首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A chemically mutagenized avirulent form of Leishmania major was used to immunize BALB/c and C57B1/6 mice against challenge with virulent L. major. Immunity was elicited when the avirulent parasite was injected intravenously or intraperitoneally, but not subcutaneously. In fact, the latter route of immunization sometimes resulted in exacerbation of a subsequent infection with virulent L. major. Mice immunized with avirulent L. major developed upon challenge with virulent L. major cutaneous lesions which were significantly smaller and contained substantially fewer parasites than lesions on control nonimmune animals. Finally, the protection conferred by immunization with avirulent L. major could be adoptively transferred with T cells of the CD4+ lineage but not the CD8+ lineage.  相似文献   

3.
4.
LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.  相似文献   

5.
The proteins that mediate polyamine translocation into eukaryotic cells have not been identified at the molecular level. To define the polyamine transport pathways in eukaryotic cells we have cloned a gene, LmPOT1, that encodes a polyamine transporter from the protozoan pathogen, Leishmania major. Sequence analysis of LmPOT1 predicted an unusual 803-residue polytopic protein with 9-12 transmembrane domains. Expression of LmPOT1 cRNA in Xenopus laevis oocytes revealed LmPOT1 to be a high affinity transporter for both putrescine and spermidine, whereas expression of LmPOT1 in Trypanosoma brucei stimulated putrescine uptake that was sensitive to inhibition by pentamidine and proton ionophores. Immunoblot analysis established that LmPOT1 was expressed predominantly in the insect vector form of L. major, and immunofluorescence demonstrated that LmPOT1 was localized predominantly to the parasite plasma membrane. To our knowledge this is the first molecular identification and characterization of a cell surface polyamine transporter in eukaryotic cells.  相似文献   

6.
We identified a Leishmania major‐specific gene that can partly compensate for the loss of virulence observed for L. major HSP100 null mutants. The gene, encoding a 46 kD protein of unknown function and lineage, also enhances the virulence of wild type L. major upon overexpression. Surprisingly, the approximately sixfold overexpression of this protein also extends the host range of L. major to normally resistant C57BL/6 mice, causing persisting lesions in this strain, even while eliciting a strong cellular immune response. This enhanced virulence in vivo is mirrored in vitro by increased parasite burden inside bone marrow‐derived macrophages. The localization of the protein in the macrophage cytoplasm suggests that it may modulate the macrophage effector mechanisms. In summary, our data show that even minor changes of gene expression in L. major may alter the outcome of an infection, regardless of the host's genetic predisposition.  相似文献   

7.
Amplification of the H region has been previously observed in methotrexate (MTX)-resistant strains of Leishmania major and in unselected laboratory stocks of L. tarentolae. We now show that selection of L. major with the structurally unrelated drugs primaquine or terbinafine generated resistant lines exhibiting H region amplification and 23- and 12-fold cross-resistance to MTX, respectively. These and other drug-resistant lines bearing H region amplification also exhibited weak cross-resistance to primaquine and terbinafine, associating the amplified H region with pleiotropic resistance to MTX and other drugs. In contrast, lines selected for chloroquine or pentamidine resistance did not show H region amplification or this pattern of drug cross-resistance. The primaquine- and terbinafine-selected lines exhibited wild-type levels of dihydrofolate reductase-thymidylate synthase and normal uptake and accumulation of MTX, and the MTX resistance of these lines was not reversed by verapamil. These data suggest that the mechanism of MTX cross-resistance associated with H region amplification is novel and distinct from that mediated by overexpression of MDR genes in multidrug-resistant mammalian cells. Structural studies indicated that the amplified H region DNA in these L. major lines was largely (possibly exclusively) extra-chromosomal and consisted of circular inverted repeats joined at two DNA rearrangement junctions. Southern blot analyses showed that these rearrangement junctions were identical in four independent cell lines, suggesting that these sites are "hotspots" for DNA rearrangement. H region amplification in all of these lines was conservative, defined as retention of the chromosomal H region locus without structural alteration or reduction in copy number. This finding is consistent with an over-replication/recombination model for amplification of the H region.  相似文献   

8.
9.
Tremendous progress has been achieved in developmental, cellular and molecular immunology in the past 20 years, largely due to studies using the mouse as a model system and the arrival of molecular genetics. Immunology is now faced with a difficult challenge. What are the functions of the individual cells and molecules in achieving immunity to infection? Renewed interest in animal models of disease has provided considerable insight in this area, but such models of infection suffer from the inherent limitation of being experimental. In humans, the complex host-environment interaction occurs in natural, as opposed to experimental, conditions. The human model is therefore an indispensable complement to animal models, as it allows an observational genetic dissection of immunity to infection.  相似文献   

10.
In Old World Leishmania infections, Leishmania donovani is responsible for fatal visceral leishmaniasis, and L. major is responsible for non-fatal cutaneous leishmaniasis in humans. The genetic differences between these species which govern the pathology or site of infection are not known. We have therefore carried out detailed analysis of the A2 loci in L. major and L. donovani because A2 is expressed in L. donovani but not L. major, and A2 is required for survival in visceral organs by L. donovani. We demonstrate that although L. major contains A2 gene regulatory sequences, the multiple repeats that exist in L. donovani A2 protein coding regions are absent in L. major, and the remaining corresponding A2 sequences appear to represent non-expressed pseudogenes. It was possible to restore amastigote-specific A2 expression to L. major, confirming that A2 regulatory sequences remain functional in L. major. Although L. major is a cutaneous parasite in rodents and humans, restoring A2 expression to L. major inhibited its ability to establish a cutaneous infection in susceptible BALB/c or resistant C57BL6 mice, a phenotype typical of L. donovani. There was no detectable cellular immune response against L. major after cutaneous infection with A2-expressing L. major, suggesting that the lack of growth was not attributable to acquired host resistance but to an A2-mediated suppression of parasite survival in skin macrophages. These observations argue that the lack of A2 expression in L. major contributed to its divergence from L. donovani with respect to the pathology of infection.  相似文献   

11.
Five hybridomas that secrete monoclonal antibodies which neutralize the infectivity of lactate dehydrogenase-elevating virus (LDV) were isolated from BALB/c mice primed with Formalin-inactivated LDV. Competition analyses indicated that all five neutralizing monoclonal antibodies recognize contiguous, if not identical, epitopes on the envelope glycoprotein of LDV (VP-3) which are not recognized by nonneutralizing VP-3-specific monoclonal antibodies isolated from the same fusion. Despite the presence of neutralizing activity, polyclonal anti-LDV antibodies obtained from persistently infected mice did not compete for binding to LDV with four of the five neutralizing monoclonal antibodies tested. The results indicate that the envelope glycoprotein of LDV possesses a major neutralizing epitope which is poorly recognized, if at all, by mice during a natural infection but is rendered immunogenic by Formalin inactivation of the virus. The epitope was also not immunogenic in a rabbit, since its polyclonal LDV-neutralizing antibodies did not inhibit binding of the mouse monoclonal antibodies to LDV. Passive immunization with the neutralizing monoclonal antibodies did not protect mice from LDV infection and did not alter the course of infection. Neutralizing monoclonal antibodies have been used to select a neutralization escape variant by a novel combination of in vitro and in vivo isolation.  相似文献   

12.
The chemokine receptor CCR6 is expressed on naïve B cells, dendritic cell and T-cell subpopulations and is involved in cell navigation during organogenesis and recruitment in response to inflammatory stimuli. Gene-deficient C57BL/6 CCR6−/− mice infected with the protozoan parasite Leishmania (L.) major were able to mount a protective immune response and survived the infection. Whereas macrophage production of nitric oxide (NO), the key leishmanicidal effector molecule during the immune response to L. major, did not require CCR6, the migration of CD4+ T cells to the site of infection was reduced in CCR6−/− mice. Furthermore, the induction of a T-cell-dependent delayed-type-hypersensitivity (DTH) reaction was defective in CCR6−/− mice, whereas resistance to re-infection was maintained in the absence of CCR6. We conclude that CCR6 contributes to the recruitment of T cells to the site of infection, but is largely dispensable for the control of L. major parasites during primary or secondary infection.  相似文献   

13.
14.
Chen L  He Z  Qin L  Li Q  Shi X  Zhao S  Chen L  Zhong N  Chen X 《PloS one》2011,6(9):e24407

Background

Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer.

Methodology/Principal Findings

Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect.

Conclusions/Significance

Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer immune-based therapy.  相似文献   

15.
16.
For the human pathogen Leishmania major, a key metabolic function is the synthesis of thymidylate, which requires 5,10-methylenetetrahydrofolate (5,10-CH(2)-THF). 5,10-CH(2)-THF can be synthesized from glycine by the mitochondrial glycine cleavage complex (GCC). Bioinformatic analysis revealed the four subunits of the GCC in the L. major genome, and the role of the GCC in parasite metabolism and virulence was assessed through studies of the P subunit (glycine decarboxylase (GCVP)). First, a tagged GCVP protein was expressed and localized to the parasite mitochondrion. Second, a gcvP(-) mutant was generated and shown to lack significant GCC activity using an indirect in vivo assay after incorporation of label from [2-(14)C]glycine into DNA. The gcvP(-) mutant grew poorly in the presence of excess glycine or minimal serine; these studies also established that L. major promastigotes require serine for optimal growth. Although gcvP(-) promastigotes and amastigotes showed normal virulence in macrophage infections in vitro, both forms of the parasite showed substantially delayed replication and lesion pathology in infections of both genetically susceptible or resistant mice. These data suggest that, as the physiology of the infection site changes during the course of infection, so do the metabolic constraints on parasite replication. This conclusion has great significance to the interpretation of metabolic requirements for virulence. Last, these studies call attention in trypanosomatid protozoa to the key metabolic intermediate 5,10-CH(2)-THF, situated at the junction of serine, glycine, and thymidylate metabolism. Notably, genome-based predictions suggest the related parasite Trypanosoma brucei is totally dependent on the GCC for 5,10-CH(2)-THF synthesis.  相似文献   

17.
《Autophagy》2013,9(2):159-172
Leishmania major possesses, apparently uniquely, four families of ATG8-like genes, designated ATG8, ATG8A, ATG8B and ATG8C, and 25 genes in total.  L. major ATG8 and examples from the ATG8A, ATG8B and ATG8C families are able to complement a Saccharomyces cerevisiae ATG8-deficient strain, indicating functional conservation. Whereas ATG8 has been shown to form putative autophagosomes during differentiation and starvation of L. major, ATG8A primarily form puncta in response to starvation - suggesting a role for ATG8A in starvation-induced autophagy. Recombinant ATG8A was processed at the scissile glycine by recombinant ATG4.2 but not ATG4.1 cysteine peptidases of L. major and, consistent with this, ATG4.2-deficient L. major mutants were unable to process ATG8A and were less able to withstand starvation than wild type cells. GFP-ATG8-containing puncta were less abundant in ATG4.2 over-expression lines, in which unlipidated ATG8 predominated, which is consistent with ATG4.2 being an ATG8-deconjugating enzyme as well as an ATG8A-processing enzyme. In contrast, recombinant ATG8, ATG8B and ATG8C were all processed by ATG4.1, but not by ATG4.2. ATG8B and ATG8C both have a distinct subcellular location close to the flagellar pocket, but the occurrence of the GFP-labelled puncta suggest that they do not have a role in autophagy. L. major genes encoding possible ATG5, ATG10 and ATG12 homologues were found to complement their respective S. cerevisiae mutants, and ATG12 localised in part to ATG8-containing puncta, suggestive of a functional ATG5-ATG12 conjugation pathway in the parasite. L. major ATG12 is unusual as it requires C-terminal processing by an as yet unidentified peptidase.  相似文献   

18.
We demonstrate that a proteophosphoglycan-rich gel secreted by Leishmania infantum inside the midgut of Lutzomyia longipalpis sand flies (promastigote secretory gel) is regurgitated along with an average dose of 500 L. infantum metacyclic promastigotes per infected bite. Using both low (103) and high (105) doses of parasites in the ears of BALB/c mice we show that the infections benefit from the presence of vector saliva and parasite gel in the skin. However, chronic infection of the spleen was only enhanced in high dose co-infections with gel. These results provide the framework for a more natural experimental model of visceral leishmaniasis.  相似文献   

19.
20.
Most natural ecosystem populations suffer from various infectious diseases and the resulting host-pathogen dynamics is dependent on host's characteristics. On the other hand, empirical evidences show that for most host pathogen systems, a part of the host population always forms a refuge. To study the role of refuge on the host-pathogen interaction, we study a predator-prey-pathogen model where the susceptible and the infected prey can undergo refugia of constant size to evade predator attack. The stability aspects of the model system is investigated from a local and global perspective. The study reveals that the refuge sizes for the susceptible and the infected prey are the key parameters that control possible predator extinction as well as species co-existence. Next we perform a global study of the model system using Lyapunov functions and show the existence of a global attractor. Finally we perform a stochastic extension of the basic model to study the phenomenon of random refuge arising from various intrinsic, habitat-related and environmental factors. The stochastic model is analyzed for exponential mean square stability. Numerical study of the stochastic model shows that increasing the refuge rates has a stabilizing effect on the stochastic dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号