首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of phospholipids over outer and inner layers of the plasma membranes of Friend erythroleukemic cells (Friend cells) and mature mouse erythrocytes has been determined. The various techniques which have been applied to establish the phospholipid localization include the following: phospholipase A2, phospholipase C, and sphingomyelinase C treatment, fluorescamine labeling of phosphatidylethanolamine, and a phosphatidylcholine transfer protein mediated exchange procedure. The data obtained with these different techniques were found to be in good agreement with each other. Phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol were found to be distributed symmetrically over both layers of the plasma membrane of Friend cells. In contrast, sphingomyelin was found to be enriched in the outer layer of the membrane (80-85%), and phosphatidylserine appeared to be present mainly in the inner layer (80-90%). From these results, it was calculated that the outer and inner layers accounted for 46% and 54%, respectively, of the total phospholipid complement of that membrane. Analogous studies on the plasma membrane of mature mouse erythrocytes showed that the transbilayer distribution of the total phospholipid mass appeared to be the same as in the plasma membrane of the Friend cell, namely, 46% and 54% in outer and inner layers, respectively. The outer layer of this membrane contains 57% of the phosphatidylcholine, 20% of the phosphatidylethanolamine, 85% of the sphingomyelin, and 42% of the phosphatidylinositol, and none of the phosphatidylserine was present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Analyses of the fatty acid composition of the outer and inner pools of sphingomyelin in the human erythrocyte membrane revealed significant differences in molecular species composition of these two pools. The sphingomyelin in the inner monolayer, representing 15–20% of the total sphingomyelin content of this membrane, is characterized by a relatively high content (73%) of fatty acids, which have less than 20 carbon atoms, whereas these account for only 31% of the total fatty acids in the sphingomyelin in the outer leaflet. On the other hand, the ratio saturated/unsaturated fatty acids in the two pools is similar. Significant differences are also observed for the fatty acid composition of the sphingomyelin in human serum when compared to that in the outer monolayer of the corresponding red cell. These results are interpreted to indicate an (almost) complete absence of transbilayer movements of sphingomyelin molecules in the human erythrocyte membrane, whereas an exchange of this phospholipid between the red cell membrane and serum is either virtually absent, or affects only a minor fraction of the sphingomyelin in the outer membrane layer.  相似文献   

3.
Trace amounts of radiolabeled phospholipids were inserted into the outer membrane leaflet of intact human erythrocytes, using a non-specific lipid transfer protein. Phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine were transferred from the donor lipid vesicles to the membrane of the intact red cell with equal ease, whilst sphingomyelin was transferred 6-times less efficiently. The transbilayer mobility and equilibrium distribution of the labeled phospholipids were assessed by treatment of the intact cells with phospholipases. In fresh erythrocytes, the labeled amino phospholipids appeared to move rapidly towards the inner leaflet. The choline phospholipids, on the other hand, approached an equilibrium distribution which strongly favoured the outer leaflet. In ATP-depleted erythrocytes, the relocation of the amino phospholipids was markedly retarded.  相似文献   

4.
We have measured the transbilayer diffusion at 4 degrees C of spin labeled analogs of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidic acid in the human erythrocyte membrane. Measurements were also carried out in ghosts, released without ATP, and on large unilamellar vesicles made with total lipid extract. As reported previously (Seigneuret, M. and Devaux, P.F. (1984) Proc. Natl. Acad. Sci. USA 81, 3751-3755), the amino phospholipids are rapidly transported from the outer to the inner leaflet on fresh erythrocytes, whereas phosphatidylcholine diffuses slowly. We now show that phosphatidic acid behaves like phosphatidylcholine: approximately 10% is internalized in 5 h at 4 degrees C. Under the same experimental conditions, no inward transport of sphingomyelin can be detected. In ghosts resealed without ATP, all glycerophospholipids tested diffuse slowly from the outer to the inner leaflet (approx. 10% in 5 h) while no transport of sphingomyelin is seen. Finally in lipid vesicles, the inward diffusion of all glycerophospholipids is less than 2% in 5 h and a very small transport of sphingomyelin can be measured. These results confirm the existence of a selective inward aminophospholipid transport of fresh erythrocytes and suggest a slow and passive diffusion of all phospholipids on ghosts, resealed without ATP, as well as on lipid vesicles.  相似文献   

5.
Incorporation of the channel-forming antibiotic gramicidin into the membrane of human erythrocytes highly (up to 30-fold) enhances rates of reorientation (flip) of lysophosphatidylcholine and palmitoylcarnitine to the inner membrane layer after their primary incorporation into the outer layer. Despite the high increase of flip rates by gramicidin, the asymmetric orientation of the inner membrane layer phospholipids phosphatidylethanolamine and phosphatidylserine is stable as demonstrated by the lack of accessibility of these lipids toward cleavage by exogenous phospholipase A2. On the other hand, gramicidin enhances the rate of cleavage of outer membrane layer phosphatidylcholine by phospholipase A2, which indicates changes in the packing of phosphatidylcholine following gramicidin binding. The increase of flip becomes detectable when about 10(5) copies of gramicidin per cell have been bound (gramicidin to membrane phospholipid ratio of 1:2000). This is a 1000-fold higher concentration than that required for an increase of K+ permeability mediated by the gramicidin channel. Acceleration of flip is thus not simply correlated with channel formation. The enhancement of flip is markedly dependent on structural details of gramicidin. Formylation of its four tryptophan residues abolishes the effect. Even at high concentrations of formylated gramicidin at which the extents of binding of native and of formylated gramicidin to the membrane are comparable, no flip acceleration is produced. Enhancement of flip by gramicidin occurs after a temperature-dependent lag phase. At 37 degrees C, flip rates begin to increase within a few minutes and at 25 degrees C, only after 3 h. This lag phase is most likely not due to limitations by the rate of binding of gramicidin to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The influence of chlorpromazine (CPZ) on the transverse mobility of spin-labeled phospholipids incorporated into human erythrocytes was investigated by electron spin resonance. The very slow transverse diffusion of phosphatidylcholine, as well as the absence of transverse mobility of sphingomyelin were not modified even by sublytic concentrations (approximately equal to 1 mM) of CPZ. On the other hand, the rapid outside-inside translocation of the aminophospholipids (Seigneuret and Devaux (1984) Proc. Natl. Acad. Sci. USA 81, 3751-3755), was slightly hindered in CPZ containing membranes. If the spin-labeled aminolipids were incorporated in erythrocytes and allowed to flip to the inner monolayer before CPZ addition, a fraction of the spin labels (10-15%) flipped back instantaneously from the inner to the outer leaflet, upon incubation with CPZ. Similar experiments carried out with spin-labeled phosphatidylcholine and spin-labeled sphingomyelin showed that a fraction of the spin-labeled choline derivatives flip instantaneously to the inner leaflet if CPZ was added after the spin labels. Addition of lysophosphatidylcholine had no effect on the spin-labeled phospholipid redistribution nor on their transmembrane mobility. We interpret the immediate effect of CPZ addition as being due to a reorganization of the bilayer accompanying the rapid CPZ membrane penetration, phenomenon which is independent of the CPZ effect on the steady-state activity of the 'aminophospholipid translocase', the latter effect being probably a direct CPZ-protein interaction. By comparison of the time course of phosphatidylserine transverse diffusion in control discocyte cells and in CPZ-induced stomatocytes, we infer that the difference in cell shape is not a major factor in the regulation of the active inward transport of aminophospholipids in human erythrocytes.  相似文献   

7.
Incorporation of the channel-forming polyene antibiotic amphotericin B and of cytotoxins from Staphylococcus aureus (alpha-toxin) or Pseudomonas aeruginosa into erythrocyte membranes results in a concentration-dependent enhancement of the flip rates of exogenous lysophosphatidylcholine. The flip rate is also enhanced by incorporation of tetracaine and dibucaine. Removal of tetracaine and amphotericin B from the cells normalizes the flip rates. In parallel to the enhancement of flip rates, alpha-toxin produces a loss of transmembrane asymmetry of both phosphatidylethanolamine and phosphatidylserine. Pretreatment of cells with amphotericin or high concentrations (over 2.5 mmol . l-1) of tetracaine, followed by removal of the perturbing agent by washing, produces a selective loss of the asymmetric orientation of phosphatidylethanolamine to the inner membrane layer, as evaluated by the accessibility of the lipid towards cleavage by phospholipase A2. The extent to which asymmetry is lost depends on the time of pretreatment with amphotericin or tetracaine, indicating a limitation by the rate of reorientation of phosphatidylethanolamine to the outer membrane surface. Evaluation of the accessibility of phosphatidylethanolamine towards cleavage by phospholipase A2 in the presence of local anesthetics indicates accessible fractions much higher than those obtained after removal of the perturbant. In the presence of tetracaine, endofacial phosphatidylethanolamine seems somehow to become accessible to phospholipase A2. Phosphatidylserine does not exhibit this peculiarity. The results indicate that various types of perturbation of the lipid domain of the erythrocyte membrane may enhance the transbilayer mobility of phospholipids as well as destabilize the asymmetric distribution of aminophospholipids. However, as in other instances reported previously (Haest, C.W.M., Erusalimsky, J., Dressler, V., Kunze, I. and Deuticke B. (1983) Biomed. Biochim. Acta 42, 17-21), there is no tight coupling between transbilayer mobility and destabilization of asymmetry of the transbilayer distribution of phospholipids.  相似文献   

8.
Intact erythrocytes were spin-labeled with various classes of phospholipid label. The ESR spectrum for phosphatidylcholine spin label was distinctly different from those for phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidic acid spin labels. The overall splitting for the former (52.5 G) was markedly larger than those for the others (approx. 47 G), suggesting a more rigid phosphatidylcholine bilayer phase and more fluid phosphatidylethanolamine and phosphatidylserine phases in the erythrocyte membrane. Evidence for asymmetric distribution of phospholipids in the membrane was obtained. Spin-labeled phosphatidylcholine incorporated into erythrocytes was reduced immediately by cystein and Fe3+, while the reduction of spin-labeled phosphatidylserine was very slow. The present results therefore suggest asymmetric fluidity in erythrocyte membrane; a more rigid outer layer and a more fluid inner layer. The heterogeneity in the lipid structure was also manifested in the temperature dependence of the fluidity. The overall splitting for phosphatidylcholine spin label showed two inflection points at 18 and 33 degrees C, while that for phosphatidylserine spin label had only one transition at 30 degrees C. When the spin-labeled erythrocytes were hemolyzed, the marked difference in the ESR spectra disappeared, indicating homogenization of the heterogenous fluidity. Mg2+ or Mg2+ + ATP prevented the hemolysis-induced spectral changed. Ca2+ did not prevent the homogenization and acted antagonistically to Mg2+. The heterogeneity preservation by Mg2+ was nullified by trypsin, pronase or N-ethylmaleimide added inside the cell. Some inner proteins may therefore be involved in maintaining the heterogeneous structure. The protecting action of Mg2+ was dependent on hemolysis temperature, starting to decrease at 18 degrees C and vanishing at 40 degrees C. The present study suggests that the heterogeneity in the fluidity of intact erythrocyte membranes arises from interactions between lipids and proteins in the membrane and also from interactions between the membrane constituents and the inner proteins. Concentration of cholesterol in the outer layer may also partly contribute to the heterogeneity.  相似文献   

9.
We have studied in Torpedo marmorata electric organ synaptosomes the equilibration kinetics of spin-labeled phospholipid analogues initially incorporated into the outer plasma membrane monolayer. As assayed by evoked releases of both ATP and acetylcholine, the nerve endings were closed vesicles containing an energy source. The aminophospholipids (phosphatidylethanolamine and phosphatidylserine) were translocated toward the inner membrane leaflet faster and to a higher extent than their choline-containing counterparts (phosphatidylcholine and sphingomyelin). This difference was abolished by incubation of synaptosomal membranes with N-ethylmaleimide, suggesting that the accumulation of aminophospholipids in the inner layer was driven by a protein. This phenomenon is comparable with what was described in plasma membranes of other eucaryotic cells (erythrocyte, lymphocyte, platelet, fibroblast), and thus we would suggest that an aminophospholipid translocase, capable of moving the aminophospholipids from the outer to the inner layer at the expense of ATP, is also present in the synaptosomal plasma membrane.  相似文献   

10.
When human erythrocytes are incubated with spin-labeled analogues of sphingomyelin, phosphatidylcholine, phosphatidylserine, or phosphatidylethanolamine, with a short beta chain (C5) bearing a doxyl group at the fourth carbon position, the labeled lipids incorporate readily in the outer monolayer. The incorporation is followed in fresh erythrocytes by a selective inward diffusion of the amino derivatives. This observation led us to postulate the existence of a selective ATP-dependent system that would flip aminophospholipids from the outer to the inner monolayer [Seigneuret, M., & Devaux, P. F. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3751-3755]. This study further examines the nature of this selective transport and demonstrates that it is mediated by a specific membrane protein. By measurement of the initial rate of transverse diffusion of spin-labeled lipids incorporated at various concentrations in the membrane outer leaflet of packed erythrocytes, apparent Km values were determined for the phosphatidylserine and phosphatidylethanolamine analogues. A ratio of approximately equal to 1/9.4 [corrected] was obtained (KmPS/KmPE). Using spin-labels bearing either a 14N or a 15N isotope, we have carried out competition experiments allowing us to measure simultaneously the transport of two different phospholipids. By this procedure, we show that phosphatidylserine and phosphatidylethanolamine compete for the same transport site but that phosphatidylserine has a higher affinity, in agreement with a lower apparent Km. On the other hand, the slow diffusion of the phosphatidylcholine or sphingomyelin analogues has no influence on the transport of phosphatidylserine or phosphatidylethanolamine. Experiments carried out in ghosts loaded with ATP enabled us to determine the activation energies for phosphatidylserine and phosphatidylcholine transverse diffusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The phospholipid and fatty acid composition of rat erythrocytes was studied after stress exposure—swimming until drowning. This kind of stress was found to increase the content of phospholipids typical for the outer membrane layer (phosphatidylcholine by 13% and sphingomyelin by 23%). In contrast, the content of acid phospholipids, referring to the inner membrane layer, decreased (phosphatidylethanolamine by 16%, phosphatidylserine by 14% and monophosphoinositide by 23%). Our data indicate that under stress conditions the erythrocyte membrane undergoes certain structural changes, which appear to affect its functional properties. At the same time, the content of saturated and unsaturated fatty acids, as well as their “unsaturation index”, remain basically intact under the above stress conditions, probably, preserving functional properties of the erythrocyte membrane by compensating its impaired phospholipid structure. Based on the analysis of absorption spectra of lipid extracts, stress was established to induce a 2-fold spectrum enhancement in the heme-specific range of 390–410 nm. The appearance of heme in the extract indicates hemoglobin saponification induced by changes in pH of the erythrocyte internal environment. Indeed, during lipid extraction hemoglobin converts into a disordered state due to the effect not only of temperature and pH of the medium, but also of organic solvents, having a lower capacity to form hydrogen bonds than water. Probably, a small portion of phospholipids undergoes trans-esterification during their extraction from erythrocytes by the chloroform–methanol mixture.  相似文献   

12.
A model is presented to simulate transverse lipid movement in the human erythrocyte membrane. The model is based on a system of differential equations describing the time-dependence of phospholipid redistribution and the steady state distribution between the inner and outer membrane monolayer. It takes into account several mechanisms of translocation: (i) ATP-dependent transport via the aminophospholipid translocase; (ii) protein-mediated facilitated and (iii) carrier independent transbilayer diffusion. A reasonable modelling of the known lipid asymmetry could only be achieved by introducing mechanism (iii). We have called this pathway the compensatory flux, which is proportional to the gradient of phospholipids between both membrane leaflets. Using realistic model parameters, the model allows the calculation of the transbilayer motion and distribution of endogenous phospholipids of the human erythrocyte membrane for several biologically relevant conditions. Moreover, the model can also be applied to experiments usually performed to assess phospholipid redistribution in biological membranes. Thus, it is possible to simulate transbilayer motion of exogenously added phospholipid analogues in erythrocyte membranes. Those experiments have been carried out here in parallel using spin labeled lipid analogues. The general application of this model to other membrane systems is outlined.Abbreviations PBS phosphate buffered saline - DFP diisopropyl fluorophosphate - ESR electron spin resonance - RBC red blood cells - PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - SM sphingomyelin - (0,2)PC 1-palmitoyl-2(4doxylpentanoyl)-PC - (0,2)PE 1-palmitoyl-2(4-doxylpentanoyl)-PE - (0,2) PS 1-palmitoyl-2(4-doxylpentanoyl)-PS  相似文献   

13.
Transmembrane distribution of sterol in the human erythrocyte   总被引:2,自引:0,他引:2  
The transbilayer cholesterol distribution of human erythrocytes was examined by two independent techniques, quenching of dehydroergosterol fluorescence and fluorescence photobleaching of NBD-cholesterol. Dehydroergosterol in conjunction with leaflet selective quenching showed that, at equilibrium, 75% of the sterol was localized to the inner leaflet of resealed erythrocyte ghosts. NBD-cholesterol and fluorescence photobleaching displayed two diffusion values in both resealed ghosts and intact erythrocytes. The fractional contribution of the fast and slow diffusion constants of NBD-labelled cholesterol represent its inner and outer leaflet distribution. At room temperature the plasma membrane inner leaflet of erythrocyte ghosts as well as intact erythrocytes cells contained 78% of the plasma membrane sterol. The erythrocyte membrane transbilayer distribution of sterol was independent of temperature. In conclusion, dehydroergosterol and NBD-cholesterol data are consistent with an enrichment of cholesterol in the inner leaflet of the human erythrocyte.  相似文献   

14.
The distribution of phospholipids over the outer and inner layers of the plasma membranes of differentiated Friend erythroleukemic cells (Friend cells) and mouse reticulocytes has been determined. Phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol were found to be distributed symmetrically over both layers, sphingomyelin was found to be enriched in the outer layer (80-85%) and phosphatidylserine appeared to be present mainly in the inner layer (80-90%) of the plasma membranes of differentiated Friend cells. The outer layer of reticulocyte membranes contains 50-60% of the phosphatidylcholine, 20% of the phosphatidylethanolamine, 82-85% of the sphingomyelin and 40-42% of the phosphatidylinositol. All of the phosphatidylserine is present in the inner layer. The results show, that the asymmetric distribution of phospholipids, typical for erythrocyte membranes, is partially apparent already at an early stage of erythropoiesis, the proerythroblast, while the final organization of phospholipid distribution takes place at some stage during enucleation of the enormoblast and release of the reticulocyte into the blood stream.  相似文献   

15.
Intact erythrocytes were spin-labeled with various classes of phospholipid label. The ESR spectrum for phosphatidylcholine spin label was distinctly different from those for phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidic acid spin labels. The overall splitting for the former (52.5 G) was markedly larger than those for the others (approx. 47 G), suggesting a more rigid phosphatidylcholine bilayer phase and more fluid phosphatidylethanolamine and phosphatidylserine phases in the erythrocyte membrane. Evidence for asymmetric distribution of phospholipids in the membrane was obtained. Spin-labeled phosphatidylcholine incorporated into erythrocytes was reduced immediately by cystein and Fe3+, while the reduction of spin-labeled phosphatidylserine was very slow. The present results therefore suggest asymmetric fluidity in erythrocyte membrane; a more rigid outer layer and a more fluid inner layer. The heterogeneity in the lipid structure was also manifested in the temperature dependence of the fluidity. The overall splitting for phosphatidylcholine spin label showed two inflection points at 18 and 33 °C, while that for phosphatidylserine spin label had only one transition at 30 °C.When the spin-labeled erythrocytes were hemolyzed, the marked difference in the ESR spectra disappeared, indicating homogenization of the heterogeneous fluidity. Mg2+ or Mg2++ATP prevented the hemolysis-induced spectral changes. Ca2+ did not prevent the homogenization and acted antagonistically to Mg2+. The heterogeneity preservation by Mg2+ was nullified by trypsin, pronase or N-ethylmaleimide added inside the cell. Some inner proteins may therefore be involved in maintaining the heterogeneous structure. The protecting action of Mg2+ was dependent on hemolysis temperature, starting to decrease at 18 °C and vanishing at 40 °C. The present study suggests that the heterogeneity in the fluidity of intact erythrocyte membranes arises from interactions between lipids and proteins in the membrane and also from interactions between the membrane constituents and the inner proteins. Concentration of cholesterol in the outer layer may also partly contribute to the heterogeneity.  相似文献   

16.
Two phospholipid exchange proteins and two phospholipases C have been employed to determine the phospholipid composition of the outer surface of the membrane of influenza virus. These four protein probes have defined the same accessible and inaccessible pool for each viral phospholipid. Phospholipids which are exchangeable or hydrolyzable are located on the outer surface, whereas the inaccessible pool is located at the inner surface of the viral bilayer. The two pools are unequal in size, with ca. 30% of the total phospholipid accessible to the four proteins, and ca. 70% inaccessible. The membrane is thus highly asymmetric with regard to the amount of phospholipid on each side of the membrane. There is also a marked asymmetry of phospholipid composition. Phosphatidylcholine and phosphatidylinositol are enriched in the outer surface, and sphingomyelim is enriched in the inner surface, whereas phosphatidylethanolamine and phosphatidylserine are present in similar proportions in each surface. This distribution is qualitatively different from that previously reported for the human erythrocyte. The close agreement between results obtained with excahnge proteins and phospholipases C demonstrates that the hydrolytic action of these enzymes does not alter phospholipid asymmetry. The nonperturbing nature of the exchange proteins has permitted the rate of transmembrane movement of phospholipids (flip-flop) in the intact virion to be studied. This process could not be detected after 2 days at 37 degrees C. It was estimated that the half-time for flip-flop is indeterminately in excess of 30 days for sphingomyelin and 10 days for phosphatidylcholine at 37 degrees C. These extremely long times provide a simple explanation for the maintenance of transbilayer asymmetry in influenza virions and possibly, other membranes. Since the viral membrane is acquired by budding through the host cell plasma membrane, the transbilayer distribution of phospholipids observed in the virions presumably reflects a similar asymmetric distribution of phospholipids in the host cell surface membrane. Because animal cells in culture do not incorporate extracellular phospholipid, our results demonstrate that individual cells have the capacity to generate asymmetric membranes.  相似文献   

17.
The present studies describe the distribution of phosphatidylinositol (PI) within the membrane bilayer of the human red blood cell (RBC) as well as its transbilayer mobility. The membrane bilayer distribution was determined by measuring the hydrolysis of PI in the exterior leaflet of the RBC membrane using a PI-specific phospholipase C and by extraction of PI from the exterior leaflet using bovine serum albumin. The transbilayer mobility of PI was measured by following the fate of radiolabeled PI which was first incorporated into the outer leaflet of the RBC membrane. Our results indicate that PI is asymmetrically distributed in the membrane, with approximately 80% located in the inner and 20% in the outer leaflet of the bilayer. The rate of transbilayer mobility of PI is similar to that for certain molecular species of phosphatidylcholine and much slower than that reported for the aminophospholipids in the RBC membrane.  相似文献   

18.
Summary The transmembrane distribution of the major aminophospholipids in the bovine retinal rod outer segment disk membrane, phosphatidylethanolamine and phosphatidylserine, was determined using a novel pair of permeable and impermeable covalent modification reagents. The values for the percentages of phosphatidylethanolamine and phosphatidylserine in the outer monolayer were calculated from a simple expression which takes into account the leakage of impermeable reagent into the disk lumen as monitored by the extent of labeling of lysine entrapped in the lumen. We infer from our results that at least 73 to 87% of the disk phosphatidylethanolamine and 77 to 88% of the disk phosphatidylserine are in the outer disk membrane monolayer. The fatty acid composition of the inner aminophospholipids is slightly more saturated than the outer aminophospholipids. Calculations using the lateral surface areas occupied by the disk membrane lipids suggest that 65 to 100% of the disk phosphatidylcholine is on the inner membrane surface. Since the disk phosphatidylcholine is also somewhat more saturated than the phosphatidylethanolamine and phosphatidylserine of the outer monolayer, the total inner membrane monolayer fatty acid composition is more saturated than that of the outer monolayer fatty acid composition.  相似文献   

19.
We examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine (PE), PE plasmalogen and phosphatidylserine, and the oxidative stability of polyunsaturated fatty acids (PUFAs) in the aminophospholipids. To modulate the transbilayer distribution of aminophospholipid in liposomes, we used phosphatidylcholine (PC) with two types of acyl chain region: dipalmitoyl (PC16:0) or dioleoyl (PC18:1). In the smaller-sized liposomes, the proportions of aminophospholipid in the liposomal external layer were significantly higher in liposomes containing PC18:1 than in those containing PC16:0. Additionally, aminophospholipids in the external layer of smaller-sized liposomes were able to protect their component PUFAs from 2,2'-azobis(2-amidinopropane)dihydrochloride-mediated lipid peroxidation.  相似文献   

20.
The alpha-tocopherol content and fatty acid composition of lipids in various types of nervous tissue membranes were studied. The transbilayer distribution of alpha-tocopherol and polyunsaturated fatty acids in liposomes and plasma membranes of synaptosomes was examined. It was shown that both phosphatidylethanolamine and phosphatidylserine are localized predominantly in the inner monolayer and they contain the bulk of polyenoic fatty acid residues. alpha-Tocopherol incorporated into liposomes from synaptosome plasma membrane lipids and present in synaptosome plasma membranes is also predominantly localized in the inner monolayers. No asymmetrical distribution of incorporated alpha-tocopherol was observed in liposomes prepared from a single phospholipid, e.g., dioleoylphosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号