首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A study was made of the effect of temperature on accumulation of glucosamine and 2-aminoisobutyrate by Candida utilis NCYC 321 grown at 30° C or 10° C. Exponential-phase cells contained greater proportions of C16:1 and C18:3 acids, and smaller proportions of C13:1 and C18:2 acids, when grown in a defined medium at 10° C compared with 30° C. Cells grown at 30° C or 10° C were able to accumulate extracellular (10 mM) glucosamine and 2-aminoisobutyrate against concentration gradients. 2-Aminoisobutyrate was not metabolised by the cells; glucosamine was accumulated probably as a mixture of glucosamine 1- and 6-phosphates. Rates of accumulation of glucosamine and 2-aminoisobutyrate by cells grown at 30° C or 10° C decreased markedly when the test temperature was decreased from 30° C to 15° C. The rate of accumulation of glucosamine by cells grown at 10° C was considerably lower at each of the test temperatures compared with the corresponding rates for cells grown at 30° C; the rate of accumulation of 2-aminoisobutyrate was much less affected by the temperature at which the cells were grown and then only when measured at temperatures below about 20° C. Apparent K m values for accumulation of glucosamine by cells grown at 30° C or 10° C decreased considerably when the test temperature was lowered from 20° C to 15° C. The extent of the decrease in K m value was approximately the same for cells grown at 30° C or 10° C. Apparent K m values for accumulation of 2-aminoisobutyrate were hardly affected by test temperature. Apparent V max values for accumulation of glucosamine or 2-aminoisobutyrate were much lower when measured at 15° C than at 30° C. When measured at 30° C, apparent V max values for accumulation of either solute were slightly lower with cells grown at 10° C compared with cells grown at 30° C; when measured at 15° C, the values were slightly greater with cells grown at 10° C. Net accumulation of glucosamine, at 30° C or 20° C, by cells grown at 30° C or 10° C ceased after 4–6 h. Cells grown at either temperature continued to accumulate 2-aminoisobutyrate at 30° C or 20° C for at least 12 h. The rate of efflux of glucosamine by cells grown at 30° C was slower when measured at 20° C compared with 30° C. With cells grown at 10° C, the rate of efflux at 30° C was slower than with cells grown at 30° C; when measured at 20° C, the rates were about equal. The temperature at which the cells were grown did not affect the ability of d-glucose, d-mannose or d-ribose to compete with d-glucosamine, or with the ability of l-alanine to compete with 2-aminoisobutyrate, when tested at 30° C or 20° C. Cells grown 30° C or 10° C had very similar ATP contents. The results are discussed in relation to the effect of temperature on the rate of solute accumulation by micro-organisms.Abbreviation AIB 2-Aminoisobutyrate  相似文献   

2.
C. B. Johnson 《Planta》1979,145(1):63-68
Cells of Anacystis nidulans grown at 25 or 30°C were examined both by thin-section and freeze-fracture electron microscopy. Cells grown at either temperature appeared similar when fixed at the growth temperature prior to observation. When cells were chilled to near 0°C for 30 min prior to fixation, those previously grown at 25° appeared unchanged as judged by thin sectioning while those grown at 39° showed considerable morphological alteration. Freeze fracture showed particle aggregation (more pronounced in 39°-grown cells) indicating lipid-phase separation in cells chilled prior to fixation. The phase separation was totally reversed by rewarming the chilled, 25°-grown cells to their growth temperature but was only partially reversed by rewarming chilled, 39°-grown cells. These results correlate with other effects of chilling seen in Anacystis cells grown at different temperatures.  相似文献   

3.
An intracellular lipase was induced inAspergillus flavipes grown on various triacylglycerols at pH 6.0 and at 30°C, with maximum activity with sunflower oil. The lipase had an optimum pH for activity of 8.8 and retained 30% of its activity at pH 10.0. It had an optimum temperature for activity, measured over 30 min, of 45°C. It was completely inactivated at 60°C within 10 min.  相似文献   

4.
Climatic and soil factors are limiting rice growth in many countries. In Vietnam, a steep gradient of temperature is observed from the North to the South, and acid sulphate soils are frequently devoted to rice production. We have therefore attempted to understand how temperature affects rice growth in these problem soils, by comparison with rice grown in nutrient solution. Two varieties of rice, IR64 and X2, were cultivated in phytotrons at 19/21°C and 28/32°C (day/night) for 56 days, after 3 weeks preculture in optimal conditions. Two soils from the Mekong Delta were tested. Parallel with the growing experiments, these two soils were incubated in order to monitor redox potential (E h ), pH, soluble Al and Fe, soluble, and available P. Tillering retardation at 20°C compared to 30°C was similar in nutrient solutions and in soils. The effect of temperature on increasing plant biomass was more marked in solutions than in soils. The P concentrations in roots and shoots were higher at 20°C than at 30°C, to such an extent that detrimental effect was suspected in plants grown in solution at the lowest temperature. The translocation of Fe from roots to shoots was stimulated upon rising temperature, both in solutions and in soils. This led to plant death on the most acid soil at 30°C. Indeed, the accumulation of Fe in plants grown on soils was enhanced by the release of Fe2+ due to reduction of Fe(III)-oxihydroxides. Severe reducing conditions were created at 30°C: redox potential (E h ) dropped rapidly down to about 0 V. At 20°C, E h did not drop below about 0.2 V, which is a value well in the range of Fe(III)/Fe(II) buffering. Parallel to E h drop, pH increased up to about 6–6.5 at 30°C, which prevented plants from Al toxicity, even in the most acid soil. Phosphate behavior was obviously related to Fe-dynamics: more reducing conditions at 30°C have resulted in enhancement of available P, especially in the most acid soil.  相似文献   

5.
Saccharomyces cerevisiae was cultured under anaerobiosis in semi-complete medium to which either palmitoleic or oleic acid was added. Cells were grown at 20 °C or 30 °C. The levels of total lipids, total sterols, and phospholipids were higher in cells grown at 20 °C than at 30 °C. The effects of nystatin (NYS), amphotericin B (AMB), and amphotericin B methyl ester (AME) were evaluated by determining cell viability and liberation of intracellular compounds. The loss of cell viability is higher in the first 30 minutes of incubation with the drugs and is the same regardless of the type of cells obtained. Low molecular weight compounds and ions such as K+ are liberated a few minutes after incubation with the drugs whereas proteins and substances absorbing at 260 nm are liberated later. Phosphate liberation comes after K+ and before compounds of higher molecular weights.  相似文献   

6.
Paraquat-resistant biotypes of the closely-related weed species Hordeum leporinum Link and H. glaucum Steud. are highly resistant to paraquat when grown during the normal winter growing season. However, when grown and treated with paraquat in summer, these biotypes are markedly less resistant to paraquat. This reduced resistance to paraquat in summer is primarily a result of increased temperature following herbicide treatment. The mechanism governing this decrease in resistance at high temperature was examined in H. leporinum. No differences were observed between susceptible and resistant biotypes in the interaction of paraquat with isolated thylakoids when assayed at 15, 25, or 35 °C. About 98 and 65% of applied paraquat was absorbed through the leaf cuticle of both biotypes at 15 and 30 °C, respectively. Following application to leaves, more herbicide was translocated in a basipetal direction in the susceptible biotype compared to the resistant biotype at 15 °C. However, at 30 °C more paraquat was translocated in a basipetal direction in the resistant biotype. Photosynthetic activity of young leaf tissue from within the leaf sheath which had not been directly exposed to paraquat was measured 24 h after treatment of plants with para. quat. This activity was inhibited in the susceptible biotype when plants were maintained at either 15 °C or 30 °C after treatment. In contrast, photosynthetic activity of such tissue of the resistant biotype was not inhibited when plants were maintained at 15 °C after treatment, but was inhibited at 30 °C. The mechanism of resistance in this biotype of H. leporinum correlates with decreased translocation of paraquat and decreased penetration to the active site. This mechanism is temperature sensitive and breaks down at higher temperatures.We are grateful to Zeneca Agrochemicals, Jealotts Hill, Berkshire, UK who provided [14C]paraquat. E.P. was supported through a Ph.D. scholarship from the Australian International Development Assistance Bureau and C.P. was the recipient of an Australian Research Council Postdoctoral Fellowship.  相似文献   

7.
Sorghum [Sorghum bicolor (L.) Moench] plants were grown in growth chambers at 20, 25 and 30°C in a low P Typic Argiudoll (3.65 µg P g–1 soil, pH 8.3) inoculated with Glomus fasciculatum, Glomus intraradices, and Glomus macrocarpum to determine effects of vesicular-arbuscular mycorrhizal fungi (VAMF) species on plant growth and mineral nutrient uptake. Sorghum root colonization by VAMF and plant responses to Glomus species were temperature dependent. G. macrocarpum colonized sorghum roots best and enhanced plant growth and mineral uptake considerably more than the other VAMF species, especially at 30°C. G. fasciculatum enhanced shoot growth at 20 and 25°C, and mineral uptake only at 20°C. G. intraradices depressed shoot growth and mineral uptake at 30°C. G. macrocarpum enhanced shoot P, K, and Zn at all temperatures, and Fe at 25 and 30°C above that which could be accounted for by increased biomass. Sorghum plant growth responses to colonization by VAMF species may need to be evaluated at different temperatures to optimize beneficial effects.  相似文献   

8.
Summary We have isolated a mutant of the yeast Schizosaccharomyces pombe which exhibits sensitivity to UV light when grown at either 30° or 37°C, as compared to the parental wild-type strain. This increased sensitivity is more pronounced when cells are grown at 37°C. The mutant is also sensitive to 18 MeV electrons at the high temperature. Tetrad analysis of spores generated by crossing the mutant and a Rad+ strain revealed that sensitivity to both types of radiation cosegregate 2:2, relative to wild-type resistance, indicating that a single altered chromosomal locus is responsible for the radiation sensitivities observed. In addition, analysis of spores resulting from crosses between the mutant and all other known S. pombe rad mutants indicates that the temperature-dependent sensitivity described in this report is mediated by a mutation in a previously unidentified rad locus.  相似文献   

9.
Cheese whey (CW)-based growth medium efficiently protects Rhizobium loti cells during freezing and desiccation and can maintain their growth in a manner similar to that of traditional mannitol-based medium (YEM). The cheese-whey-based medium (CW) improved viability when used to re-suspend cell pellets kept at –20 °C and –80 °C and resulted in the survival of over 90% of the cells. Moreover, bacterial pellets obtained from cells grown in CW withstand desiccation better than cells grown in YEM. Survival was over 60% after 30 days at 4 °C. No differences were observed in nodulation efficiency between YEM-grown and CW-grown cells. Fast protein liquid chromatography (FPLC) protocols are presented for total protein profile analyses of sweet and acid cheese whey.In memoriam of Sylvio Cortina Vicepresident of Fundación COREPRO  相似文献   

10.
Cabbage plants were grown in soil amended with Clandosan (CLA) prepared from crustacean chitin (0.3% w/w). The plants were maintained in constant temperature tanks set to 15° or 30°C, in soils naturally infested with cyst nematodeHeterodera schachtii, or inoculated with the root-knot nematode,Meloidogyne javanica, respectively. At 30°C, after the first month following inoculation, CLA caused an increase in top fresh weight of plants but no reduction in nematode—induced root galling was recorded. However, when fresh plants were planted, CLA induced a large reduction in gall formation and caused an increase in top fresh weight of nematode-inoculated plants. At 15°C, CLA significantly affected the plants only after 60 days: an increase in top fresh weight and a reduction in the number of eggs per cyst were recorded. Ammonium was not detected in soil after 30 days, at 30°C, whereas at 15°C, CLA-treated soil contained twice as much ammonium as non-treated soil. After 60 days, ammonium was not detected at all. After 30 days nitrate concentrations in soil attained higher values at 30°C than at 15°C, whereas after 60 days high levels were detected only at 15°C. At 30°C, CLA induced an increase in the number of fungi, chitinolytic bacteria, and total amount of bacteria; at 15°C, such an increase was detected only with the chitinolytic microorganisms.Contribution from the Agricultural Research Organization (ARO), Bet Dagan, Israel No. 2196-E, 1987 series.  相似文献   

11.
Plants of Solanum tuberosum L. potato do not cold acclimate when exposed to low temperature such as 5°C, day/night. When ABA (45 M) was added to the culture medium, stem-cultured plantlets of S. tuberosum, cv. Red Pontiac, either grown at 20°C/15°C, day/night, or at 5°C, increased in cold hardiness from –2°C (killing temperature) to –4.5°C. The increase in cold hardiness could be inhibited in both temperature regimes if cycloheximide (70 M) was added to the culture medium at the inception of ABA treatment. Cycloheximide did not inhibit cold hardiness development, however, when it was added to the culture medium 3 days after ABA treatment.When pot-grown plants were foliar sprayed with mefluidide (50 M), ABA content increased from 10 nmol to 30 nmol g–1 dry weight and plants increased in cold hardiness from –2°C to about –3.5°C. The increases in free ABA and cold hardiness occurred only in plants grown at 20°C/15°C; neither ABA nor cold hardiness increased in plants grown at 5°C.The results suggest that an increase in ABA and a subsequent de novo synthesis of proteins are required for the development of cold hardiness in S. tuberosum regardless of temperature regime, and that the inability to synthesize ABA at low temperature, rather than protein synthesis, appears to be the reason why S. tuberosum does not cold acclimate.  相似文献   

12.
The effect of change in ambient temperature on fatty acid unsaturation has been studied in the cyanobacteriumAnabaena variabilis. When cells isothermally grown at 22°C are compared with those grown at 38°C, the relative content of oleic acid decreases and that of linolenic acid increases in all of the lipid classes. After a temperature shift from 38 to 22°C, palmitic acid is rapidly desaturated in monogalactocyldiacylglycerol, but in no other lipids, and oleic acid is slowly desaturated in most lipid classes. When cells ofAnacystis nidulans are exposed to low temperature such as 0°C, they lose physiological activities and finally die. This low-temperature damage is initiated by the phase transition of lipids in the plasma membrane. The phase transition of thylakoid membrane that occurs at intermediate temperature produces loss of activity related to photosynthesis. This is, however, recovered when the cells are rewarmed to growth temperature. A model for the mechanism of the low-temperature damage in the cyanobacterial cells is proposed.  相似文献   

13.
Summary The temperatures at which chlorophyll fluorescence yield is substantially increased and the temperatures at which the quantum yield for CO2 uptake is irreversibly inhibited were measured for three shortgrass prairie species. The experimental taxa include, a cool season species (Agropyron smithii), a warm season species (Bouteloua gracilis), and a species which grows throughout the cool and warm seasons (Carex stenophylla). Agropyron smithii exhibited lower high temperature damage thresholds (43°C in cool grown plants, 46°C in warm grown plants), relative to the other two species. Bouteloua gracilis exhibited the highest tolerance to high temperature, with threshold values being 44–49°C for cool grown plants and 53–55°C for warm grown plants. Carex stenophylla exhibited threshold values which were intermediate to the other two species (43–47°C for cool grown plants, and 51–53°C for warm grown plants). Seasonal patterns in the fluorescence rise temperatures of field grown plants indicated acclimation to increased temperatures in all three species. The results demonstrate a correlation between the high temperature thresholds for damage to the photosynthetic apparatus, and in situ seasonal phenology patterns for the three species.  相似文献   

14.
Effects of temperature on the activity of flucycloxuron on larval stages of Panonychus ulmi (Koch), based on LC50 values, were highly significant (P < 0.001) with temperature coefficients of-1.7 in both the ranges of 15° to 25°C and 20° to 30°C. The slopes of probit regression lines at 15° and 20°C were significantly steeper than those at 25° and 30°C. As a consequence the temperature coefficients based on LC90 values were-4.4 and-2.2, for the 2 temperature ranges. The ovicidal activity of flucycloxuron on P. ulmi was low and was only statistically detectable at 20°C (LC90 of 84 mg a.i./l). In studies with larvae of Aedes aegypti (Linnaeus), Leptinotarsa decemlineata (Say), Plutella xylostella (Linnaeus), Spodeptera exigua (Hübner) and Spodoptera littoralis (Boisduval) probit regression lines were parallel over temperature. The activity of flucycloxuron on these five insect species was not affected by temperature. Based on LC50 values, diflubenzuron showed positive temperature coefficients on P. xylostella of + 2.1 at 15° to 25°C and + 2.5 at 20° to 30°C. For S. littoralis the temperature coefficient was positive (+ 2.4) at 15° to 25°C but negative (-1.9) at the 20° to 30°C range. Temperature coefficients of diflubenzuron were neutral for A. aegypti, L. decemlineata and S. exigua. In the design and analysis of these studies special allowance was made for date effects and variation in natural mortality over temperature.  相似文献   

15.
Two oxidases were found to be present in membranes from the facultative thermophile Bacillus coagulans grown at 55°C, compared to one in cells grown at 37°C. Cytochrome spectra and inhibitors of the respiratory chain identified them as cytochrome oxidases aa 3 and d. Both were present in membranes from 55°C grown cells, but only cytochrome oxidase aa 3 was found in membranes from 37°C grown cells. The presence of cytochrome d in 55°C grown cultures was found to be due to decreased oxygen tension and not to the high growth temperature. This was confirmed by (a) induction of cytochrome d at 37°C under conditions of oxygen limitation and (b) its repression at 55°C under conditions of high aeration and its subsequent induction on lowering the dissolved oxygen concentration in chemostat cultures. Two cytochromes b (max 558 and max 562) were present in both 37°C and 55°C grown cells. Results from the inhibition of substrate oxidation by membranes suggested different pathways of electron transport by the respiratory chain.  相似文献   

16.
Smirnova  G. V.  Zakirova  O. N.  Oktyabr'skii  O. N. 《Microbiology》2001,70(5):512-518
Shifting the temperature from 30 to 45°C in an aerobic Escherichia coliculture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor.The expression was evaluated by measuring -galactosidase activity in E. colistrains that contained fusions of the antioxidant gene promoters with the lacZoperon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type andsodA sodBmutant cells to heat shock was almost the same. In the E. coliculture adapted to growth at 42°C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30°C. The temperature-adapted cells grown aerobically at 42°C showed an increased ability to express the fused katG–lacZgenes.  相似文献   

17.
The partitioning of carbon between reserve polysaccharide and alkaloid secondary products was investigated in batch cultures of transformed roots of Datura stramonium grown in media in which the carbon substrate concentration was held constant and the level of mineral nutrients was varied. The growth and accumulation of starch and hyoscyamine was examined in roots grown at temperatures of 20°C, 25°C or 30°C in media containing 5% sucrose and levels of mineral nutrients varying from 1/4 to twice the standard level of Gamborg's B5 salts. The dry matter content was highest (up to 15% w/w) in roots grown at either 20°C or 25°C in medium of the lowest ionic strenth (1/4 B5 salts) and decreased as the ionic strength was raised (down to 7% w/w with 2 B5 salts). Up to half of this decrease could be accounted for by loss of starch from the roots. At 20°C and 25°C, the starch content of the roots grown in medium of the lowest ionic strength (1/4 B5) was 40 mg g-1 and 22 mg g-1 fresh weight respectively but decreased to less than 1 mg g-1 weight at either temperature when the ionic strength of the medium was raised to 2 B5. At 30°C, starch accumulation was severely inhibited in all media. In contrast, varying either the temperature or the ionic strength of the medium had only a small effect on hyoscyamine accumulation which remained at between 0.4–0.6 mg g-1 fresh weight. Although increases in the level of mineral salts had little effect on the hyoscyamine content of the roots, total yields however, increased due to stimulation of growth. Time course experiments showed that cultures grown at either 20°C or 25°C continued to accumulate both starch and hyoscyamine into late stationary phase.  相似文献   

18.
Summary In a first experiment, cucumber transplants (cucumis sativa L. cv. Toska) were grwon at five root-zone temperatures (RZT) ranging from 12° to 36°C. Maximum shoot growth and total leaf area were obtained at 24° and 30°C (RZT). In a second experiment, cucumber transplants were submitted to five RZT (12, 18, 24, 30 and 36°C) and five night air temperatures (NAT) that were maintained either constant at 9°, 13° and 17°C or splitted (in two halfs) at midnight (17°/12°C, 17°/9°C). Root-zone warming to 24° or 30°C increased cucumber plant growth and leaf development, but did not compensate completely the loss of productivity induced by low NAT. Split-night temperature had greater effects under the lowest NAT (17°/9°C) and at high RZT (24° or 30°C). In a third experiment, soil warming caused large increase in yields when cucumber plants were grown in the spring, but had very little effects in the fall.  相似文献   

19.
The oxidation of reduced horse heart cytochromec by membranes isolated from the cyanobacteriumAnacystis nidulans after growth at different temperatures was studied between 4°C and 41°C in the light and the dark using both spectrophotometric and polarographic techniques. Arrhenius plots of the temperature dependence of cytochromec photooxidation showed a single discontinuity at 25°C, 15°C, and 12°C in membranes derived from cells grown at 40°C, 30°C, and 25°C, respectively. By contrast. Arrhenius plots of the temperature dependence of dark respiratory cytochromec oxidation always displayed two distinct breaks at 25 and 18°C, 15 and 8.5°C, and 12 and 5.5°C in membranes isolated from cells grown at 40°C, 30°C, and 25°C, respectively. The results are discussed in terms of the thermotropic lipid-phase transitions known to take place in the membranes ofA. nidulans. Special reference will be made to possibly distinct localizations of the membrane-bound cytochromec oxidase complexes in respiration and photosynthesis.  相似文献   

20.
In order to investigate the effect of vesicular-arbuscular mycorrhizae on the chilling resistance of Zea mays, seeds of two hybrids (Pioneer 3902 and Pride 5) were grown in soil inoculated with Glomus mosseae. Germination tests at 10° C and 25° C showed that Pride 5 was more resistant to chilling than Pioneer 3902. Plants grown at 25° C for 6 weeks were given a 1-week chilling treatment at 10° C and the responses of mycorrhizal and nonmycorrhizal plants of the two hybrids were compared. At 10° C, the mycorrhizal plants had greater biomass, carbohydrate, and protein content than the nonmycorrhizal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号