首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Echinochloa species differ in their ability to germinate and grow in the absence of oxygen. Seeds of Echinochloa crus-pavonis (H.B.K.) Schult do not germinate under anoxia but remain viable for extended periods (at least 30 d) when incubated in an anaerobic environment. E. crus-pavonis can be induced to germinate and grow in an anaerobic environment if the seeds are first subjected to a short (1-18 h) exposure to aerobic conditions (aerobic priming). Changes in polypeptide patterns (constitutive and de novo synthesized) and protein phosphorylation induced by aerobic priming were investigated. In the absence of aerobic priming protein degradation was not evident under anaerobic conditions, although synthesis of a 20-kD polypeptide was induced. During aerobic priming, however, synthesis of 37- and 55-kD polypeptides was induced and persisted upon return of the seeds to anoxia. Furthermore, phosphorylation of two 18-kD polypeptides was observed only in those seeds that were labeled with 32PO4 during the aerobic priming period. Subsequent chasing in an anaerobic environment resulted in a decrease in phosphorylation of these polypeptides. Likewise, phosphorylation of the 18-kD polypeptides was not observed if the seeds were labeled in an anaerobic atmosphere. These results suggest that the regulated induction of the 20-, 37-, and 55- kD polypeptides may be important for anaerobic germination and growth of E. crus-pavonis and that the specific phosphorylation of the 18-kD polypeptides may be a factor in regulating this induction.  相似文献   

2.
Trypsin treatment of a partially purified insulin receptor preparation from rat adipocytes stimulated the phosphorylation of 90,000- and 72,000-Da polypeptides immunoprecipitated by anti-insulin receptor antibody. The phosphorylation of tyrosine residues alone was observed in both polypeptides. Trypsin concentrations which stimulated insulin receptor phosphorylation were the same as those previously shown to activate rat adipocyte glycogen synthase. Trypsin treatment of the insulin receptor fraction also stimulated the phosphorylation of an exogenous substrate of tyrosine kinase similarly to insulin treatment. Trypsin treatment of a highly purified insulin receptor from human placenta also activated the phosphorylation of the receptor-derived peptides. These results suggest that the insulin-stimulated protein kinase, a component of the insulin receptor, was activated by tryptic digestion to phosphorylate polypeptides derived from the insulin receptor itself. Thus, it is suggested that stimulation by trypsin of phosphorylation of the insulin receptor may be related to the insulin-like metabolic actions of trypsin observed in rat adipocytes.  相似文献   

3.
J F Allen  M A Harrison  N G Holmes 《Biochimie》1989,71(9-10):1021-1028
The function of phosphorylation of light-harvesting polypeptides is well characterised in chloroplasts of green plants, but the prokaryotic cyanobacteria and purple photosynthetic bacteria have quite different light-harvesting polypeptides whose structure and function cannot be controlled in precisely the same way. Nevertheless, cyanobacteria show light-dependent phosphorylation of membrane polypeptides associated with photosystem II and with the light-harvesting phycobilisome, and purple bacteria show light-dependent phosphorylation of low molecular-weight chromatophore membrane polypeptides. In both cases membrane protein phosphorylation is associated with functional changes observed by chlorophyll fluorescence spectroscopy or chlorophyll fluorescence induction kinetics. Here we report on our recent protein sequence and other data concerning the identities of these phosphoproteins. We also discuss the significance of these findings for regulation by protein phosphorylation of photosynthesis in prokaryotes.  相似文献   

4.
A calmodulin-dependent protein kinase has been purified from rat spleen. The enzyme showed a remarkably similar substrate specificity and kinetic parameters to those of rat brain calmodulin-dependent protein kinase II, and exhibited cross-reactivity to a monoclonal antibody against rat brain calmodulin-dependent protein kinase II, indicating that the enzyme might be a calmodulin-dependent protein kinase II isozyme. The sedimentation coefficient was 13.9S, the Stokes radius was 67 A, and the molecular weight was calculated to be 380,000. The purified enzyme gave five polypeptides bands, corresponding to molecular weights of 51,000, 50,000, 21,000, 20,000, and 18,000, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the purified enzyme with Ca2+, calmodulin, and ATP under phosphorylating conditions induced the phosphorylation of all five polypeptides. When the logarithm of the velocity of the phosphorylation was plotted against the logarithm of the enzyme concentration (van't Hoff plot), slopes of 0.89, 0.94, and 1.1 were obtained for the phosphorylation of the 50/51-kDa doublet, 20/21-kDa doublet, and 18-kDa polypeptide, respectively. These results indicate that the phosphorylation of the five polypeptides is an intramolecular process, and further indicate that all five polypeptides are subunits of this enzyme. Of the five polypeptides, only the 50- and 51-kDa polypeptides bound to [125I]calmodulin, the other polypeptides not binding to it. A number of isozymic forms of calmodulin-dependent protein kinase II so far demonstrated in various tissues are known to be composed of subunits with molecular weights of 50,000 to 60,000 which can bind to calmodulin. Thus a new type of calmodulin-dependent protein kinase II was demonstrated in the present study.  相似文献   

5.
The polypeptides of etioplast and chloroplast fractions, purified on Percoll discontinuous gradient, were phosphorylated in vitro using (γ-32P)ATP, resolved by SDS-PAGE and autoradiographed. In general, about 15-18 phosphopolypeptides in the range of 14-150 kD were distinctly visible in autoradiograms of both organelle fractions with varying degree of radiolabel incorporation. Although short-term irradiation with red or far-red light did not have any significant effect on phosphorylation status of etioplast polypeptides, in vivo irradiation with 1 h white light, followed by in vitro phosphorylation, decreased phosphorylation of a 116 kD polypeptide and increased the phosphorylation of polypeptides of 38 kD and a doublet around 20 kD. Strikingly, the phosphorylation status of 116 kD etioplast polypeptide was adversely affected by Ca2+ as well, and this phosphopolypeptlde was not distinctly visible in the autoradiogram of the chloroplast fraction proteins. However, in vitro phosphorylation of 98, 57 and 50 kD polypeptides of both etioplast and chloroplast fractions was found to be Ca2+ dependent. Unlike Ca2+, 3′,5′-cyclic AMP down-regulated the phosphorylation of several polypeptides of both etioplasts and chloroplasts, including 98 and 50 kD, and up-regulated the phosphorylation of 32 and 57 kD polypeptides. The significance of these observations on changes in phosphoprotein profile of etioplasts and chloroplasts, as influenced by light, Ca2+ and cyclic nucleotides, has been discussed.  相似文献   

6.
In vitro phosphorylation of several membrane polypeptides and soluble polypeptides from corn (Zea mays var. Patriot) coleoptiles was promoted by adding Ca2+. Ca2+-promoted phosphorylation of the membrane polypeptides was further increased in the presence of calmodulin. Both Ca2+-stimulated and Ca2+- and calmodulin-stimulated phosphorylations of membrane polypeptides were inhibited by chlorpromazine, a calmodulin antagonist. Ca2+-stimulated phosphorylation of soluble polypeptides increased with increasing Ca2+ concentration. The calmodulin antagonists chlorpromazine and trifluoperazine inhibited the Ca2+-promoted phosphorylation of soluble polypeptides. Added calmodulin promoted the Ca2+-dependent phosphorylation of a 98 kilodaltons polypeptide. Both Ca2+-dependent and Ca2+-independent phosphorylations required Mg2+ at an optimal concentration of 5 to 10 millimolar. Cyclic AMP was found to have no stimulatory effect on protein phosphorylation. Sodium molybdate, an inhibitor of protein phosphatase, increased the net phosphorylation of several polypeptides. Rapid loss of radioactivity from the phosphorylated polypeptides following incubation in unlabeled ATP indicated the presence of phosphoprotein phosphatase activity.  相似文献   

7.
In vitro and in vivo protein phosphorylations in oat (Avena sativa L.) coleoptile segments were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. In vitro phosphorylation of several polypeptides was distinctly promoted at 1 to 15 micromolar free Ca2+ concentrations. Ca2(+)-stimulated phosphorylation was markedly reduced by trifluoperazine, chlorpromazine, and naphthalene sulfonamide (W7). Two polypeptides were phosphorylated both under in vitro and in vivo conditions, but the patterns of phosphorylation of several other polypeptides were different under the two conditions indicating that the in vivo phosphorylation pattern of proteins is not truly reflected by in vitro phosphorylation studies. Trifluoperazine, W7, or ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) + calcium ionophore A23187 treatments resulted in reduced levels of in vivo protein phosphorylation of both control and auxin-treated coleoptile segments. Analysis by two-dimensional electrophoresis following in vivo phosphorylation revealed auxin-dependent changes of certain polypeptides. A general inhibition of phosphorylation by calmodulin antagonists suggested that both control and auxin-treated coleoptiles exhibited Ca2+, and calmodulin-dependent protein phosphorylation in vivo.  相似文献   

8.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weights between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [gamma-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [gamma-32P]ATP and cyclic AMP-dependent protein kinase from calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

9.
Phosphorylation of polypeptides in whole cells and in chloroplasts of different strains of Chlamydomonas reinhardii was studied. Phosphorylation in vivo was strongly reduced when cytoptasmic protein synthesis was inhibited either by anisomycin or by cycloheximide. In isolated chloroplasts these two inhibitors had no effect on labelling. The incorporation of [32P]-phosphate into one of the apoproteins of the light-harvesting chlorophyll a/b -protein complex (LHC 2) was also studied in relation to its synthesis. In vivo, in a chlorophyll b -deficient mutant and in its parent strain we found a pronounced relationship between synthesis and phosphorylation of this LHC 2-apoprotein. Our results suggest that LHC 2-apoproteins, newly synthesized in the cytoplasm, are preferentially phosphorylated after synthesis. Together with the observation that phosphorylation still occurs in isolated chloroplasts we conclude that in vivo at least two levels of phosphorylation of the LHC 2-apoproteins have to be clearly differentiated. One level involves the phosphorylation of existing and the other of newly synthesized polypeptides. The biological significance of phosphorylation of the LHC 2-apoproteins in vivo and probably also of other thylakoid polypeptides is complex and not restricted to regulation of energy distribution between photosystems 1 and 2.  相似文献   

10.
A 40000 g supernatant fraction from extracts of germinating wheat ( Triticum turgidum Desf. cv. Edmore) endosperm contains protein kinase activity that phosphorylates several endogenous proteins. In vitro incorporation of radiolabel from [32P]-ATP into phosphoproteins was maximal in the presence of 1 m M CaCl2 and 5 m M MgCl2Ca2+ at micromolar concentrations greatly stimulated the phosphorylation of 49 and 47 kDa polypeptides and also inhibited the phosphorylation of a few specific polypeptides. The phosphorylation of the 49 and 47 kDa polypeptides was present at 2 days after seed germination and was maximal at 8 days. Quantitative protein changes were also detected during the seed germination, but differences could not be correlated with changes in protein phosphorylation. Phosphoamino acid analysis by two dimensional thin-layer electrophoresis showed that the Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 kDa polypeptide. Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 KDa polypeptide. Ca2+ dependent protein phosphorylktion was inhibited by phenothiazine-derived drugs. Addition of S-adenosylmethionine to the in vitro phosphorylation reaction specifically inhibited the Ca2+-dependent protein phosphorylation.  相似文献   

11.
The effects of platelet secretion inhibitors on protein phosphorylation   总被引:2,自引:0,他引:2  
Protein phosphorylation was investigated in human platelets after stimulation to secretion by thrombin. After stimulation by thrombin at 4 degrees C (in which secretion is inhibited), phosphorylations of the 80, 56, and 38 kDa polypeptides and dephosphorylation of the 67 kDa phosphopeptide eventually occurred. The phosphorylations of the 27 and 20 kDa polypeptides remained inhibited until the temperature was increased to 37 degree C, which also resulted in secretion. Various stimulants and inhibitors of platelet function were used to characterize individual protein phosphorylations. The divalent-cation ionophore, A23187, induced the phosphorylations (or dephosphorylation) of the same proteins as thrombin with the exception of the 80 kDa protein, which remained incompletely phosphorylated. The intracellular calcium antagonist, TMB-8, inhibited thrombin-stimulated secretion and phosphorylation of all the polypeptides except the 80 kDa protein. The dephosphorylation of the 67 kDa phosphoprotein was not affected by TMB-8. Incubation of platelets with prostaglandin E1 and isobutylmethylxanthine inhibited thrombin-stimulated secretion and the phosphorylation of the 38 and 20 kDa protein and increased the phosphorylation of the 67 and 27 kDa phosphoproteins. These observations may be used to correlate protein phosphorylation with secretion, suggesting a possible sequence of intracellular events that mediate thrombin-stimulated secretion.  相似文献   

12.
Cytoskeletal interactions which contribute to the assembly of the postsynaptic density (PSD) were investigated. PSDs bound 125I-tubulin specifically with an apparent Km of 2 X 10(-7) M and a Bmax of about 1 nmol/mg of protein. 125I-Tubulin blots revealed that a group of polypeptides between Mr 135,000 and 147,000 (P-140) was a major tubulin-binding PSD component. The P-140 polypeptides were highly enriched in the PSD fraction of purified synaptosomes and could not be detected in crude brain cytoplasm preparations. These polypeptides were subject to phosphorylation by endogenous calmodulin-dependent protein kinase type II, with a concomitant reduction in 125I-tubulin binding. The tubulin-binding polypeptides could also associate with the radiolabeled alpha- and beta-subunits of the calmodulin-dependent protein kinase. These observations are consistent with a role for the P-140 polypeptides in organizing the molecular structure of the PSD. The data also suggest that this structure may be modified by Ca2+-sensitive phosphorylation, thus permitting neuronal activity to modulate the cytoskeletal interactions of the PSD.  相似文献   

13.
The phosphorylation of thylakoid proteins of rice (Oryza sativa L.) was studied in vitro using [γ-32P]ATP. Several thylakoid proteins are labeled, including the light-harvesting complex of photosystem II. Protein phosphorylation is sensitive to temperature, pH, and ADP, ATP, and divalent cation concentrations. In the range pH 7 to 8.2, phosphorylation of the light-harvesting polypeptides declines above pH 7.5, whereas labeling of several other thylakoid polypeptides increases. Increasing divalent cation concentration from 3 to 20 millimolar results in a decrease in phosphorylation of the 26 kilodalton light-harvesting complex polypeptide and increased phosphorylation of several other polypeptides. ADP has an inhibitory effect on the phosphorylation of the light-harvesting complex polypeptides. Phosphorylation of the 26 kilodalton light-harvesting polypeptide requires 0.45 millimolar ATP for half-maximal phosphorylation, compared to 0.3 millimolar for the 32 kilodalton phosphoprotein. Low temperature inhibits the phosphorylation of thylakoid proteins in chilling-sensitive rice. However, phosphorylation of histones by thylakoid-bound kinase(s) is independent of temperature in the range of 25 to 5°C, suggesting that the effect of low temperature is on accessibility of the substrate, rather than on the activity of the kinase.  相似文献   

14.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weight between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [γ-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [γ-32P]ATP and cyclic AMP-dependent protein kinase form calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

15.
Mitochondria isolated from 4-day-old dark-grown wheat seedlings were purified by self-generating Percoll gradient. Phosphorylation reaction was carried out in vitro with the addition of [ c-32P]ATP and polypeptides resolved by 50S-PAGE were subjected to autoradiography. Amongst endogenous polypeptides phosphorylated, four polypeptides of 120, 66, 43 and 21 kD were prominent. Addition of Mg2+ (5 mM) caused dephosphorylation of 120 and 66 kO polypeptides but, simultaneously, induced/enhanced the phosphorylation of some polypeptides, with the effect being more pronounced on a 67 kD species. The phosphorylation of 120 kD species and a few other polypeptides was also down-regulated and that of a 18 kD polypeptide was up-regulated by Ca2+. The present study provides evidence that phosphorylation status of mitochondrial proteins is regulated by Mg2+ and/or Ca2+-dependent phosphatase(s) and protein kinase(s).  相似文献   

16.
A large number of polypeptides were phosphorylated when in vitro protein phosphorylation was carried out in nuclei isolated from dark-grown seedlings. For studying the effect of light, dark-grown seedlings were exposed to light and the isolated nuclear proteins phosphorylated in vitro. Although 4 h of white light was sufficient to alter the phosphorylation status of at least two polypeptides of 19 and 17 kD but the effect of light was more pronounced after irradiation for 8 h or more, leading to virtual disappearance of a 19 kD and emergence of a 17 kD phosphopolypeptide. Studies using norflurazon, a bleaching herbicide, indicate that, in addition to 19 and 17 kD phosphopolypeptides, another 21 kD phosphopolypeptide may be involved in the de-etiolation process. However, the nature of the photoreceptor involved in these light-induced changes in nuclear protein phosphorylation remains to be established.  相似文献   

17.
Irradiation with red light of Sorghum bicolor seedlings stimulated in vitro phosphorylation of 55 kD and several other soluble polypeptides in a development-dependent manner. The red light stimulated phosphorylation of 55 kD polypeptide was more in 6-day-old etiolated plants as compared to 5-day-old plants. The in vitro phosphorylation of 55 kD polypeptide was enhanced further when calcium was added to the extracts obtained from red light irradiated tissues of 6-day-old seedlings. This effect was inhibited in the presence of calmodulin inhibitors. There was no significant stimulation in the phosphorylation of this polypeptide by calcium in 5-day-old and 7-day-old etiolated plants. Besides 55 kD, the phosphorylation of several other polypeptides was either stimulated or inhibited by light, calcium and calmodulin inhibitors suggesting involvement of both kinases and phosphatases in light-mediated phosphorylation.  相似文献   

18.
Changes in tyrosine phosphorylation of soluble polypeptides of pea (Pisum sativum L.) roots were revealed under the action of exogenous hydrogen peroxide in situ and in vitro. The polypeptides whose tyrosine phosphorylation in situ was vanadate-sensitive were identified. A thiol agent dithiothreitol and the antioxidant ascorbic acid reversed the effect of hydrogen peroxide in vitro. The results indicate that tyrosine phosphorylation of pea proteins is a subject to redox regulation.  相似文献   

19.
A new procedure for the phosphorylation and assay of phosphoproteins is described. Proteins are solubilized from tissue samples, separated by polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane filters, and the blotted polypeptides are phosphorylated with the catalytic subunit of cyclic AMP (adenosine 3':5'-monophosphate)-dependent protein kinase. The method was developed for the assay of dephosphosynapsin I, but it has also proven suitable for the phosphorylation of other proteins. The patterns of phosphorylation of tissue samples phosphorylated using the new method are similar to those obtained using the conventional test tube assay. Once phosphorylated, the adsorbed proteins can be digested with proteases and subjected to phosphopeptide mapping. The phosphorylated blotted proteins can also be analyzed by overlay techniques for the immunological detection of polypeptides.  相似文献   

20.
Keratins undergo highly dynamic events in the epithelial cells that express them. These dynamic changes have been associated with important cell processes. We have studied the possible role of keratin phosphorylation-dephosphorylation processes in the control of these dynamic events. Drugs that affect the protein phosphorylation metabolism (activators or inhibitors of protein kinases or protein phosphatases) have been used in two different dynamic experimental systems. First, the behaviour of keratins after the formation of cell heterokaryons, and second, the assembly of a newly synthesised keratin after transfection into the pre-existing keratin cytoskeleton. The main difference between these two systems stems on the alteration of the amount of keratin polypeptides present in the cells, since in heterokaryons this amount was unaltered whilst in transfection experiments there is an increase due to the presence of the transfected protein. We observed in both systems that the inhibition of protein kinases led to a delayed dynamic behaviour of the keratin polypeptides. On the contrary, the inhibition of protein phosphatases by okadaic acid or the activation of protein kinases by phorbol esters promoted a substantial increase in the kinetics of these processes. Biochemical studies demonstrate that this behavioural changes can be correlated with changes in the phosphorylation state of the keratin polypeptides. As a whole, present results indicate that the highly dynamic properties of the keratin polypeptides can be modulated by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号