首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Filtering and feeding rates of cyclopoid copepods feeding on phytoplankton   总被引:1,自引:0,他引:1  
Rita Adrian 《Hydrobiologia》1991,210(3):217-223
The algal biomass ingested by omnivorous cyclopoid copepods (Cyclops kolensis and C. vicinus) was measured by two methods in the hypertrophic Heiligensee in Berlin (West Germany). The clearance and ingestion rates inferred from measurements of natural populations of 14C labelled phytoplankton were compared with those obtained from chlorophyll a determinations using the presence/absence method (observed chlorophyll a content of natural lake phytoplankton with and without addition of cyclopoids). Both methods gave similar results. Nevertheless, the radio tracer method is preferred, mainly because the short feeding duration excludes high variations in both the food composition and food concentration that limit the presence/absence method.  相似文献   

2.
In order to aid the study of photoacclimation, a new programmable deviceis described which provides automatic on-line acquisition of in vivo cellabsorption in phytoplankton cultures. The system was used for a long-termstudy of Rhodomonas salina grown at constant photon flux density ina nitrate-limited continuous culture with different dilution rates. Particulate absorption measured at the red chlorophyll a (Chl a)maximum was not a good proxy of biomass, because of the large variabilityof cellular chlorophyll induced by nitrogen limitation. However, thedevice is well suited to automatic assessment of Chl a andphycoerythrin (PE) concentrations in phytoplankton cultures, if algal cellsize and concentration are measured in parallel to correct the packagingeffect. The effects of nitrogen limitation on Chl a and PE contentsand particle absorbance are discussed.  相似文献   

3.
1. This study introduces delayed fluorescence (DF) excitation spectroscopy as an on‐line tool for in situ monitoring of the composition and biomass of various colour classes of phytoplankton when they are photosynthetically active (cyanobacteria, chlorophytes, chromophytes and cryptophytes). The DF data are validated by comparison with those from conventional methods (weekly microscopic counts and the measurement of chlorophyll concentration). 2. The composition of phytoplankton as assessed by DF agreed reasonably well with the results from microscopic counts, particularly when differences in chlorophyll‐specific DF integrals of the various colour classes were taken into account. 3. Integrals of DF spectra were converted into concentration of chlorophyll a using empirical factors derived from field data. The value of the conversion factor was nearly twice as high when the relative abundance of cyanobacteria was low (<15%) than when it was high. The converted DF‐chl time series agreed well with chlorophyll measurements particularly when blooms were developing. As the DF method is inherently free of the interference caused by pigment degradation products, the discrepancy between the two data sets increased during the collapse of blooms and when sediment resuspension was intense. 4. Fourier spectrum analysis of the time series of DF‐chl indicated that samples must be taken, at a minimum, every 2–3 days to capture the dynamics of phytoplankton. As a consequence, the dynamics of various algal blooms, including their timing, duration and net growth rate, could be estimated with greater confidence than by using conventional methods alone. 5. On‐line DF spectroscopy is an advanced technique for monitoring daily the biomass and composition of the photosynthetically active phytoplankton in aquatic environments, including turbid shallow lakes. At present, the detection limit is around 1 mg DF‐chl a m?3 in terms of total biomass but confidence in estimates of phytoplankton composition declines sharply below about 5 mg chl a m?3. 6. On‐line DF spectroscopy represents a promising approach for monitoring phytoplankton. It will be useful in water management where it can act as an early‐warning system of declines in water quality. In basic ecological research it can supplement manual methods. While default calibration spectra may be acceptable for routine monitoring, we suggest a careful individual calibration of the DF spectrometer for basic research. The statistical methods developed here help to assess the adequacy of various calibration sets.  相似文献   

4.
Primary productivity, community respiration, chlorophyll a concentration, phytoplankton species composition, and environmental factors were compared in the Yolo Bypass floodplain and adjacent Sacramento River in order to determine if passage of Sacramento River through floodplain habitat enhanced the quantity and quality of phytoplankton carbon available to the aquatic food web and how primary productivity and phytoplankton species composition in these habitats were affected by environmental conditions during the flood season. Greater net primary productivity of Sacramento River water in the floodplain than the main river channel was associated with more frequent autotrophy and a higher P:R ratio, chlorophyll a concentration, and phytoplankton growth efficiency (αB). Total irradiance and water temperature in the euphotic zone were positively correlated with net primary productivity in winter and early spring but negatively correlated with net primary productivity in the late spring and early summer in the floodplain. In contrast, net primary productivity was correlated with chlorophyll a concentration and streamflow in the Sacramento River. The flood pulse cycle was important for floodplain production because it facilitated the accumulation of chlorophyll a and wide diameter diatom and green algal cells during the drain phase. High chlorophyll a concentration and diatom and green algal biomass enabled the floodplain to export 14–37% of the combined floodplain plus river load of total, diatom and green algal biomass and wide diameter cells to the estuary downstream, even though it had only 3% of the river streamflow. The study suggested the quantity and quality of riverine phytoplankton biomass available to the aquatic food web could be enhanced by passing river water through a floodplain during the flood season.  相似文献   

5.
The response of Baltic Sea ice communities to changing light climate was studied in three subsequent 3 week in situ experiments on the SW coast of Finland. The investigation covered three different winter periods, short day with low solar angles leading to limited light in the ice, late winter with deep snow cover and early spring with melting snow and increasing light availability. The experimental setup consisted of transparent (no snow) and completely darkened (heavy snow cover) plexiglass tubes in which the ice cores were incubated in situ from 1 to 2 weeks. Changes in the concentrations of inorganic nutrients (NO3-–N, PO43−-–P, SiO4-–Si) and chlorophyll-a concentration in the phytoplankton community composition were recorded as responses to different light manipulations. Changes in inner ice light intensity in untreated ice as well as the temperature both in air and ice were recorded over the entire study period. Increased irradiance in late winter/early spring and during meltdown affected the chlorophyll-a amount in the sea ice. During these periods the phytoplankton community in the top layers decreased possibly as a consequence of photo-acclimation. Closer to the bottom of the ice, however, the increased inner ice light intensity induced algal growth. Complete exclusion of light stopped the algal growth in the whole ice column. Darkening the ice cores also slowed down the ice melting opposite to accelerated melting caused by increased light. The significant differences found in nutrient concentrations between the light and dark treatments were mostly explicable by changes in algal biomass. No obvious changes were observed in the phytoplankton community composition due to light manipulation, diatoms and heterotrophic flagellates dominating throughout the study period.  相似文献   

6.
Algal bloom phenomenon was defined as “the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton”, yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three‐Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from –0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Carbon to chlorophyll a (C:Chl) ratios, assimilation numbers (A.N.) and turnover times of natural populations of individual species and taxonomic groups were extracted from a long-term database of phytoplankton wet-weight biomass, chlorophyll a concentrations, and primary production in Lake Kinneret, Israel. From a database spanning more than a decade, we selected data for samples dominated by a single species or taxonomic group. The overall average of C:Chl was highest for cyanophytes and lowest for diatoms, while chlorophytes and dinoflagellates showed intermediate values. When converting chlorophyll a to algal cellular carbon this variability should be taken into account. The variability in C:Chl within each phylum and species (when data were available) was high and the variability at any particular sampling date tended to be greater than the temporal variability. The average chlorophyll a-normalized rate of photosynthetic activity of cyanophytes was higher and that of the dinoflagellates lower than that of other phyla. Turnover time of phytoplankton, calculated using primary productivity data at the depth of maximal photosynthetic rate, was longest in dinoflagellates and shortest in cyanophytes, with diatoms and chlorophytes showing intermediate values. The more extreme C:Chl and turnover times of dinoflagellates and cyanobacteria in comparison with chlorophytes and diatoms should be taken into consideration when employed in ecological modeling.  相似文献   

8.
Fingerprints of excitation spectra of chlorophyll (Chl) fluorescence can be used to differentiate `spectral groups' of microalgae in vivo and in situ in, for example, vertical profiles within a few seconds. The investigated spectral groups of algae (green group, Chlorophyta; blue, Cyanobacteria; brown, Heterokontophyta, Haptophyta, Dinophyta; mixed, Cryptophyta) are each characterised by a specific composition of photosynthetic antenna pigments and, consequently, by a specific excitation spectrum of the Chl fluorescence. Particularly relevant are Chl a, Chl c, phycocyanobilin, phycoerythrobilin, fucoxanthin and peridinin. A laboratory-based instrument and a submersible instrument were constructed containing light-emitting diodes to excite Chl fluorescence in five distinct wavelength ranges. Norm spectra were determined for the four spectral algal groups (several species per group). Using these norm spectra and the actual five-point excitation spectrum of a water sample, a separate estimate of the respective Chl concentration is rapidly obtained for each algal group. The results of dilution experiments are presented. In vivo and in situ measurements are compared with results obtained by HPLC analysis. Depth profiles of the distribution of spectral algal groups taken over a time period of few seconds are shown. The method for algae differentiation described here opens up new research areas, monitoring and supervision tasks related to photosynthetic primary production in aquatic environments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Seasonal nutrient enrichment experiments (short-term bioassays) were conducted in three Florida lakes of different trophic states to determine the effects of addition of various nutrient combinations upon chlorophyll a and phytoplankton standing crops. Nutrient enriched surface water samples with crustacean zooplankton removed were incubated in situ in clear polyethylene bags for 3 to 6 days. The 25 factorial design employed two levels (ambient and enriched) of each of five nutrients [NH4 +, PO inf4 sup3− , Fe -EDTA, SiO inf3 sup2− and a cation (Ca2+ or K+) or trace elements]. Ammonium produced significant increases in chlorophyll a and phytoplankton standing crops in all experiments. Phosphate produced similar results in the mesotrophic lake, but the eutrophic lakes had both positive and nonsignificant responses which varied seasonally between lakes. Iron increased chlorophyll a in most experiments but affected total phytoplankton standing crop only during the summer and fall. Silicon had negative effects in some experiments. Cations and trace elements produced marked differences between lakes for chlorophyll a, but total phytoplankton standing crop showed few significant responses. Synergistic responses to two- and three-factor interactions were observed in all lakes. Differences in the responses of phytoplankton taxonomic divisions to enrichment may be responsible for much of the between lake variation in chlorophyll a and total phytoplankton volume responses. Nutrient limitations in these lakes are discussed and related to limnological factors and predictive models.  相似文献   

10.
For natural phytoplankton communities from Kinnego Bay, Lough Neagh, the respiration rate at each of five laboratory temperatures was not constant through a season but showed changes which could be related to the lake temperature at the time of sampling. This effect was more marked when respiration rates were expressed per unit of chlorophyll a rather than per unit of algal volume, and provides one explanation for some improbably high respiratory Q10 values that have been reported from field studies. Other factors besides temperature may be involved in producing the observed effect, and the ecological implications are not clear.  相似文献   

11.
The seasonal variation of phytoplankton in an eutrophic tropical reservoir was evaluated through photosynthetic pigments analyzed by HPLC. The contributions of algal classes to total chlorophyll a (TChl-a) were estimated by two procedures. The first one used fixed marker pigment/chlorophyll a ratio available from culture studies of the major species of each class. In the second procedure, a matrix factorization program (CHEMTAX) was used to analyze the pigment data. The pigment data were compared with carbon biomass estimated from microscope analysis. A significant correlation between total chlorophyll a (measured by HPLC) and total biomass was obtained, indicating only a slight variation in the content of algal chlorophyll a when compared to its fluctuations in carbon biomass. The interpretation of pigment data with CHEMTAX resulted in a good agreement with biomass. Although displaying some differences, the general pattern of the phytoplankton community dynamics and the major shifts in composition, biomass and the cyanobacterial bloom were evidenced. In contrast, Chl-a biomass estimates from fixed Xan/Chl-a ratios presented poor agreement with microscope data and did not register the principal changes in phytoplankton. Our results also highlighted the needs of better understanding of the relationships between marker pigments, chlorophyll-a and algal biomass.  相似文献   

12.
A bioassay was developed, involving steady-state ATP level determinations, for estimation of phosphate demand and deficiency in natural phytoplankton communities. The studies were performed on phytoplankton from the moderately acidified Lake Njupfatet in central Sweden before and after liming. Phytoplankton samples from in situ enclosure experiments with low-dose enrichments of nitrate and phosphate and removal of large (> 100 µm) zooplankton and from the lake water were collected. The phytoplankton were concentrated by through-flow centrifugation and post-cultured in the laboratory with or without the addition of phosphate. A relative increase in the ATP:chlorophyll a ratio after the phosphate treatment as compared to samples without phosphate enrichment was found to be a highly reproducible indicator of phosphate deficiency in the natural phytoplankton population. In contrast, the absolute ATP:chlorophyll a ratio varied substantially between different sampling occasions. No phosphate deficiency was detected in phytoplankton from the acidic lake or from fertilized in situ enclosures. However, phytoplankton from in situ enclosures without added nutrients showed evidence of phosphate limitation after 21 days incubation. Also, the phytoplankton community developed a significant phosphate deficiency the summer after lake liming. The results from the ATP analyses are compared with chemical data of the lake water, phytoplankton community structure and phosphatase activities in the lake before and after liming. The average total biomass of phytoplankton and the average Tot-P measured during May to September decreased with appr. 30% after liming while Tot-N was essentially unaffected and the phosphatase activities increased by 1000–2000%.  相似文献   

13.
Julian D. Olden 《Hydrobiologia》2000,436(1-3):131-143
Artificial neural networks are used to model phytoplankton succession and gain insight into the relative strengths of bottom-up and top-down forces shaping seasonal patterns in phytoplankton biomass and community composition. Model comparisons indicate that patterns in chlorophyll aconcentrations response instantaneously to patterns in nutrient concentrations (phosphorous (P), nitrite and nitrate (NO2/NO3–N) and ammonium (NH4–H) concentrations) and zooplankton biomass (daphnid cladocera and copepoda biomass); whereas lagged responses in an index of algal community composition are evident. A randomization approach to neural networks is employed to reveal individual and interacting contributions of nutrient concentrations and zooplankton biomass to predictions of phytoplankton biomass and community composition. The results show that patterns in chlorophyll aconcentrations are directly associated with P, NO2/NO3–N and daphnid cladocera biomass, as well as related to interactions between daphnid cladocera biomass, and NO2/NO3–N and P. Similarly, patterns in phytoplankton community composition are associated with NO2/NO3–N and daphnid cladocera biomass; however show contrasting patterns in nutrient– zooplankton and zooplankton–zooplankton interactions. Together, the results provide correlative evidence for the importance of nutrient limitation, zooplankton grazing and nutrient regeneration in shaping phytoplankton community dynamics. This study shows that artificial neural networks can provide a powerful tool for studying phytoplankton succession by aiding in the quantification and interpretation of the individual and interacting contributions of nutrient limitation and zooplankton herbivory on phytoplankton biomass and community composition under natural conditions.  相似文献   

14.
This work constitutes the first floristic and ecological analysis of the phytoplankton community of a volcanic freshwater lake in Deception Island (62°57′S, 60°38′W, South Shetland Islands, Antarctica). The main limnological features and phytoplankton size fractions were analyzed. Samples were taken during the austral summer of 2002 at two opposite sites. According to ANOVA results performed with abiotic variables, no significant differences between sites were found. The phytoplankton community showed low algal species richness, with an important contribution of the tychoplanktonic taxa. In terms of species number, Bacillariophyceae was the dominant class. Autotrophic picoplankton registered the highest densities from the second sampling date onwards. Nanophytoplankton was represented by unidentified chrysophycean organisms, which showed different distribution patterns between sites. The net phytoplankton abundance remained low during the sampling period and was strongly correlated with chlorophyll a concentration. Both nutrient concentrations and chlorophyll a values indicated oligotrophic conditions.  相似文献   

15.
Mátyás  Kálmán  Oldal  Imre  Korponai  János  Tátrai  István  Paulovits  Gábor 《Hydrobiologia》2003,504(1-3):231-239

Effects of different fish communities on the proportion of different nitrogen and phosphorous forms and the amount of phytoplankton (chlorophyll a) were examined in two consecutive years (1992–1993) in three Hungarian shallow water reservoirs (Cassette and outer reservoir of the Kis–Balaton Water Protection System, and Marcali reservoir). Possible interactions between nutrient concentrations and the amount of phytoplankton in these reservoirs were also examined. Considerable differences in the proportions of different nutrient forms were observed between the three test sites, which could be explained by the presence of different fish stocks in these reservoirs. In the Cassette, the fish biomass necessary for a water quality improvement was around 50 kg ha−1. Phytoplankton biomass was controlled by the zooplankton, consequently chlorophyll a concentrations decreased considerably, while those of dissolved nutrients significantly increased. In the outer reservoir, phytoplankton was controlled bottom-up, since the 250 kg ha−1 fish biomass was larger than the critical value due to the high proportion of planktivorous species. Chlorophyll a concentrations were high, and nutrients were mainly in particulate form (in algal cells). In the Marcali reservoir, the recently introduced silver carp population could not control fully the phytoplankton. The biomass of phytoplankton decreased only slightly, while its composition changed considerably. Although biomanipulation with silver carp is suitable for ceasing cyanobacterial blooms, reduction of the amount of planktivorous fish seems to be a more adequate method for increasing water transparency, rather than introduction of phytoplankton feeding fish.

  相似文献   

16.
Three methods of algal quantification (direct cell counts, chlorophyll a extraction, in vivo fluorescence) were used to evaluate the response of the unicellular green flagellate Tetraselmis suecica to nutrients and grazers. Nutrient enrichment enhanced total cell counts, chlorophyll a concentration and in vivo and DCMU-fluorescence. Photosynthetic efficiency was reduced in the complete F2 medium as indicated by the high level of in vivo fluorescence, whereas photosynthetic efficiency was increased by the introduction of mussels to the F2 medium. The addition of mussels significantly increased the proportion of non-motile cells, but did not reduce the total cell count. The effect of mussel grazing on algae could be underestimated if only total cells were counted or only the chlorophyll a concentration was measured. The results indicate that these three methods measure different properties of an algal culture and are complementary to each other in assessing the quality and quantity of an algal population. Direct algal counting offers a reliable numerical assessment for cell population abundance. Chlorophyll a concentration was closely correlated to the total cell count. In the presence of mussels, in vivo fluorescence did not correlate with either algal cell counts or chlorophyll a concentration, indicating that the measurement of in vivo fluorescence may be misleading for estimating algal abundance under different culture conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Benthic algal mats and phytoplankton of Lake Gondwana (Northern Victoria Land, Antarctica) were investigated. Biomass, chlorophyll content and floristic analyses were carried out on algal mats. The mats are composed of two layers different in colour, floristic composition and chlorophyll content. The algal flora of the mats amount to 34 taxa (19 Cyanophyta, 7 Bacillariophyta, 8 Chlorophyta). The phytoplankton community is species-poor (only 5 taxa). Crytophyta account for about 98% of total algal density.  相似文献   

18.
This paper offers a synoptic account of studies on the phytoplankton communities in the deep southern subalpine lakes (DSL) Garda, Iseo, Como, Lugano and Maggiore. The main cause of the degradation of the water quality in the DSL is eutrophication. The euphotic layers of these lakes are trophically different, ranging from the oligo-mesotrophy of lakes Maggiore and Garda to the meso-eutrophy of lakes Iseo and Lugano. The trophic status as estimated by using total phosphorus and chlorophyll a has provided consistent results in agreement with the models proposed by OECD (1982. Eutrophication of Waters. Monitoring, Assessment and Control, OECD, Paris). Though related with chlorophyll a and TP, the Secchi disk depths have significantly underestimated the trophic status of the DSL. Two trophic indices using the algal orders (PTIorders) and species (PTIspecies) were drawn up on the basis of the distribution of phytoplankton along a trophic gradient defined by the application of multivariate methods; the scores emerging from these indices were used to make a definitive ecological classification of water bodies on a scale from 1 to 5, in accordance with the Water Framework Directive. A third index (PTIOE) was computed as the ratio between the annual mean values of the cumulative biovolumes of two groups of algal orders with opposite trophic characteristics. The three PTI indices were highly correlated, providing a consistent classification of the water bodies. The indices proposed in this work were specifically adopted for use in the DSL. However, the criteria for their implementation constitute a robust and impartial tool for assessing similar indices in other lake typologies and for evaluating the degree of specificity of the trophic indicator values assigned to the single phytoplankton orders and species.  相似文献   

19.
Phytoplankton communities dominating Musgos and Papúa ponds with differing trophic states were sampled over 3 days enabling the detection of the physiological and population responses of microalgae to short-scale changes in biotic and abiotic factors, rather than frequently analyzed changes in community composition responses to long-scale environmental changes. We hypothesized that both environments undergoing diel changes would be dominated by phytoplankton with generalist strategies, while community structure would be mostly dictated by the trophic state of each water body. The phytoplankton biovolumes of both ponds were strongly dominated by euplanktonic nanoflagellated Chlorophyta, while phycocyanin-rich picocyanobacteria dominated the picophytoplankton. Parallel diel cycles of air and water temperatures were more pronounced on a sunny, warm day which prompted algal photosynthesis, revealed by strong increases in dissolved oxygen and pH. Nutrient and phytoplanktonic chlorophyll a confirmed the hypertrophic condition of Papúa pond. This accounted for the distinct community composition encountered in each pond, which remained stable throughout the study, as revealed by the SIMI index. The inverse relationship between the chl a/abundance ratio and the abundances of dominant species together with varying net growth rates (k′) showed algal reproduction, yet densities remained rather stable in both cases. In Musgos pond, fluctuations in k′ for small and median ciliates shadowed those of pico- and nanophytoplankton, respectively, strongly suggesting that they can control algal growth in these 2-level trophic chains.  相似文献   

20.
1. Pigment analyses by high performance liquid chromatography (HPLC) are commonly used for determining algal groups in marine and estuarine areas but are underdeveloped in freshwaters. In this study, 15 characteristic pelagic algal species (representing five algal groups) of oligo‐ / mesotrophic lakes were cultured and pigment / Chl a ratios determined at three light intensities. 2. With the exception of cyanophytes, light treatment had little effect on pigment / Chl a ratios. This justifies the use of the same pigment / Chl a ratios during seasonal studies where light conditions may change. 3. The determined pigment / Chl a ratios were tested on seasonal samples from five oligo‐ / mesotrophic lakes and three streams using CHEMTAX software. Pigment ratios of both pelagic and benthic algal communities from the lakes and streams were analysed to determine whether the pelagic algae‐based ratios can be used for benthic algal communities. 4. HPLC combined with CHEMTAX was useful for identifying freshwater phytoplankton classes and for quantifying the abundance of phytoplankton groups. However, although correlations were significant for six of seven phytoplankton classes studied, they were weak and varied with season. 5. HPLC was valid for quantifying benthic diatom groups in stream samples, whereas for lakes more benthic algal groups were recorded with HPLC than with microscopy and correlations between the two methods were not significant. 6. The use of both HPLC and microscopy is recommended as a cost‐efficient method for analysing many samples. It is crucial, however, that the CHEMTAX software is calibrated with the correct information, and the user is aware of the limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号