首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of calmodulin antagonists--trifluoperazine and chlorpromazine--on the membrane potential, K+ efflux and mitogenic response of rat thymocytes and human peripheral blood lymphocytes were investigated. Phenothiazines were found to produce depolarization in both types of lymphocytes even when taken at micromolar concentrations. This effect was not caused by the inhibition of the Na+,K+-pump or by a decrease in K+ permeability of the lymphocyte membrane. The depolarization diminished in a low Na+ medium or in the presence of amiloride, an inhibitor of Na+/H+ exchange. The results obtained suggest that calmodulin is involved in the maintenance of the low level of Na+ permeability in resting lymphocytes. In thymocytes, trifluoperazine and chlorpromazine do not inhibit K+ efflux induced by A23187, hence calmodulin does not participate in the regulation of Ca2+-dependent K+-channels in these cells. Trifluoperazine (10 microM) strongly blocks the mitogenic response of blood lymphocytes. Thus, the calmodulin antagonists inhibit the mitogen-induced activation of lymphocytes.  相似文献   

2.
This study examines the effect of membrane potential on divalent cation entry in dispersed parotid acini following stimulation by the muscarinic agonist, carbachol, and during refill of the agonist-sensitive internal Ca2+ pool. Depolarizing conditions (addition of gramicidin to cells in Na(+)-containing medium or incubation of cells in medium with elevated [K+]) prevent carbachol-stimulated hyperpolarization of acini and also inhibit carbachol activation of Ca2+ and Mn2+ entry into these cells. Conditions promoting hyperpolarization (cells in medium with Na+ or with N-methyl-D-glucamine instead of Na+) enhance carbachol stimulation of divalent cation entry. Intracellular Ca2+ release (initial increase in [Ca2+]i) does not appear to be affected by these manipulations. Mn2+ entry into resting and internal Ca2+ pool-depleted cells (10-min carbachol stimulation in a Ca(2+)-free medium) is similarly affected by membrane potential modulations, and refill of the internal pool by Ca2+ is inhibited by depolarization. The inhibitory effects of depolarization on divalent cation entry can be overcome by increasing extracellular [Ca2+] or [Mn2+]. These data demonstrate that the modulation of Ca2+ entry into parotid acini by membrane potential is most likely due to effects on the electrochemical gradient (Em-ECa) for Ca2+ entry.  相似文献   

3.
Role of membrane potential in the regulation of lectin-induced calcium uptake   总被引:13,自引:0,他引:13  
Incubation of lymphocytes with mitogenic lectins triggers Ca2+ uptake. This increase in free cytoplasmic Ca2+ is postulated to be an important signal in the initiation of DNA synthesis. Transmembrane fluxes of monovalent ions and changes in membrane potential are also associated with lectin-induced activation of lymphocytes. We have examined the relationship between extra-cellular monovalent ion substitution, the associated electrical potential changes (measured with cyanine dyes), phytohemagglutinin-induced Ca2+ uptake (measured with Quin-2) and proliferation in human T cells. The results show that (1) the magnitude of the increase in free cytoplasmic Ca2+ concentration is correlated with the extent of the lymphoproliferative response, (2) lectin-induced Ca2+ fluxes are sensitive to membrane potential, decreasing with depolarization, and are likely conductive, and (3) the presence of extra-cellular Na+ during incubation with phytohemagglutinin is not essential to mitogenic triggering.  相似文献   

4.
An analysis of the relationship between electrical membrane activity and Ca2+ influx in differentiated GnRH-secreting (GT1) neurons revealed that most cells exhibited spontaneous, extracellular Ca(2+)-dependent action potentials (APs). Spiking was initiated by a slow pacemaker depolarization from a baseline potential between -75 and -50 mV, and AP frequency increased with membrane depolarization. More hyperpolarized cells fired sharp APs with limited capacity to promote Ca2+ influx, whereas more depolarized cells fired broad APs with enhanced capacity for Ca2+ influx. Characterization of the inward currents in GT1 cells revealed the presence of tetrodotoxin-sensitive Na+, Ni(2+)-sensitive T-type Ca2+, and dihydropyridine-sensitive L-type Ca2+ components. The availability of Na+ and T-type Ca2+ channels was dependent on the baseline potential, which determined the activation/inactivation status of these channels. Whereas all three channels were involved in the generation of sharp APs, L-type channels were solely responsible for the spike depolarization in cells exhibiting broad APs. Activation of GnRH receptors led to biphasic changes in cytosolic Ca2+ concentration ([Ca2+]i), with an early, extracellular Ca(2+)-independent peak and a sustained, extracellular Ca(2+)-dependent phase. During the peak [Ca2+]i response, electrical activity was abolished due to transient hyperpolarization. This was followed by sustained depolarization of cells and resumption of firing of increased frequency with a shift from sharp to broad APs. The GnRH-induced change in firing pattern accounted for about 50% of the elevated Ca2+ influx, the remainder being independent of spiking. Basal [Ca2+]i was also dependent on Ca2+ influx through AP-driven and voltage-insensitive pathways. Thus, in both resting and agonist-stimulated GT1 cells, membrane depolarization limits the participation of Na+ and T-type channels in firing, but facilitates AP-driven Ca2+ influx.  相似文献   

5.
The effects of membrane potential on resting and bradykinin-stimulated changes in [Ca2+]i were measured in fura-2 loaded cultured endothelial cells from bovine atria by spectrofluorimetry. The basal and bradykinin-stimulated release of endothelium-derived relaxing factor, monitored by bioassay methods, were dependent on extracellular Ca2+. Similarly, the plateau phase of the biphasic [Ca2+]i response to bradykinin stimulation exhibited a dependence on extracellular Ca2+, whereas the initial transient [Ca2+]i peak was refractory to the removal of extracellular Ca2+. The effect of membrane depolarization on the plateau phase of the bradykinin-induced change in [Ca2+]i was determined by varying [K+]o. The resting membrane potential measured under current clamp conditions was positively correlated with the extracellular [K+] (52 mV change/10-fold change in [K+]o). The observed decrease in resting and bradykinin-stimulated changes in [Ca2+]i upon depolarization is consistent with an ion transport mechanism where the influx is linearly related to the electrochemical gradient for Ca2+ entry (Em - ECa). The inhibition of bradykinin-stimulated Ca2+ entry by isotonic K+ was not due to the absence of extracellular Na+ since Li+ substitution did not inhibit the agonist-induced Ca2+ entry. In K(+)-free solutions and in the presence of ouabain, bradykinin evoked synchronized oscillations in [Ca2+]i in confluent endothelial cell monolayers. These [Ca2+]i oscillations between the plateau and resting [Ca2+]i levels were dependent on extracellular Ca2+ and K+ concentrations. Although the mechanism(s) underlying [Ca2+]i oscillations in vascular endothelial cells is unclear, these results suggest a role of the membrane conductance.  相似文献   

6.
Changes in plasma membrane potential of isolated bovine adrenal chromaffin cells were measured independently by two chemical probe methods and related to corresponding effects on catecholamine secretion. The lipophilic cation tetraphenylphosphonium (TPP+) and the carbocyanine dye 3,3'-dipropylthiadicarbocyanine [DiS-C3-(5)] were used. The necessity of evaluating the subcellular distribution of TPP+ among cytoplasmic, mitochondrial, secretory granule, and bound compartments was demonstrated and the resting plasma membrane potential determined to be -55 mV. The relationship between membrane potential and catecholamine secretion was determined in response to variations in extracellular K+ and to the presence of several secretagogues including cholinergic receptor ligands, veratridine, and ionophores for Na+ and K+. The dependence of potential on K+ concentration fit the Goldman constant field equation with a Na/K permeability ratio of 0.1. The dependence of both K+- and veratridine-evoked catecholamine secretion on membrane potential exhibited a potential threshold of about -40 mV before a significant rise in secretion occurred. This is likely related to the threshold for opening of voltage-sensitive Ca2+ channels. Acetylcholine and nicotine evoked a large secretory response without a sufficiently sustained depolarization to be detectable by the relatively slow potential sensitive chemical probes. Decamethonium induced a detectable depolarization of the chromaffin cells. Veratridine and gramicidin evoked both membrane depolarization and catecholamine release. By contrast the K ionophore valinomycin evoked significant levels of secretion without any depolarization. This is consistent with its utilization of an intracellular source of Ca2+ and the independence of its measured secretory response on extracellular Ca2+.  相似文献   

7.
Cation sensitivities (K+, Na+, and Ca2+) of luminal and basolateral membrane surfaces of secretory acinar cells were compared using a luminally perfused and externally superfused salivary gland from the aquatic snail, Helisoma trivolvis. Tight junctions delimiting the two membrane surfaces were observed near the acinar lumen suggesting that the total membrane area exposed to the superfusion solution exceeded that in contact with the luminal perfusion solution. The resting membrane potential of acinar cells was found to be dependent upon the K+ concentration in both the external superfusion and the luminal perfusion solutions. Unilateral K+ elevation at either membrane surface produced a rapid and sustained depolarization of the acinar cell. For a given K+ concentration, the level of depolarization produced by K+ elevation at the basolateral surface was significantly higher than at the luminal surface. The highest level of membrane depolarization was observed following simultaneous K+ elevation at both membrane surfaces. The ability of acinar cells to generate overshooting action potentials in response to electrical field stimulation was dependent upon both Na+ and Ca2+. Complete blockade invariably occurred following bilateral removal of either cation. The effects of unilateral removal of either Na+ or Ca2+ proved to be somewhat variable. In general, unilateral removal of Na+ was more effective in reducing the regenerative response than Ca2+ while removal of either cation from the basolateral surface was more effective in reducing the regenerative response than its removal from the luminal surface. Electrically evoked action potentials in acinar cells could also be blocked with unilateral application of the Ca2+ antagonist, cadmium (Cd2+), at either membrane surface. However, higher Cd2+ concentrations were required to achieve complete blockade when applied to the luminal than to the basolateral gland surface. This result fails to support a hypothesis of voltage-sensitive Ca2+ channels being spatially restricted to the luminal cell surface in this preparation.  相似文献   

8.
The verapamil-sensitive Ca2+ channel in the synaptosomal plasma membrane is investigated. Verapamil is without effect on Ca2+ uptake or steady-state content in synaptosomes with a polarized plasma membrane, but completely inhibits the additional Ca2+ uptake following plasma-membrane depolarization by high [K+], by veratridine plus ouabain or by high concentrations of the permeant cation tetraphenylphosphonium. Verapamil-insensitive Ca2+ influx and steady-state content are identical in polarized and depolarized synaptosomes, even though the Na+ electrochemical potential is greatly decreased in the latter, indicating that Na+/Ca2+ exchange is not a significant mechanism for Ca2+ efflux under these conditions. A transient Na+-dependent Ca2+ efflux can only be observed on addition of Na+ to Na+-depleted depolarized synaptosomes. While 0.2 mM verapamil decreases the ate of 86Rb+ efflux and 22Na+ entry during depolarization induced by veratridine plus ouabain, the final steady-state Na+ accumulation is not inhibited. Ca2+ efflux from synaptosomes following mitochondrial depolarization does not occur by a verapamil-sensitive pathway.  相似文献   

9.
G Sachs  S Muallem 《Cell calcium》1989,10(5):265-273
The level of free cytosolic Ca2+ ([Ca2+]i) in cells is firmly established as a second messenger alternative to the cyclic nucleotides. Regulation of the activity of Ca2+ requires the use of membrane transporters of various types which can be classified in terms of their transport rate; channels (fast), carriers (intermediate) and pumps (slow). In general channels are used to elevate [Ca2+]i whereas pumps decrease [Ca2+]i. At physiological membrane potential and Na+ gradients, carriers such as the 3Na+/Ca2+ exchanger also deplete the cell of Ca2+. The carriers could also function in a reverse mode especially with plasma membrane depolarization. Intracellular organelles which can incorporate Ca2+ from and return Ca2+ to the cytosol play a central role in determining [Ca2+]i in resting and stimulated cells. In the resting cell they function as the major Ca2+ buffering system while in the stimulated cell they participate in the dynamic control of [Ca2+]i. The collection of papers in this volume discusses the mechanisms of modulation of cell Ca2+ by these organelles.  相似文献   

10.
The presence of a Na+/Ca2+ exchanger in bovine adrenal chromaffin cells was demonstrated by measuring the efflux of 45Ca2+ which had been preloaded into cells by a brief depolarization. The efflux of 45Ca2+ was dependent on extracellular Na+ (Na+o); 45Ca2+ efflux was significantly decreased by replacing Na+o with N-methylglucamine (NMG), or Li+. Replacement of Na+o by NMG increased the resting intracellular Ca2+ concentration ([Ca2+]i) of freshly isolated chromaffin cells. This could be reversed by adding Na+, suggesting that Na+/Ca2+ exchanger activity was involved in maintaining [Ca2+]i at its resting level. The initial rate of Na(+)-dependent [Ca2+]i recovery after Ca2+ loading by depolarization was dependent on the level of [Ca2+]i. There was an apparent linear relationship between the activity of the Na+/Ca2+ exchanger and [Ca2+]i both in the presence and absence of Na+o. When cells were treated with other stimuli, including 10 microM DMPP or 40 mM caffeine, the ability of the stimulated cells to decrease [Ca2+]i was significantly reduced upon replacing Na+o with NMG. Our data show that the Na+/Ca2+ exchanger is one of the major pathways for regulating [Ca2+]i in chromaffin cells in both resting and stimulated states.  相似文献   

11.
Effects of the Ca2+-ionophore A23187 and concanavalin A on the membrane potential of human lymphocytes and rat thymocytes have been studied using the fluorescent potential probe diS-C3-(5). At concentrations of 10(-8) to 10(-6) M A23187 changes the membrane potential, inducing both hyper- and depolarization. Depending on concentrations of A23187 and the external Ca2+, and on the type of lymphocytes, one of these effects predominates. The hyperpolarization induced by A23187 is caused by activation of Ca2+-dependent K+ channels. It is blocked by quinine and high concentrations of extracellular K+. The dependence of Ca2+-activated K+ transport on extracellular Ca2+ and its sensitivity to calmodulin antagonists is different for human lymphocytes and for thymocytes. As distinct from lymphocytes, in thymocytes calmodulin is not involved in activation of Ca2+-dependent K+ transport. The depolarization induced in lymphocytes by A23187 is caused by an increase in Na+ permeability of the lymphocyte plasma membrane: it is eliminated in a low-Na+ medium. At mitogenic concentrations concanavalin A does not change the membrane potential of the lymphocytes. The results obtained permit elucidation of the relationship between two early events in lymphocyte activation, namely the increase in intracellular Ca2+ concentration and the increase in lymphocyte plasma membrane permeabilities to monovalent cations.  相似文献   

12.
Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.  相似文献   

13.
Endothelial cells in vivo form an interface between flowing blood and vascular tissue, responding to humoral and physical stimuli to secrete relaxing and contracting factors that contribute to vascular homeostasis and tone. The activation of endothelial cell-surface receptors by vasoactive agents is coupled to an elevation in cytosolic Ca2+, which is caused by Ca2+ entry via ion channels in the plasma membrane and by Ca2+ release from intracellular stores. Ca2+ entry may occur via four different mechanisms: 1) a receptor-mediated channel coupled to second messengers; 2) a Ca2+ leak channel dependent on the electrochemical gradient for Ca2+; 3) a stretch-activated nonselective cation channel; and 4) internal Na+-dependent Ca2+ entry (Na+-Ca2+ exchange). The rate of Ca2+ entry through these ion pathways can be modulated by the resting membrane potential. Membrane potential may be regulated by at least two types of K channels: inwardly rectifying K channels activated upon hyperpolarization or shear stress; and a Ca2+-activated K channel activated upon depolarization, which may function to repolarize the agonist-stimulated endothelial cell. After agonist stimulation, cytosolic Ca2+ increases in a biphasic manner, with an initial peak due to inositol 1,4,5-trisphosphate-mediated Ca2+ release from intracellular stores, followed by a sustained plateau that is dependent on the presence of [Ca2+]o and on membrane potential. The delay in agonist-activated Ca2+ influx is consistent with the coupling of receptor activation to Ca2+ entry via a second messenger. Oscillations in [Ca2+]i, which may involve both Ca2+ entry and release, have been observed in isolated and confluent endothelial cell monolayers stimulated by histamine and bradykinin. Receptor-mediated Ca2+ entry, release, and refilling of intracellular stores follows a cycle that involves the plasma membrane.  相似文献   

14.
The effects of Lathyrus sativus neurotoxin were studied on the cell membrane potential and cellular cation composition in Retzius nerve cells of the leech Haemopis sanguisuga, with ion-selective microelectrodes using liquid ion-exchangers. Bath application of 10(-4) mol/l Lathyrus sativus neurotoxin for 3 min depolarized the cell membrane potential and decreased the input resistance of directly polarized membrane in Retzius neurons. At the same time the cellular Na+ activity increased and cellular K+ activity decreased with slow but complete recovery, while the intracellular Ca2+ concentration was not changed. Na+-free Ringer solutions inhibited the depolarizing effect of the neurotoxin on the cell membrane potential. Zero-Ca2+ Ringer solution or Ni2+-Ringer solution had no influence on the depolarizing effect of the neurotoxin on the cell membrane potential. It is obvious that the increase in membrane conductance and depolarization of the cell membrane potential are due to an influx of Na+ into the cell accompanied by an efflux of K+ from the cell.  相似文献   

15.
The relationship between fMet-Leu-Phe-induced changes in the cytosolic free Ca2+ concentration [( Ca2+]i), plasma membrane potential depolarization, and metabolic responses was studied in human neutrophils. Receptor-activated depolarization occurred both at high and resting [Ca2+]i, but was inhibited at very low [Ca2+]i. Phorbol 12-myristate 13-acetate-induced plasma membrane depolarization, on the contrary, was independent of [Ca2+]i. The threshold fMet-Leu-Phe concentration for plasma membrane depolarization (10(-8) M) was at least 1 log unit higher than that for [Ca2+]i increases (5 X 10(-10) M) and coincident with that for NADPH oxidase activation. Nearly maximal [Ca2+]i increases were elicited by 3 X 10(-9) fMet-Leu-Phe in the absence of any significant plasma membrane potential change. This observation allowed us to investigate the effects of artificially induced plasma membrane depolarization and hyperpolarization at low fMet-Leu-Phe concentrations (10(-9) to 3 X 10(-9) M) which did not perturb plasma membrane potential. Depolarizing (gramicidin D at 10(-7) to 10(-6) M or KCl at 50 mM) and hyperpolarizing (valinomycin at 4 microM) treatments had little influence on unstimulated [Ca2+]i levels, whereas fMet-Leu-Phe-induced transients were significantly altered. Gramicidin D and KCl decreased the fMet-Leu-Phe-induced [Ca2+]i increases in Ca2+-containing or in Ca2+-free media. Valinomycin, on the contrary, increased receptor-stimulated [Ca2+]i increases, and the effect was larger in the presence of extracellular Ca2+. Valinomycin also strongly potentiated secretion. It is suggested that plasma membrane depolarization in human neutrophils is a physiological feedback mechanism inhibiting receptor-dependent [Ca2+]i changes.  相似文献   

16.
We studied whether nerve growth factor (NGF) can affect the membrane potential and conductance of PC12 cells. We demonstrate that NGF depolarizes the membrane of PC12 cells within a minute and by using transfected NIH 3T3-Trk and -p75 cells we show that both the high affinity NGF receptor p140(trk) and the low affinity NGF receptor or p75(NGF) may be involved in the depolarization. Tyrosine kinase inhibitor, K252a, partially inhibited the depolarization, but two agents affecting intracellular calcium movements, Xestospongin C (XeC) and thapsigargin, did not. The early depolarization was eliminated in Na+ free solutions and under this condition, a 'prolonged' (> 2 min) hyperpolarization was observed in PC12 cells in response to NGF. This hyperpolarization was also induced in PC12 cells by epidermal growth factor (EGF). Voltage clamp experiments showed that NGF produced a late (> 2 min) increase in membrane conductance. The Ca2+-dependent BK-type channel blocker, iberiotoxin, and the general Ca2+-dependent K+ channel blocker, TEA, attenuated or eliminated the hyperpolarization produced by NGF in sodium free media. Under pretreatment with the non-selective cation channel blockers La3+ and Gd3+, NGF hyperpolarized the membrane of PC12 cells. These results suggest that three different currents are implicated in rapid NGF-induced membrane voltage changes, namely an acutely activated Na+ current, Ca2+-dependent potassium currents and non-selective cation currents.  相似文献   

17.
When human granulocytes that have been primed with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSFrh) are activated by ligands that stimulate the respiratory burst, the amount of superoxide anion (O2-) they generate is significantly increased. We have found that the accelerated rate of O2- release occurring under these conditions is accompanied by an antecedent increase in membrane depolarization. We examined the nature of the enhancement of membrane depolarization in GM-CSFrh-primed granulocytes and investigated its relationship to the increase in O2- generation by N-formyl methionylleucylphenylalanine (fMLP)-activated granulocytes. We found that augmented depolarization could not be accounted for by a change in the resting membrane potential induced by the growth factor and was still present after either blocking passive transmembrane Na+ movement with dimethylamiloride or by increasing the membrane's permeability to K+ with valinomycin. When their ability to depolarize was virtually eliminated by dissipating the transmembrane K+ gradient, GM-CSFrh-pretreated cells continued to generate more O2- after fMLP than did control cells. These results indicate that augmentation of the granulocyte's ability to generate O2- anions, which is induced by priming with GM-CSFrh, is independent both of the resting transmembrane potential and of alterations in the extent of membrane potential change induced by stimuli such as fMLP.  相似文献   

18.
To quantitate calcium movements and membrane potential changes in stimulated neutrophils, we have measured net fluxes of Ca2+ and of the lipophilic cation tetraphenyl phosphonium by a very sensitive ion- selective electrode system. Activation of neutrophils by 3 X 10(-8) M phorbol 12-myristate, 13-acetate induces a release of approximately 20% of total cell calcium, with an initial lag period of less than 10 s. The Ca2+ outflux is markedly reduced in ATP-depleted cells and in the presence of a calmodulin inhibitor, thereby suggesting that it occurs by activation of the ATP-driven Ca2+ pump of the neutrophil plasmalemma. Activation of neutrophils also induces a transiently increased exchange of medium 45Ca with cell calcium, which is measurable a few seconds after cell exposure to the stimulant and peaks at approximately 40 s. Stimulation of neutrophils after attainment of steady-state accumulation of tetraphenyl phosphonium (resting potential of -67 mV) results in a marked depolarization, with a lag period of approximately 60 s. The rate and extent of depolarization are reduced by 40 and 65%, respectively, in a low Na+ medium but are not modified by an inhibitor of anion exchange across membranes. A high-K+ medium depolarizes neutrophils without either modifying their resting oxidative metabolism or impairing stimulability by the phorbol ester. Phorbol 12-myristate, which also exhibits no effect on the oxidative metabolism of neutrophils, does not induce Ca2+ extrusion and membrane potential changes. The causal relationship between Ca2+ mobilization, membrane potential changes and activation of neutrophil functions is discussed.  相似文献   

19.
The involvement of Ca2+-activated K+ channels in the regulation of the plasma membrane potential and electrogenic uptake of glycine in SP 2/0-AG14 lymphocytes was investigated using the potentiometric indicator 3,3'-diethylthiodicarbocyanine iodide. The resting membrane potential was estimated to be -57 +/- 6 mV (n = 4), a value similar to that of normal lymphocytes. The magnitude of the membrane potential and the electrogenic uptake of glycine were dependent on the extracellular K+ concentration, [K+]o, and were significantly enhanced by exogenous calcium. The apparent Vmax of Na+-dependent glycine uptake was doubled in the presence of calcium, whereas the K0.5 was not affected. Ouabain had no influence on the membrane potential under the conditions employed. Additional criteria used to demonstrate the presence of Ca2+-activated K+ channels included the following: (1) addition of EGTA to calcium supplemented cells elicited a rapid depolarization of the membrane potential that was dependent on [K+]o; (2) the calmodulin antagonist, trifluoperazine, depolarized the membrane potential in a dose-dependent and saturable manner with an IC50 of 9.4 microM; and (3) cells treated with the Ca2+-activated K+ channel antagonist, quinine, demonstrated an elevated membrane potential and depressed electrogenic glycine uptake. Results from the present study provide evidence for Ca2+-activated K+ channels in SP 2/0-AG14 lymphocytes, and that their involvement regulates the plasma membrane potential and thereby the electrogenic uptake of Na+-dependent amino acids.  相似文献   

20.
A progressive conduction block leading to atrioventricular dissociation develops in perfused rabbit hearts within 20-30 min of exposure to Krebs containing 0.5 mM potassium (low K). A decrease in potassium permeability resulting in membrane depolarization (as seen in Purkinje fibers) could be responsible for the loss of excitability in nodal cells. We investigated the K dependence of the resting potential and the long-term effects of low K perfusion on the resting and action potentials of nodal cells in rabbit hearts. The resting potential of atrial, atrionodal, and nodal cells varied by 52, 41, and 34 mV per decade of change in Ko within the range of 5-50 mM K. Hyperpolarization of the resting membrane, a progressive decline in action potential amplitude, and a decrease in maximum rate of rise were observed in nodal fibers when exposed to low K. Loss of propagated activity occurred in the middle node within 20-30 min while the cells remained hyperpolarized. There was no evidence of electrogenic Na extrusion and it seems that the low nodal resting potential results from a high resting PNa/PK permeability ratio. The early decrease in rate of rise in low K probably reflects an increase in K-dependent outward currents, whereas the progressive deterioration and final loss of conducted electrical activity may result from an accumulation of internal Na and Ca overload produced by low K inhibition of the Na pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号