首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3T3 fibroblasts and primary chicken hepatocytes were cultured on derivatized polystyrene surfaces to examine the effect of cell-specific ligands on cellular morphology and growth. Surfaces were prepared by derivatizing chloromethylated polystyrene with N-acetylglucosamine (GlcNAc; recognized by the chicken asialoglycoprotein receptor) and adenosine (not recognized by adult hepatocytes). These surfaces were compared with tissue culture polystyrene (TCPS), acid-cleaned glass, and the unmodified chloromethylated polystyrene. The spreading, cytoskeletal structure and growth of the fibroblasts following attachment to these surfaces were examined. The extent of attachment, total protein levels, and DNA contents for surfaces-attached chicken hepatocytes were also measured. Fibroblast spreading was greatest on polymer surfaces derivatized with GlcNAc, whereas cytoskeletal structure and growth rate were independent of surface chemistry. Although chicken hepatocytes attached most efficiently to the GlcNAc derivatized polymer, the total protein and DNA levels of the surface-attached cells were not affected. In anticipation of the application of these polymers for cell culture and hybrid artificial organ design, the GlcNAc-derivatized polystryrene was fabricated into porous microcarriers. Fibroblasts grew avidly on the microcarriers, whereas chicken hepactocytes adhered well to the formed large aggregates arounds the microcarriers.  相似文献   

2.
Endosomal release is an efficiency-limiting step for many nonviral gene delivery vehicles. In this work, nonviral gene delivery vehicles were modified with a membrane-lytic peptide taken from the endodomain of HIV gp41. Peptide was covalently linked to polyethylenimine (PEI) and the peptide-modified polymer was complexed with DNA. The resulting nanoparticles were shown to have similar physicochemical properties as complexes formed with unmodified PEI. The gp41-derived peptide demonstrated significant lytic activity both as free peptide and when conjugated to PEI. Significant increases in transgene expression were achieved in HeLa cells when compared to unmodified polyplexes at low polymer to DNA ratios. Additionally, peptide-modified polyplexes mediated significantly enhanced siRNA delivery compared to unmodified polyplexes. Despite increases in transgene expression and siRNA knockdown, there was no increase in internalization or binding of modified carriers as determined by flow cytometry. The hypothesis that the gp41-derived peptide increases the endosomal escape of vehicles is supported by confocal microscopy imaging of DNA distributions in transfected cells. This work demonstrates the use of a lytic peptide for improved trafficking of nonviral gene delivery vehicles.  相似文献   

3.
Specific targeting of ovarian carcinoma cells using pegylated polyethylenimine (PEG-PEI) conjugated to the antigen binding fragment (Fab') of the OV-TL16 antibody, which is directed to the OA3 surface antigen, was the objective of this study. OA3 is expressed by a majority of human ovarian carcinoma cell lines. To demonstrate the ability of the PEG-PEI-Fab' to efficiently complex DNA, an ethidium bromide exclusion assay was performed. Comparison with PEG-PEI or PEI 25 kDa showed only minor differences in the ability to condense DNA. Since conjugation of Fab' to PEG-PEI might influence complex stability, this issue was addressed by incubating the complexes with increasing amounts of heparin. This assay revealed stability similar to that of unmodified PEG-PEI/DNA or PEI 25 kDa/DNA complexes. Complexes displayed a size of approximately 150 nm with a zeta potential close to neutral. The latter property is of particular interest for potential in vivo use, since a neutral surface charge reduces nonspecific interactions. Binding studies using flow cytometry and fluorescently labeled DNA revealed a more than 6-fold higher degree of binding of PEG-PEI-Fab'/DNA complexes to epitope-expressing cell lines compared to unmodified PEG-PEI/DNA complexes. In OA3-expressing OVCAR-3 cells, luciferase reporter gene expression was elevated up to 80-fold compared to PEG-PEI and was even higher than that of PEI 25 kDa. The advantage of this system is its specificity, which was demonstrated by competition experiments with free Fab' in the cell culture media during transfection experiments and by using OA3-negative cells. In the latter case, only a low level of reporter gene expression could be achieved with PEG-PEI-Fab'.  相似文献   

4.
Polymer carriers like PEI which proved their efficiency in DNA delivery were found to be far less effective for the applications with siRNA. In the current study, we generated a number of nontoxic derivates of branched PEI through modification of amines by ethyl acrylate, acetylation of primary amines, or introduction of negatively charged propionic acid or succinic acid groups to the polymer structure. The resulting products showed high efficiency in siRNA-mediated knockdown of target gene. In particular, succinylation of branched PEI resulted in up to 10-fold lower polymer toxicity in comparison to unmodified PEI. Formulations of siRNA with succinylated PEI were able to induce remarkable knockdown (80% relative to untreated cells) of target luciferase gene at the lowest tested siRNA concentration of 50 nM in Neuro2ALuc cells. The polyplex stability assay revealed that the efficiency of formulations which are stable in physiological saline is independent of the affinity of siRNA to the polymer chain. The improved properties of modified PEI as siRNA carrier are largely a consequence of the lower polymer toxicity. In order to achieve significant knockdown of target gene, the PEI-based polymer has to be applied at higher concentrations, required most probably for sufficient accumulation and proton sponge effects in endosomes. Unmodified PEI is highly toxic at such polymer concentrations. In contrast, the far less toxic modified analogues can be applied in concentrations required for the knockdown of target genes without side effects.  相似文献   

5.
BACKGROUND: Polyethylenimines (PEIs) with high molecular weights are effective nonviral gene delivery vectors. However, the in vivo use of these PEIs can be hampered by their cellular toxicity. In the present study we developed and tested a new PEI polymer synthesized by linking less toxic, low molecular weight (MW) PEIs with a commonly used, biocompatible drug carrier, beta-cyclodextrin (CyD). METHODS AND RESULTS: The terminal CyD hydroxyl groups were activated by 1,1'-carbonyldiimidazole. Each activated CyD then linked two branched PEI molecules with MW of 600 Da to form a CyD-containing polymer with MW of 61 kDa, in which CyD served as a part of the backbone. The PEI-CyD polymer developed was soluble in water and biodegradable. In cell viability assays with sensitive neurons, the polymer performed similarly to low-MW PEIs and displayed much lower cellular cytotoxicity compared to PEI 25 kDa. The gene delivery efficiency of the polymer was comparable to, and at higher polymer/DNA ratios even higher than, that offered by PEI 25 kDa in neural cells. Attractively, intrathecal injection of plasmid DNA complexed by the polymer into the rat spinal cord provided levels of gene expression close to that offered by PEI 25 kDa. CONCLUSIONS: The polymer reported in the current study displayed improved biocompatibility over non-degradable PEI 25 kDa and mediated gene transfection in cultured neurons and in the central nervous system effectively. The new polymer would be worth exploring further as an in vivo delivery system of therapeutic genetic materials for gene therapy of neurological disorders.  相似文献   

6.
Covalently poly(ethylene glycol) (PEG)-ylated polyethylenimine (PEI)/pDNA complexes display prolonged blood circulation profiles compared with PEI/pDNA complexes, but such PEGylated particles may not be suitable for tumor targeting due to low interaction with cell membranes, low internalization, and low gene expression. Noncovalent PEGylation of cationic particles via PEG-avidin/biotin-PEI is an attempt to bridge the gap between the positive attributes of PEG (prolonged particle circulation) and the positive attributes of nontoxic cationic polymers (enhanced cell interactions) for greater gene expression. Our polymer, 2PEG-avidin/biotin-PEI8, forms salt-stable particles ( approximately 100 nm) under physiologic conditions with a minimum of two 2PEG-avidin molecules bound per polymer chain (biotin-PEI8, 8 biotins/PEI). Following 10 days of incubation with 3000-fold excess biotin, 2PEG-avidin completely dissociated from biotin-PEI8, and gene expression was increased 2.1-32-fold in various cell lines when the desirable transfection feature of the cationic polymer was retained. This new PEGylation approach has implications for generally improving the clinical aspect of gene delivery via a two-step therapeutic strategy: (1) intravenous injection of noncovalent PEG-avidin/biotin-polycation nanoparticles for prolonged circulation, followed by (2) temporal release of PEG-avidin from biotin-polycation through either endogenous biotin or intravenous injection of biotin.  相似文献   

7.
We previously reported that gene delivery efficiency of 25-kDa, branched polyethylenimine (PEI) increased upon acetylation of up to 43% of the primary amines with acetic anhydride. In the present work, we investigated the effects of further increasing the degree of acetylation and elucidated the source of the higher gene delivery efficiency. Despite reduced buffering capacity, gene delivery activity continued to increase (up to 58-fold in HEK293) with acetylation of up to 57% of primary amines but decreased at higher degrees of acetylation. Characterization of polymer-DNA interactions showed that acetylated polymers bind less strongly to DNA. Further, a fluorescence resonance energy transfer assay showed that increasing acetylation causes polyplexes to unpackage inside cells to a higher degree than polyplexes formed with unmodified PEI. Overall, the data suggest that the increased gene delivery activity may be attributable to an appropriate balance between polymer buffering capacity and strength of polymer/DNA interactions.  相似文献   

8.
Poly(epsilon-CBZ-L-lysine) can be mixed with biodegradable polymers such as poly(D,L-lactic-co-glycolic acid) or poly(L-lactic acid) and formed into films, foams, or microspheres. Surface amino groups may then be deprotected with acid or lithium/liquid ammonia. The amino groups serve as a method to modify the surface by attachment of other molecules. In the present experiments, we show that these polymer materials, as films or foams, may be surface modified by the attachment of polyethyleneimine (PEI). Plasmid DNA attached to the PEI can transfect cells plated on the surface over several days. Covalent atachment of PEI was required for transfection to be efficient. PEI was also attached to surface-bound collagen on cell culture plates and was shown to mediate transfection.  相似文献   

9.
目的:优化构建交联聚乙烯亚胺(Polyethylenemine,PEI)衍生物PEI-Bu,研究其对非洲绿猴肾成纤维细胞系(COS-7)的转染活性和细胞毒性。方法:以PEI 800Da为骨架,1,4-丁二醇二氯甲酸酯为连接剂制备聚合物PEI-Bu,琼脂糖凝胶电泳考察其复合质粒DNA的能力,MTT法检测PEI-Bu对COS-7的毒性,以荧光素酶质粒作为报告基因,测定PEI-Bu/DNA复合物在COS-7细胞的转染活性。结果:凝胶电泳表明PEI-Bu/DNA在质量比大于1时即具有复合DNA的能力,PEI-Bu的细胞毒性随浓度增大而增大,在同一浓度下PEI-Bu的细胞毒性小于PEI 25kDa,(P<0.05),PEI-Bu/DNA在质量比为5时达到最高转染活性,高于PEI 25kDa(P<0.01),并与Lipofectamine2000相当(P>0.05)。结论:PEI-Bu在COS-7细胞中是一种低细胞毒性、高转染活性的非病毒基因载体(与商业化的PEI 25kDa比较),其在基因治疗领域中具有潜在的应用前景。  相似文献   

10.
Surface grafting of liposomes with the wide variety of ligands including antibodies and other proteins is a promising approach for targeted delivery of therapeutics. In this paper, we describe a simple method of synthesizing a hydrazine-functionalized poly(ethylene glycol)-phosphatidylethanolamine (PEG-PE)-based amphiphilic polymer which can conjugate a variety of ligands via a reversible, pH-cleavable bond. In this method, the targeting ligand is attached to the distal end of the PEG chain, which facilitates its easy access to the targeted site of interaction. The reversible attachment of targeting ligands is useful especially in multifunctional liposomal systems, whereafter successfully performing the function of targeting to the specific site, the bulky ligands, such as proteins or antibodies, are cleaved off in response to an environmental stimulus to expose some other functionalities such as ligands for intracellular penetration or organelle-specific targeting. To investigate the applicability of the protocol, the model ligands monoclonal antinucleosome antibody 2C5 and antimyosin antibody 2G4, and glycoproteins concanavalin A (Con-A) and avidin were conjugated to the synthesized polymer and incorporated into liposomes. In vitro assays including biochemical, enzyme-linked immunosorbent, fluorescence microscopy, and flow cytometry were used to confirm three key characteristics of the modified and/or liposome-attached proteins: successful conjugation of the targeting ligands to the polymer, preservation of specific activity of the ligands after the conjugation and liposome attachment, and the facile pH-sensitive ligand detachment. Monoclonal antibody 2C5 and 2G4, immobilized on the liposome surface, retained their binding affinity to corresponding antigens as confirmed by ELISA. The Con A-bearing liposomes showed significantly higher agglutination in the presence of its substrate mannan compared to plain liposomes (PL) and avidin-functionalized liposomes bound specifically with biotin-agarose. The study on the pH-dependence showed that almost 80% of the hydrazone bond was cleaved after rather brief preincubation of the immunoliposomes at pH 5 for 0.5 to 1 h. Fluorescence microscopy and flow cytometry analysis of cancer cells (HeLa and MCF-7) treated with cancer cell-specific targeting ligand mAb 2C5-bearing liposomes showed enhanced cellular binding. Studies at low pH clearly confirmed the easy cleavability of the targeting ligand from the liposomes resulting in significantly less or virtually no cellular association.  相似文献   

11.
目的:研究以精胺为单体,以乙二醇二氯甲酸酯作为连接剂,以胆固醇氯甲酸酯作为疏水基团连接剂合成的疏水修饰聚阳离子高分子SP-Chol对非洲绿猴肾癌细胞COS-7的转染活性和细胞毒性的影响。方法:以荧光素酶质粒为报告基因,研究SP-Chol与DNA的复合物在COS-7细胞的转染活性,用MTT方法研究SP-Chol对COS-7细胞的毒性。结果:COS-7细胞实验显示,SP-Chol具有低于PEI 25kDa的细胞毒性,同时也具有高效输送DNA的能力。结论:SP-Chol是一种新型的高效、低毒,在基因治疗领域有潜在应用价值的非病毒基因输送载体。  相似文献   

12.
目的:研究以精胺为单体,以乙二醇二氯甲酸酯作为连接剂,以胆固醇氯甲酸酯作为疏水基团连接剂合成的疏水修饰聚阳离子高分子SP-Chol对非洲绿猴肾癌细胞COS-7的转染活性和细胞毒性的影响。方法:以荧光素酶质粒为报告基因,研究SP-Chol与DNA的复合物在COS-7细胞的转染活性,用MTT方法研究SP-Chol对COS-7细胞的毒性。结果:COS-7细胞实验显示,SP-Chol具有低于PEI 25kDa的细胞毒性,同时也具有高效输送DNA的能力。结论:SP-Chol是一种新型的高效、低毒,在基因治疗领域有潜在应用价值的非病毒基因输送载体。  相似文献   

13.
Spatiotemporally restricted gene targeting is needed for analyzing the functions of various molecules in a variety of biological phenomena. We have generated an inducible cerebellar Purkinje cell-specific gene targeting system. This was achieved by establishing a mutant mouse line (D2CPR) from a C57BL/6 mouse ES cell line, which expressed a fusion protein consisting of the Cre recombinase and the progesterone receptor (CrePR). The Purkinje cell-specific expression of CrePR was attained by inserting CrePR into the glutamate receptor delta2 subunit (GluRdelta2) gene, which was expressed specifically in the Purkinje cells. Using the transgenic mice carrying the Cre-mediated reporter gene, we showed that the antiprogesterone RU486 could induce recombinase activity of the CrePR protein specifically in the mature cerebellar Purkinje cells of the D2CPR line. Thus this mutant line will be a useful tool for studying the molecular function of mature Purkinje cells by manipulating gene expression in a temporally restricted manner.  相似文献   

14.
Brain capillary endothelial cells (BCECs) have been considered as one of the primary targets for cerebral gene therapy. However, the cells, well-known for their poor function of endocytosis, are difficult to be transfected by general non-viral vectors. The aim of this study was to enhance the efficiency of transfection and expression in BCECs of DNA/polymer nanoparticles with the modification of membrane-penetrating peptide, Antennapedia peptide (Antp) polyethylenimine (PEI) and polyamidoamine (PAMAM) were chosen to prepare Antp-modified DNA-loaded nanoparticles with a complex coacervation technique. After a 20-min transfection, the efficiency, in terms of transfection and expression, of DNA/PEI NP or DNA/PAMAM NP was enhanced significantly with the modification of Antp. After a 3-h transfection of DNA/Antp/PEI NP, there was no difference in cellular uptake but an enhancement in gene expression, compared to DNA/PEI NP alone. However, both the transfection and expression efficiency of DNA/PAMAM NP were enhanced using Antp. These observations suggest that Antp can increase the membrane-penetrating ability of DNA-loaded nanoparticles, which can be employed as novel non-viral gene vectors.  相似文献   

15.
The objective of the present investigation was to design a targeted polyethylenimine (PEI)-based polyplex by conjugating lactose bearing galactose groups on low molecular weight PEI (LMW PEI) grafted to a high molecular weight PEI (HMW PEI) via a succinic acid linker in order to restore the amine content of the whole conjugate used for ligand conjugation. The PEI conjugate was synthesized and characterized in terms of buffering capacity, particle size, zeta potential, plasmid condensation ability, and protection of DNA against degrading enzymes. Also, the transfection efficiency and cytotoxicity were evaluated in the cell line over-expressing asialoglycoprotein receptors (ASGPRs) and compared with the cells lacking the receptors. The results demonstrated the ability of PEI conjugate in condensation of plasmid DNA and protection against enzyme degradation. The PEI conjugate formed nanoparticles of around 75 nm with higher buffering capacity compared with unmodified PEI. The polyplexes prepared by the modified PEI could increase the level of transgene up to four folds in the cells over-expressing the receptor. The results demonstrated the separation of targeting and delivery domains could be considered as a strategy to restore the amine content of the PEI molecule utilized for targeting ligand conjugation.  相似文献   

16.
A potential barrier to the development of genetically targeted adenovirus (Ad) vectors for cell-specific delivery of gene therapeutics lies in the fact that several types of targeting protein ligands require posttranslational modifications, such as the formation of disulfide bonds, which are not available to Ad capsid proteins due to their nuclear localization during assembly of the virion. To overcome this problem, we developed a new targeting strategy, which combines genetic modifications of the Ad capsid with a protein bridge approach, resulting in a vector-ligand targeting complex. The components of the complex associate by virtue of genetic modifications to both the Ad capsid and the targeting ligand. One component of this mechanism of association, the Fc-binding domain of Staphylococcus aureus protein A, is genetically incorporated into the Ad fiber protein. The ligand is comprised of a targeting component fused with the Fc domain of immunoglobulin, which serves as a docking moiety to bind to these genetically modified fibers during the formation of the Ad-ligand complex. The modular design of the ligand solves the problem of structural and biosynthetic compatibility with the Ad and thus facilitates targeting of the vector to a variety of cellular receptors. Our study shows that targeting ligands incorporating the Fc domain and either an anti-CD40 single-chain antibody or CD40L form stable complexes with protein A-modified Ad vectors, resulting in significant augmentation of gene delivery to CD40-positive target cells. Since this gene transfer is independent of the expression of the native Ad5 receptor by the target cells, this strategy results in the derivation of truly targeted Ad vectors suitable for tissue-specific gene therapy.  相似文献   

17.
Tumor-targeting DNA complexes which can readily be generated by the mixing of stable components and freeze-thawed would be very advantageous for their subsequent application as medical products. Complexes were generated by the mixing of plasmid DNA, linear polyethylenimine (PEI22, 22 kDa) as the main DNA condensing agent, PEG-PEI (poly(ethylene glycol)-conjugated PEI) for surface shielding, and Tf-PEG-PEI (transferrin-PEG-PEI) to provide a ligand for receptor-mediated cell uptake. Within the shielding conjugates, PEG chains of varying size (5, 20, or 40 kDa) were conjugated with either linear PEI22 (22 kDa) or branched PEI25 (25 kDa). The three polymer components were mixed together at various ratios with DNA; particle size, surface charge, in vitro transfection activity, and systemic gene delivery to tumors was investigated. In general, increasing the proportion of shielding conjugate in the complex reduced surface charge, particle size, and in vitro transfection efficiency in transferrin receptor-rich K562 cells. The particle size or surface charge of the complexes containing the PEG-PEI conjugate did not significantly change after freeze-thawing, while complexes without the shielding conjugate aggregated. Complexes containing PEG-PEI conjugate efficiently transfected K562 cells after freeze-thawing. Furthermore the systemic application of freeze-thawed complexes exhibited in vivo tumor targeted expression. For complexes containing the luciferase reporter gene the highest expression was found in tumor tissue of mice. An optimum formulation for in vivo application, PEI22/Tf-PEG-PEI/PEI22-PEG5, containing plasmid DNA encoding for the tumor necrosis factor (TNF-alpha), inhibited tumor growth in three different murine tumor models. These new DNA complexes offer simplicity and convenience, with tumor targeting activity in vivo after freeze-thawing.  相似文献   

18.
The two currently employed approaches restricting gene delivery and/or expression to desired cell types in vivo rely on cell surface targeting or cell-specific promoters. We have developed a third approach based on cell-specific nuclear transport of the delivered plasmid DNA. We have previously shown that plasmid nuclear import in non-dividing cells is sequence-specific and have identified a set of cell-specific DNA nuclear targeting sequences that can be used to limit DNA nuclear import to desired cell types. Specifically we have identified elements of the smooth muscle gamma actin (SMGA) promoter that direct plasmid nuclear import selectively in smooth muscle cells (SMCs) in vitro (Vacik et al, 1999, Gene Therapy 6:1006-1014). In the present study, we demonstrate that the SMC-specific DNA nuclear targeting sequence from the SMGA promoter drives nuclear accumulation of plasmids and subsequent gene expression exclusively in the smooth muscle cell layer of the vessel wall in the intact vasculature of rats using electroporation mediated delivery. These results demonstrate that certain DNA nuclear targeting sequences can be used to restrict DNA nuclear import to specific cell types providing a new, novel means of cell targeting for gene therapy.  相似文献   

19.
The conjugation of bioactive molecules to polymeric nanocarriers has the potential to revolutionize current methods of cancer therapy. These nanocarriers can also reduce the undesirable adverse effects of small molecule therapeutic agents. In the present study, the LC-g-PEI (lauryl chitosan graft polyethyleneimine) polymer was synthesized and evaluated as a potential carrier of therapeutic molecules, such as the p53 gene and doxorubicin. The study was designed to investigate the cytotoxicity, drug uptake and transfection efficiency of LC-g-PEI. This polymer had lower interactions with blood components than the unmodified PEI. LC-g-PEI buffered protons, protected DNA from nuclease attack and induced effective gene transfer in the C6 cell line. LC-g-PEI that had incorporated doxorubicin exhibited an enhanced release of this compound at pH 5. LC-g-PEI demonstrated its efficacy in the enhancement of drug uptake and the promotion of gene expression in the C6 cell line. Therefore, LC-g-PEI shows promise as a drug/gene carrier with potential applications in cancer therapy.  相似文献   

20.
To achieve efficient systemic gene delivery to the lung with minimal toxicity, a vector was developed by chemically conjugating a cationic polymer, polyethylenimine (PEI), with anti-platelet endothelial cell adhesion molecule (PECAM) antibody (Ab). Transfection of mouse lung endothelial cells with a plasmid expression vector with cDNA to luciferase (pCMVL) complexed with anti-PECAM Ab-PEI conjugate was more efficient than that with PEI-pCMVL complexes. Furthermore, the anti-PECAM Ab-PEI conjugate mediated efficient transfection at lower charge plus-to-minus ratios. Conjugation of PEI with a control IgG (hamster IgG) did not enhance transfection of mouse lung endothelial cells, suggesting that the cellular uptake of anti-PECAM Ab-PEI-DNA complexes and subsequent gene expression were governed by a receptor-mediated process rather than by a nonspecific charge interaction. Conjugation of PEI with anti-PECAM Ab also led to significant improvement in lung gene transfer to intact mice after intravenous administration. The increase in lung transfection was associated with a decrease compared with PEI-pCMVL with respect to circulating proinflammatory cytokine (tumor necrosis factor-alpha) levels. These results indicate that targeted gene delivery to the lung endothelium is an effective strategy to enhance gene delivery to the pulmonary circulation while simultaneously reducing toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号