首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Zeng H Q  Liu Q J  Feng Z W  Wang X K  Ma Z Q 《农业工程》2008,28(11):5314-5321
In this study, the BIOME-BGC model, a biogeochemical model, was used and validated to estimate GPP (Gross Primary Productivity) and NPP (Net Primary Productivity) of Pinus elliottii forest in red soil hilly region and their responses to inter-annual climate variability during the period of 1993–2004 and climate change scenarios in the future. Results showed that the average total GPP and NPP were 1941 g C m?2a?1 and 695 g C m?2a?1, and GPP and NPP showed an increasing trend during the study period. The precipitation was the key factor controlling the GPP and NPP variation. Scenario analysis showed that doubled CO2 concentration would not benefit for GPP and NPP with less than 1.5% decrease. When CO2 concentration fixed, GPP responded positively to precipitation change only, and temperature increase by 1.5°C with precipitation increase, while NPP responded positively to precipitation change only. When CO2 concentration was doubled and climate was changed, GPP and NPP responded positively to precipitation change, and GPP also responded positively to temperature increase by 1.5°C with precipitation change.  相似文献   

2.
Aims This study aims to evaluate the impacts of future climate change on vegetation and soil carbon accumulation rate in China's forests. Methods The vegetation and soil carbon storage were predicted by the atmosphere-vegetation interaction model (AVIM2) based on B2 climate change scenario during the period of 1981 2040. This study focused on mature forests in China and the forested area maintained constant over the study period. The carbon accumulation rate in year t is defined as the carbon storage of year t minus that of year t 1. Important findings Under B2 climate change scenario, mean air temperature in China's forested area was projected to rise from 7.8 °C in 1981 to 9.0 °C in 2040. The total vegetation carbon storage was then estimated to increase from 8.56 Pg C in 1981 to 9.79 Pg C in 2040, meanwhile total vegetation carbon accumulation rate was estimated to fluctuate between 0.054 0.076 Pg C•a1, with the average of 0.022 Pg C•a1. The total soil carbon storage was estimated to increase from 30.2 Pg C in 1981 to 30.72 Pg C in 2040, and total soil carbon accumulation rate was estimated to vary in the range of 0.035 0.072 Pg C•a1, with the mean of 0.010 Pg C•a1. The response of vegetation and soil carbon accumulation rate to climate change had significant spatial difference in China although the two time series did not show significant trend over the study period. Our results also showed warming was not in favor of forest carbon accumulation, so in the northeastern and southeastern forested area, especially in the Changbai Mountain, with highest temperature increase in the future, the vegetation and soil carbon accumulation rate were estimated to decrease greatly. However, in the southern of southwestern forested area and other forested area, with relatively less temperature increase, the vegetation and soil carbon accumulation rate was estimated to increase in the future.  相似文献   

3.
Carbon balance along the Northeast China Transect (NECT-IGBP)   总被引:6,自引:0,他引:6  
The Northeast China Transect (NECT) along a precipitation gradient was used to cal-culate the carbon balance of different vegetation types, land-use practices and temporal scales. NECT consists of mixed coniferous-broadleaved forest ecosystems, meadow steppe ecosystemsand typical steppe ecosystems. Analyses of the C budget were carried out with field measurement based on dark enclosed chamber techniques and alkali absorption methods, and the application of the CENTURY model. Results indicated that: (1) soil CO_2 flux had a strong diurnal and seasonal variation influenced by grassland type and land-use practices. However, the seasonal variation on soil CO_2 fluxes did not show obvious changes between non-grazing and grazing Leymus chinensis dominated grasslands. (2) Hourly soil CO_2 fluxes mainly depended on temperature, while dailyCO_2 fluxes were affected both by temperature and moisture. (3) NPP of the three typical ecosys-tems showed linear relationships with inter-annual precipitation, but total soil carbon of those eco-systems did not. NPP and total soil carbon values decreased westward with decreasing precipita-tion. (4) Model simulation of NPP and total soil carbon showed that mean annual precipitation was the major limiting factor for ecosystem productivity along NECT. (5) Mean annual carbon budget is the largest for the mixed coniferous- broadleaved forest ecosystem (503.2 gC m~(-2)a~(-1)), followed bythe meadow steppe ecosystem (227.1 gC m~(-2)a~(-1)), and the lowest being the typical steppe eco-system (175.8 gC m~(-2)a~(-1)). This study shows that concurrent field measurements of terrestrial ecosystems including the soil and plant systems with surface layer measurements along the wa-ter-driven IGBP-NECT are valuable in understanding the mechanisms driving the carbon cycle in different vegetation types under different land-use practices. Future transect research should be emphasized.  相似文献   

4.
Land use change and land-cover impacts ecosystem services and functions. In this paper according to the study area’s land use characteristic and ecosystem type, the Land use category of the study area was divided into seven categories, including Forest, Grassland, Farmland, Water, Wetlands, Urban land and Barren land. The dynamic information of the forest Land use change during 10 years was calculated by the map algebra in ArcGIS 9.2. Both in 1992 and in 2002, Forest and Grassland were two largest Land use category in the study area. Forest took up 44.7% and 39.4% of the total area, and Grassland was 50.13% and 50.72% of the total area in 1992 and 2002. Finally, we valued change in ecosystem services delivered by each land use category using coefficients published by Costanza et al. [5]. Ecosystem services value of study area, the total ecosystem services value of 10.6 million hectares of this study area decreased by 11.74%. From the coefficient of sensitivity (CS) was less than unity in all case, it indicated that the total ecosystem services values was relatively inelastic and the results suggest that we have to pay attention more on land use change and finally, policy for driving forces of land use change were developed.  相似文献   

5.
Land use change and land-cover impacts ecosystem services and functions. In this paper according to the study area’s land use characteristic and ecosystem type, the Land use category of the study area was divided into seven categories, including Forest, Grassland, Farmland, Water, Wetlands, Urban land and Barren land. The dynamic information of the forest Land use change during 10 years was calculated by the map algebra in ArcGIS 9.2. Both in 1992 and in 2002, Forest and Grassland were two largest Land use category in the study area. Forest took up 44.7% and 39.4% of the total area, and Grassland was 50.13% and 50.72% of the total area in 1992 and 2002. Finally, we valued change in ecosystem services delivered by each land use category using coefficients published by Costanza et al. [5]. Ecosystem services value of study area, the total ecosystem services value of 10.6 million hectares of this study area decreased by 11.74%. From the coefficient of sensitivity (CS) was less than unity in all case, it indicated that the total ecosystem services values was relatively inelastic and the results suggest that we have to pay attention more on land use change and finally, policy for driving forces of land use change were developed.  相似文献   

6.
The characteristic of change in value of Tarim River ecosystem service function and its causes are discussed by combining the remote-sensing images with social statistical data related to the change in land utilization of Tarim River Main stream area during 1973–2005 and applying correlation analysis, regressional analysis and principal component analysis methods. The results show a right ascension state in the value of Tarim River ecosystem service function over the past 30 years. Of which, the Cropland ecosystem service function is of the largest increment in the economic value, which is far in excess of other ecosystem systems; the capacity of forest, grassland and wetland in service supply and value attribution show a downward tendency relatively; the area of Cropland and unused land ecosystems increase while that of forest, grassland and wetland ecosystems decrease, which indicates that the integral capacity and balance of the ecosystem in the region investigated has been affected severely and the ecosystem deteriorated; the economic activity of human is the key factor to regulate the change in economic value of Tarim River ecosystem service function and its trend in development.  相似文献   

7.
The characteristic of change in value of Tarim River ecosystem service function and its causes are discussed by combining the remote-sensing images with social statistical data related to the change in land utilization of Tarim River Main stream area during 1973–2005 and applying correlation analysis, regressional analysis and principal component analysis methods. The results show a right ascension state in the value of Tarim River ecosystem service function over the past 30 years. Of which, the Cropland ecosystem service function is of the largest increment in the economic value, which is far in excess of other ecosystem systems; the capacity of forest, grassland and wetland in service supply and value attribution show a downward tendency relatively; the area of Cropland and unused land ecosystems increase while that of forest, grassland and wetland ecosystems decrease, which indicates that the integral capacity and balance of the ecosystem in the region investigated has been affected severely and the ecosystem deteriorated; the economic activity of human is the key factor to regulate the change in economic value of Tarim River ecosystem service function and its trend in development.  相似文献   

8.
As one of the most important crops in China, rice accounts for 18% of the country’s total cultivated area. Increasing atmospheric CO2 concentration and associated climate change may greatly affect the rice productivity. Therefore, understanding the impacts of climate change on rice production is of great significance. This paper aims to examine the potential impacts of future climate change on the rice yield in the middle and lower reaches of the Yangtze River, which is one of the most important food production regions in China. Climate data generated by the regional climate Model PRECIS for the baseline (1961–1990) and future (2021–2050) period under IPCC SRES B2 scenario were employed as the input of the rice crop model ORYZA2000. Four experimental schemes were carried out to evaluate the effects of future climate warming, CO2 fertilization and water managements (i.e., irrigation and rain-fed) on rice production. The results indicated that the average rice growth duration would be shortened by 4 days and the average rice yield would be declined by more than 14% as mean temperature raised by 1.5 °C during the rice growing season in 2021–2050 period under B2 scenario. This negative effect of climate warming was more obvious on the middle and late rice than early rice, since both of them experience higher mean temperature and more extreme high temperature events in the growth period from July to September. The significance effect of the enhanced CO2 fertilization to rice yield was found under elevated CO2 concentrations in 2021–2050 period under B2 scenario, which would increase rice yield by more than 10%, but it was still not enough to offset the negative effect of increasing temperature. As an important limiting factor to rice yield, precipitation contributed less to the variation of rice yield than either increased temperature or CO2 fertilization, while the spatial distribution of rice yield depended on the temporal and spatial patterns of precipitation and temperature. Compared to the rain-fed rice, the irrigated rice generally had higher rice yield over the study area, since the irrigated rice was less affected by climate change. Irrigation could increase the rice yield by more than 50% over the region north of the Yangtze River, with less contribution to the south, since irrigation can relieve the water stress for rice growing in the north region of the study area. The results above indicated that future climate change would significantly affect the rice production in the middle and lower reaches of the Yangtze River. Therefore, the adverse effect of future climate change on rice production will be reduced by taking adaptation measures to avoid disadvantages. However, there is uncertainty in the rice production response prediction due to the rice acclimation to climate change and bias in the simulation of rice yield with uncertainty of parameters accompanied with the uncertainty of future climate change scenario.  相似文献   

9.
Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation.  相似文献   

10.
Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation.  相似文献   

11.
葫芦科植物包括多种瓜类蔬菜,对其进行离体培养研究具有重要的理论和实践意义。综述了国内在葫芦科植物器官培养、体细胞胚胎发生、花药培养、原生质体培养和体细胞杂交及离体遗传转化等方面取得的研究进展,并对葫芦科植物离体培养、遗传转化与育种的前景作了展望。  相似文献   

12.
我国葫芦科植物离体培养研究进展   总被引:5,自引:0,他引:5  
葫芦科植物包括多种瓜类蔬菜,对其进行离体培养研究具有重要的理论和实践意义.综述了国内在葫芦科植物器官培养、体细胞胚胎发生、花药培养、原生质体培养和体细胞杂交及离体遗传转化等方面取得的研究进展,并对葫芦科植物离体培养、遗传转化与育种的前景作了展望.  相似文献   

13.
目的系统评价国内双歧杆菌制剂临床预防小儿继发性腹泻的效果。方法按照系统评价的要求检索CBMd isc、VIP、CNK I以及万方数据库等,获得18篇符合纳入标准的文献,共计患儿4050例,对其进行M eta分析,并评价M eta分析结果的稳定性和发表偏倚。结果异质性检验χ^2=34.60,P=0.007〈0.05,采用随机效应模型进行M eta分析,合并RR=0.41,95%C I为0.35~0.49,总体效应检验,Z=10.39,P〈0.00001,差异具有非常显著性,固定效应模型RR值和95%C I与随机效应模型完全一致,剔除小样本报道后的合并RR=0.42,95%C I为0.35~0.50,与剔除前的结果基本一致,且本研究的发表偏倚得到了很好地控制。结论从现有的临床证据来看,双歧杆菌制剂能降低小儿继发性腹泻的发生率,对预防小儿继发性腹泻起到了满意的效果。  相似文献   

14.
目的:以心率(HR)、心指数(CI)、体循环阻力(SVR)作为效应指标,明确右美托咪啶(Dex)用于SICU 镇静时年龄和血流动 力学效应的关系。方法:选择2014 年3 月~7 月间在我院SICU 接受普胸或者普外科手术后需要短期镇静患者38 例,各年龄段分 布相对均匀。在病人术后Ramsay评分≤ 3 分时给予右旋美托咪啶6.0 ug/kg/h,连续静脉输注10 min 后停药,应用脉搏指示连续 心输出量监测技术(PICCO)记录用药前及用药后3 min、5 min、8 min、10 min、15 min、20 min、30 min、45 min、60 min、90 min、120 min 的11 个时间点的HR、CI 和SVR。结果:HR、CI 和SVR 的EMAX 随着年龄的增加而增大,可以通过数学模型表示:E= (P<0.05)。结论:右美托咪啶用于SICU 镇静时,患者HR、CI和SVR的EMAX 呈 年龄依赖性变化。  相似文献   

15.
我国蝴蝶产业发展中亟待解决的几个问题   总被引:1,自引:0,他引:1  
本文简略介绍了我国目前蝴蝶产业的背景情况和发展现状,着重阐述了该产业发展中亟待解决的目标与思路、政策与法律、科研与技术、人才与培养等一系列问题,并针地性提出了相应解决意见。  相似文献   

16.
We have established xeroderma pigmentosum group A (XPA) gene-knockout mice with nucleotide excision repair (NER) deficiency, which rapidly developed skin tumors when exposed to a low dose of chronic UV like XP-A patients, confirming that the NER process plays an important role in preventing UVB-induced skin cancer. To examine the in vivo mutation in the UVB-irradiated epidermis, we established XPA (−/−), (+/−) and (+/+) mice carrying the Escherichia coli rpsL transgene with which the mutation frequencies and spectra in the UVB-irradiated epidermal tissue can be examined conveniently. The XPA (−/−) mice showed a higher frequency of UVB-induced mutation in the rpsL transgene with a low dose (150 J/m2) of UVB-irradiation than the XPA (+/−) and (+/+) mice, while, at a high dose (900 J/m2) they showed almost the same frequency of mutation as the XPA (+/−) and (+/+) mice, probably because of cell death in the epidermis of the XPA (−/−) mice. However, CC→TT tandem transition, a hallmark of UV-induced mutation, was detected at higher frequency in the XPA (−/−) mice than the XPA (+/−) and (+/+) mice at both doses of UVB. This rpsL/XPA mouse system will be useful for further analyzing the role of NER in the mutagenesis and carcinogenesis induced by various carcinogens.  相似文献   

17.
18.
细胞分裂素对植物衰老的延缓作用   总被引:5,自引:0,他引:5  
细胞分裂素是一类重要的植物激素,它可在一定程度上延缓植物的衰老。主要从3个方面综述了细胞分裂素与植物衰老之间的关系,即:(1)植物衰老过程中内源细胞分裂素含量变化;(2)外源细胞分裂素的影响;(3)转入与细胞分裂素的合成、降解相关的基因对植物衰老产生的影响。此外,还从细胞分裂素与糖、与脂质氧化反应以及与其它植物激素的关系方面探讨了细胞分裂素在延缓植物衰老中的作用机理。  相似文献   

19.
Application of in vitro techniques in mutation breeding of chrysanthemum   总被引:9,自引:0,他引:9  
Rooted cuttings of Chrysanthemum morifolium cv. Maghi, a small flowered, late blooming cultivar, were treated with different doses of gamma rays. Somatic mutations in flower colour (light mauve, white, light yellow and dark yellow) and chlorophyll variegation in leaves were detected as chimeras in treated populations. Attempts were made to standardize a microtechnique for plant regeneration from mutated tissues of stem node, stem internode, shoot tip and ray floret. All these explants were cultured on Murashige and Skoog's medium with 3% sucrose, 0.8% agar and different concentrations and combinations of growth regulators. Plant regeneration was successful from all of the mutated tissues. Plants with chlorophyll variegation in leaves and two new flower colours (light mauve and white) were isolated in pure form with 64% and 100% efficiency of mutant recovery, respectively. Attempts are being made to use this technique to establish new varieties from chimeric tissues to meet the increasing demand of the floriculture trade.  相似文献   

20.
It was shown that the duration of stay of macrophages in the peritoneal cavity of mice and method of their isolation did not affect markedly their capacity for resumption of DNA synthesis in heterokaryons. This means that mouse macrophage undergo such changes during differentiation that reactivation of DNA synthesis in their nuclei is only possible after interaction of telomeres with telomerase, since it was already shown that telomerase was involved in reactivation of DNA synthesis in the macrophage nuclei. The results of experiments did not reveal differences in the length of telomeres in mouse macrophages and other somatic cells. This could depend on the significant length of mouse telomeres and, as a result, their shortening, sufficient for the inhibition of proliferation, is beyond the limits of sensitivity of the current methods. It is also possible that changes in DNA properties in the macrophages occurring during their differentiation depend on changes in the conformation of the telomere complex in these cells. Testing of this suggestion is relevant with respect to recent data that cell hybridization, specifically in the form of heterokaryons, may be essential in realization of the therapeutic effect caused by the introduction of cells during cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号