galactose to dihydroxyacetone phosphate and L-glyceraldehyde. Aldehyde dehydrogenase then converts L-glyceraldehyde to L-glycerate, which is toxic. Loss of the dehydrogenase averts the toxicity during growth on L-galactose, but reduces by one-half the aerobic growth yield on L-fucose. When mutant cells induced in the L-fucose system were incubated with radioactive L-fucose, accumulation of radioactivity occurred if the substrate was labeled at C-1 but not if it was labeled C-6. Complete aerobic utilization of carbons 4 through 6 of L-fucose depends not only on an adequate activity of aldehyde dehydrogenase to trap L-lactaldehyde as its anionic acid but also on the lack of L-1,2-propanediol oxidoreductase activity, which converts L-lactaldehyde to a readily excreted alcohol.  相似文献   

5.
Aerobic excretion of 1,2-propanediol by Salmonella typhimurium.   总被引:1,自引:1,他引:0       下载免费PDF全文
Salmonella typhimurium excreted the rhamnose fermentation product 1,2-propanediol not only under anaerobic conditions, but also under aerobic conditions. The absence of an aldehyde dehydrogenase enzymatic activity that oxidizes to lactate the lactaldehyde formed in the dissimilation of rhamnose raised the intracellular concentration of the aldehyde which was alternatively reduced to the excretable 1,2-propanediol by a residual propanediol oxidoreductase activity.  相似文献   

6.
Role of NAD in regulating the adhE gene of Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
The fermentative alcohol dehydrogenase of Escherichia coli is encoded by the adhE gene, which is induced under anaerobic conditions but repressed in air. Previous work suggested that induction of adhE might depend on NADH levels. We therefore directly measured the NAD+ and NADH levels for cultures growing aerobically and anaerobically on a series of carbon sources whose metabolism generates different relative amounts of NADH. Expression of adhE was monitored both by assay of alcohol dehydrogenase activity and by expression of phi(adhE'-lacZ) gene fusions. The expression of the adhE gene correlated with the ratio of NADH to NAD+. The role of NADH in eliciting adhE induction was supported by a variety of treatments known to change the ratio of NADH to NAD+ or alter the total NAD+-plus-NADH pool. Blocking the electron transport chain, either by mutation or by chemical inhibitors, resulted in the artificial induction of the adhE gene under aerobic conditions. Conversely, limiting NAD synthesis, by introducing mutational blocks into the biosynthetic pathway for nicotinic acid, decreased the expression of adhE under anaerobic conditions. This, in turn, was reversed by supplementation with exogenous NAD or nicotinic acid. In merodiploid strains carrying deletion or insertion mutations abolishing the synthesis of AdhE protein, an adhE-lacZ fusion was expressed at nearly 10-fold the level observed in an adhE+ background. Introduction of mutant adhE alleles producing high levels of inactive AdhE protein gave results equivalent to those seen in absence of the AdhE protein. This finding implies that it is the buildup of NADH due to lack of enzyme activity, rather than the absence of the AdhE protein per se, which causes increased induction of the phi(adhE'-lacZ) fusion. Moreover, mutations giving elevated levels of active AdhE protein decreased the induction of the phi(adhE'-lacZ) fusion. This finding suggests that the enzymatic activity of the AdhE protein modulates the level of NADH under anaerobic conditions, thus indirectly regulating its own expression.  相似文献   

7.
Escherichia coli is capable of growing on L-fucose or L-rhamnose as a sole source of carbon and energy. When grown under anaerobic conditions on either sugar, a nicotinamide adenine dinucleotide-linked L-lactaldehyde:propanediol oxidoreductase activity is induced. The functioning of this enzyme results in the regeneration of oxidized nicotinamide adenine dinucleotide. Conditions of induction of the enzyme activity were studied and were found to display different characteristics on each sugar. In the rhamnose-grown cells, the increase in enzyme activity detected under inducing conditions was accompanied by the synthesis of propanediol oxidoreductase, as measured by the appearance in the extracts of a protein that reacts with propanediol oxidoreductase antibodies. In contrast, in fucose-grown cells, the level of propanediol oxidoreductase as measured by enzyme antibody-reacting material was high under noninducing and inducing conditions. Thus, the increase in enzyme activity detected in going from noninducing to inducing conditions in fucose-grown cells did not depend on the appearance of the specific protein but on the activation of the propanediol oxidoreductase already present in the cells in an inactive form. The propanediol oxidoreductase of both homologous systems should consequently be regulated by different control mechanisms.  相似文献   

8.
Chicken liver lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC1.1.1.27) catalyses the reversible reduction reaction of hydroxypyruvate to L-glycerate. It also catalyses the oxidation reaction of the hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form to glycolate. At pH 8, these latter two reactions are coupled. The coupled system equilibrium is attained when the NAD+/NADH ratio is greater than unity. Hydroxypyruvate binds to the enzyme at the same site as the pyruvate. When there are substances with greater affinity to this site in the reaction medium and their concentration is very high, hydroxypyruvate binds to the enzyme at the L-lactate site. In vitro and with purified preparation of lactate dehydrogenase, hydroxypyruvate stimulates the production of oxalate from glyoxylate-hydrated form and from NAD; the effect is due to the fact that hydroxypyruvate prevents the binding of non-hydrated form of glyoxylate to the lactate dehydrogenase in the pyruvate binding site. At pH 8, THE L-glycerate stimulates the production of glycolate from glyoxylate-non-hydrated form and NADH since hydroxypyruvate prevents the binding of glyoxylate-hydrated form to the enzyme  相似文献   

9.
The enzyme propanediol oxidoreductase, which converts the lactaldehyde formed in the metabolism of fucose and rhamnose into propane-1,2-diol under anaerobic conditions, was investigated in Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Structural analysis indicated that the enzymes of E. coli and K. pneumoniae have the same Mr and pI, whereas that of Salm. typhimurium also has the same Mr but a slightly different pI. One-dimensional peptide mapping showed identity between the E. coli and K. pneumoniae enzymes when digested with alpha-chymotrypsin, Staphylococcus aureus V8 proteinase or subtilisin. In the case of Salm. typhimurium, this held only for the subtilisin-digested enzymes, indicating that the hydrophobic regions were preserved to a considerable extent. Anaerobically, the three species induced an active propanediol oxidoreductase when grown on fucose or rhamnose. An inactive propanediol oxidoreductase was induced in Salm. typhimurium by either fucose or rhamnose under aerobic conditions, and this was activated once anaerobiosis was established. An inactive propanediol oxidoreductase was also induced in E. coli under aerobic conditions, but only by growth on fucose. The inactive enzyme was not induced by either of the sugars in K. pneumoniae.  相似文献   

10.
Escherichia coli are capable of growing anaerobically on L-rhamnose as a sole source of carbon and energy and without any exogenous hydrogen acceptor. When grown under such condition, synthesis of a nicotinamide adenine dinucleotide-linked L-lactaldehydepropanediol oxidoreductase is induced. The functioning of this enzyme results in the regeneration of nicotinamide adenine dinucleotide. The enzyme was purified to electrophoretic homogeneity. It has a molecular weight of 76,000, with two subunits that are indistinguishable by electrophoretic mobility. The enzyme reduces L-lactaldehyde to L-1,2-propanediol with reduced nicotinamide adenine dinucleotide as a cofactor. The Km were 0.035 mM L-lactaldehyde and 1.25 mM L-1,2-propanediol, at pH 7.0 and 9.5, respectively. The enzyme acts only on the L-isomers. Strong substrate inhibition was observed with L-1,2-propanediol (above 25 mM) in the dehydrogenase reaction. The enzyme has a pH optimum of 6.5 for the reduction of L-lactaldehyde and of 9.5 for the dehydrogenation of L-1,2-propanediol. The enzyme is, according to the parameters presented in this report, indistinguishable from the propanediol oxidoreductase induced by anaerobic growth on fucose.  相似文献   

11.
12.
《BBA》1987,893(3):386-397
Three NAD(P)H dehydrogenases were found and purified from a soluble fraction of cells of the purple non-sulfur bacterium Rhodobacter capsulatus, strain B10. Molecular mass of NAD(P)H, NADPH and NADH dehydrogenases are 67 000 (4 · 18 000), 35 000 and 39 000, and the isoelectric points are 4.6, 4.3 and 4.5, respectively. NAD(P)H dehydrogenase is characterized by a higher sensitivity to quinacrine, NADPH dehydrogenase by its sensitivity to p-chloromercuribenzoate and NADH dehydrogenase by its sensitivity to sodium arsenite. In contrast to the other two enzymes, NAD(P)H dehydrogenase is capable of oxidizing NADPH as well as NADH, but the ratio of their oxidation rates depends on the pH. All NAD(P)H dehydrogenases reacted with ferricyanide, 2,6-dichlorophenolindophenol, benzoquinone and naphthoquinone, but did not exhibit transhydrogenase, reductase or oxidase activity. Moreover, NADH dehydrogenase was also capable of reducing FAD and FMN. NAD(P)H and NADH dehydrogenases possessed cytochrome-c reductase activity, which was stimulated by menadione and ubiquinone Q1. The activity of NAD(P)H and NADH dehydrogenases depended on culture-growth conditions. The activity of NAD(P)H dehydrogenase from cells grown under chemoheterotrophic aerobic conditions was the lowest and it increased notably under photoheterotrophic anaerobic conditions upon lactate or malate growth limitation. The activity of NADH dehydrogenase was higher from the cells grown under photoheterotrophic anaerobic conditions upon nitrate growth limitation and under chemoheterotrophic aerobic conditions. NADPH dehydrogenase synthesis dependence on R. capsulatus growth conditions was insignificant.  相似文献   

13.
A modification of the assays for isocitrate and malate dehydrogenase, using phenazine methosulphate and 2,6-dichlorophenolindophenol, permits measurements on cell-free extracts. Phenazine methosulfate at concentrations higher than 30 nmoles/3 ml prevents the accumulation of NADPH or NADH and thus reduces errors due to endogenous oxidation of these compounds. The use of 2,6-dichlorophenolindophenol rather than a tetrazolium salt as the terminal electron acceptor allows continuous spectrophotometric measurement of enzyme activities.Assay for NADP-specific isocitrate dehydrogenase can be performed in aerobic or anaerobic conditions. Assays for malate dehydrogenase should be run under anaerobic conditions because of the interference by oxygen on the phenazine methosulfate mediated reduction of 2,6-dichlorophenolindophenol by NADH. Under anaerobic conditions, where NADH oxidase is inoperative, the phenazine methosulfate/dichlorophenolindophenol assay is more sensitive than the assay using direct measurement of NADH at 340 nm.  相似文献   

14.
Lactaldehyde dehydrogenase (E.C. 1.2.1.22) of Escherichia coli has been purified to homogeneity. It has four apparently equal subunits (molecular weight 55,000 each) and four NAD binding sites per molecule of native enzyme. The enzyme is inducible, only under aerobic conditions, by at least three different types of molecules, the sugars fucose and rhamnose, the diol ethylene glycol and the amino acid glutamate. The enzyme catalyzes the irreversible oxidation of several aldehydes with a Km in the micromolar range for alpha-hydroxyaldehydes (lactaldehyde, glyceraldehyde, or glycolaldehyde) and a higher Km, in the millimolar range, for the alpha-ketoaldehyde methylglyoxal. It displays substrate inhibition with all these substrates. NAD is the preferential cofactor. The functional and structural features of the enzyme indicate that it is not an isozyme of other E. coli aldehyde dehydrogenases such as glyceraldehyde phosphate dehydrogenase, glycolaldehyde dehydrogenase, or acetaldehyde dehydrogenase. The enzyme, previously described as specific for lactaldehyde, is thus identified as a dehydrogenase with a fairly general role in aldehyde oxidation, and it is probably involved in several metabolic pathways.  相似文献   

15.
Chicken liver lactate dehydrogenase (L-lactate : NAD+ oxidoreductase, EC 1.1.1.27) irreversibly catalyses the oxidation of glyoxylate (hydrated form) (I) to oxalate (pH = 9.6) and the reduction of (non-hydrated form) (II) to glycolate (pH = 7.4). (I) attaches to the enzyme in the pyruvate binding site and (II) attaches to the enzyme at the L-lactate binding site. The oxidation of (I) (pH = 9.6) is adapted to the following mechanism: (see book). The abortive complexes, E-NADH-I and E-NAD+-II, are responsible for the inhibition by excess substrate in the reduction and oxidation systems, respectively. When lactate dehydrogenase and NAD+ are preincubated, E-NAD+- NAD+ appears and causes inhibition by excess NAD+ in the glyoxylate-lactate dehydrogenase-NAD+ and L-lactate-lactate dehydrogenase-NAD+ systems; the second NAD+ molecule attaches to the enzyme at the L-lactate binding site.  相似文献   

16.
It is generally known that cofactors play a major role in the production of different fermentation products. This paper is part of a systematic study that investigates the potential of cofactor manipulations as a new tool for metabolic engineering. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ and producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. We have previously investigated a genetic means of increasing the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase and have demonstrated that this manipulation provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically (Berríos-Rivera et al., 2002, Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229). The current work explores further the effect of substituting the native cofactor-independent formate dehydrogenase (FDH) by an NAD(+)-dependent FDH from Candida boidinii on the NAD(H/+) levels, NADH/NAD+ ratio, metabolic fluxes and carbon-mole yields in Escherichia coli under anaerobic chemostat conditions. Overexpression of the NAD(+)-dependent FDH provoked a significant redistribution of both metabolic fluxes and carbon-mole yields. Under anaerobic chemostat conditions, NADH availability increased from 2 to 3 mol NADH/mol glucose consumed and the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol to acetate ratio and a decrease in the flux to lactate. It was also found that the NADH/NAD+ ratio should not be used as a sole indicator of the oxidation state of the cell. Instead, the metabolic distribution, like the Et/Ac ratio, should also be considered because the turnover of NADH can be fast in an effort to achieve a redox balance.  相似文献   

17.
Wild-type strains of Escherichia coli are unable to use L-1,2-propanediol as a carbon and energy source. A series of mutants, able to grow on this compound at progressively faster rates, had been isolated by repeated transfers to a medium containing 20 mM L-1,2-propanediol. These strains synthesize at high constitutive levels a propanediolmicotinamide adenine dinucleotide oxidoreductase, an enzyme serving as a lactaldehyde during L-fucose fermentation by wild type cells. In this study, a mutant that can grow rapidly on the novel carbon source was subjected to further selection in a medium containing L-1,2-propanediol never exceeding 0.5 mM to obtain a derivative that has an increased power to extract the substrate from the medium. The emerging mutant exhibited four changes at the enzymatic level: (i) fuculose 1-phosphate aldolase activity is lost; (ii) the constitutive propanediol oxidoreductase activity is increased in its level; (iii) lactaldehyde dehydrogenase becomes constitutive and shows an elevated specific activity in crude extracts; and (iv) at low concentrations of propanediol, the facilitated diffusion across the cell membrane is enhanced. Changes two to four seem to act in concert in the trapping of propanediol by hastening its rate of entry and conversion to an ionized metabolite, lactate.  相似文献   

18.
NAD(P)H dehydrogenase was purified approximately 480-fold from Saccharomyces cerevisiae with 6.5% activity yield. The enzyme was homogeneous on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 40,000–44,000 by gel filtration on Sephadex G-150 column chromatography and SDS-polyacrylamide gel electrophoresis. The Km values for NADPH and NADH were 7.3 μM and 0.1 mM, respectively. The activity of the enzyme increased approximately 4-fold with Cu2+. FAD, FMN and cytochrome c were not effective as electron acceptors, although Fe(CN)63− was slightly effective. NADH generated by the reaction of lactaldehyde dehydrogenase in the glycolytic methylglyoxal pathway will be reoxidized by NAD(P)H dehydrogenase. NAD(P)H dehydrogenase thus may contribute to the reduction/oxidation system in the glycolytic methylglyoxal pathway to maintain the flux of methylglyoxal to lactic acid via lactaldehyde.  相似文献   

19.
Metabolic engineering studies have generally focused on manipulating enzyme levels through either the amplification, addition, or deletion of a particular pathway. However, with cofactor-dependent production systems, once the enzyme levels are no longer limiting, cofactor availability and the ratio of the reduced to oxidized form of the cofactor can become limiting. Under these situations, cofactor manipulation may become crucial in order to further increase system productivity. Although it is generally known that cofactors play a major role in the production of different fermentation products, their role has not been thoroughly and systematically studied. However, cofactor manipulations can potentially become a powerful tool for metabolic engineering. Nicotinamide adenine dinucleotide (NAD) functions as a cofactor in over 300 oxidation-reduction reactions and regulates various enzymes and genetic processes. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. This paper investigates a genetic means of manipulating the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase. More specifically, it explores the effect on the metabolic patterns in Escherichia coli under anaerobic and aerobic conditions of substituting the native cofactor-independent formate dehydrogenase (FDH) by and NAD(+)-dependent FDH from Candida boidinii. The over-expression of the NAD(+)-dependent FDH doubled the maximum yield of NADH from 2 to 4 mol NADH/mol glucose consumed, increased the final cell density, and provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically. Under anaerobic conditions, the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol-to-acetate ratio. Even more interesting is the observation that during aerobic growth, the increased availability of NADH induced a shift to fermentation even in the presence of oxygen by stimulating pathways that are normally inactive under these conditions.  相似文献   

20.
Abstract Enterococcus faecalis was grown in chemostat culture on various energy sources at dilution rates ranging from 0.05 h−1 to 0.5 h−1, under both aerobic and anaerobic conditions. NADH/NAD ratios and total nicotinamide adenine dinucleotide pool size (NAD(H)) were determined. It was found that the NADH/NAD ratio was controlled by the steady state product concentrations rather than by the degree of reduction of the energy source. Highest ratios were observed when NADH was reoxidized via ethanol formation, whereas in aerobic cultures, in which predominantly acetate was produced and oxidation of NADH occurred via the NADH oxidase, ratios were lowest. Addition of ethanol to the medium resulted in an increase of the NADH/NAD ratio, both aerobically and anaerobically. The total amount of NAD(H) was found to be influenced by the culture conditions. Under anaerobic conditions, the NADH oxidation (NAD reduction) rate appeared to correlate with the total amount of nicotinamide nucleotides. In contrast, no effect of the culture conditions on the total amount of NAD(H) was observed in aerobically grown cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号