首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
 Mature ovules of Dianthus (Caryophyllaceae) were histologically observed by clearing and serial sectioning to characterize the cells of the embryo sac. The results show that the mature embryo sac was located deep inside the hemitropous ovule due to thick nucellar tissue at the micropylar region. For the isolation of the embryo sacs, ovules were collected from ovaries of flowers 1 day after anthesis, and treated with an enzyme solution for digesting cell walls on a gyratory shaker. After 12 h of enzyme treatment, these ovules were dissected using a glass needle under an inverted microscope to release the embryo sacs. The embryo sacs, characterized by their specific size, were successfully released by these successive treatments. The viability of the embryo sacs was more than 80% as assessed with fluorescein diacetate staining. Fluorescent staining with 4,6-diamidino-2-phenylindole revealed the nuclei of the egg apparatus in the isolated embryo sacs. The procedure for isolating embryo sacs established in this study will offer a new approach to further in vitro studies on fertilization in Dianthus. Received: 20 January 1999 / Revision received: 12 July 1999 / Accepted: 17 August 1999  相似文献   

3.
Fertilization and variation of protein and starch grains in Pulsatilla chinensis (Bung) Regel have been studied at light microscopic level with histochemical test. Based upon the observations, the main conclusions are summarized as follows: The mature pollen grains are two-celled in which the generative cell shows the stronger protein staining than the vegetative cell. And vegetative cells are full of starch garins. When the pollen tube enters into the embryo sac, one synergid is destroyed, or in a few cases synergids are intact. Occasionally two synergids are disorganized as pollen tube penetrates. However, most of the remaining syuergids break down during fertilization, only in a few cases it remains till early stage of embryo development. The contents discharged by the pollen tube consist of two sperms, which stain intensely blue with protein dyes, a great amount of protein and starch grains. Mature female gametophyte (embryo sac) consists of an egg apparatus, central cell, which has a huge secondary nucleus, and antipodal apparatus which retain in course of fertilization. A few of embryo sac contain two sets of egg apparatus, a central cell with two huge secondary nuclei and two sets of antipodal apparatus. In some nucleoli of the central cell the comb-like structure pattern may be detected clearly. There are 1–2 small nucleoli in some egg cells and central cells. All the cells in embryo sac show protein positive reaction. According to the different shades of the color in cells, its may be arranged in the following order: antipodal cells, synergids, central cell and egg cell. Only a few small starch grains are present near nuclei of central cell and egg cell before fertilization, but no starch grains remain in most of the central cell, the synergids and antipodal cells. The fertilization is of the premitotic type. The fusion of the sexual nuclei progresses in the following order: 1, sperms approach and lie on the egg nucleus and secondary nucleus; 2, sperm chromatin sinks themselves into female nucleus, and male nucleolus emerges with the sperm chromosome; and 3, male nucleoli fuse with the nucleoli of egg nucleus and central cell nucleus, and finally forming the zygote and the primary endosperm cells respectively. Nevertheless, as it is well known, the fertilization completes in central cell obviously earlier than that in egg cell. Though it has been explained in cereals and cotton, in Pulsatilla chinensis the main reason is that nucleolar fusion of the male and female nucleoli in egg nucleus is slower than that in secondary nucleus. And the dormancy of the primary endosperm nucleus is shorter than that of the zygote. In the process of fertilization, histochemical changes are considerably obvious in the following three parts: 1, from the begining of fusion of male and female nuclei to form zygote and primary endosperm cell, Protein staining around female nucleus appears to increase gradually; 2, no starch grains are detected in embryo sac. Though only starch grains are carried in by pollen tube, they are completely exhausted during this period; and 3, near completion of fertilization starch grains appear again in zygote, however, not yet in primary endosperm nucleus till its dividing for the first time. The present study reveals that antipodal cells and synergids seem to play a significant role in nutrition of the embryo sac during the fertilization.  相似文献   

4.
Torenia fournieri Lind. has a naked embryo sac that protrudes from the micropyle. The precise time course of the entire process of double fertilization and the kinetics of fertilization events were determined in this species by the following methods: (i) without squashing, pollen tubes on the torn stylar canal were observed by fluorescence microscopy after staining with both 4′,6-diamidino-2-phenylindole (DAPI) and aniline blue; and (ii) large numbers of living embryo sacs were observed directly by differential interference microscopy before and after fertilization. The pollen began to germinate 5 min after pollination and extruded pollen tubes which elongated at a constant rate of 2.3 mm · h−1. At 4.0 h after pollination, the mitotic index of the generative cell within the pollen tube reached 88% and the two sperm cells were formed. Pollen tubes began to arrive at ovules 8.9 h after pollination and directly entered one of two synergids in the naked embryo sac. The time required for transport of sperm cells in the degenerated synergid was estimated statistically to be 1.9 ± 1.8 min for transport of the first cell and 7.4 ± 1.6 min for the second. In the nucleus of the fertilized egg cell, the male nucleolus began to emerge 10 h after pollination and the female nucleolus often decreased in size. The two nucleoli fused together prior to elongation of the zygote, which began 28 h after pollination. In the central cell, the secondary nucleus migrated to a region adjacent to the egg apparatus after pollination but prior to the arrival of the pollen tube. The primary endosperm nucleus rapidly returned to the inner region after fertilization. Prior to embryogenesis, the first division of the primary endosperm began about 15 h after pollination, at a defined site, to form the chalazal haustorium. Received: 24 October 1996 / Accepted: 13 March 1997  相似文献   

5.
蓝猪耳卵细胞和合子的分离   总被引:9,自引:0,他引:9  
蓝猪耳(Torenia fournieri)胚囊部分裸露出胚珠,在光学显微镜下能清楚观察到卵细胞和助细胞的形态结构.用解剖和酶解-解剖两种方法都能分离出生活卵细胞.用前种方法机械分离出的卵细胞数量较少(5%),但避免了酶对配子识别研究的干扰.在后种方法中加入0.1%纤维素酶和0.1%果胶酶既能使分离更加容易操作,又对卵细胞没有致命伤害,能在短时间内分离出较多的卵细胞(18%).用酶解-解剖方法也可分离出授粉14 h后的合子细胞.  相似文献   

6.
水稻胚囊超微结构的研究   总被引:8,自引:2,他引:8  
水稻(Oryza sativa L.)胚囊成熟时,卵细胞的合点端无细胞壁,核居细胞中部,细胞器集中在核周围,液泡分散于细胞周边区域。助细胞珠孔端有丝状器,合点端无壁,核位于细胞中部贴壁处,细胞器主要分布在珠孔端,液泡主要分布在合点端。开花前不久,一个助细胞退化。中央细胞为大液泡所占,两个极核靠近卵器而部分融合,细胞器集中在极核周围和靠近卵器处,与珠心相接的胚囊壁上有发达的内突。反足细胞多个形成群体,其增殖主要依靠无丝分裂与壁的自由生长,反足细胞含丰富活跃的细胞器,与珠心相接的壁上有发达的内突。开花后6小时双受精已完成,合子和两个助细胞合点端均形成完整壁。合子中开始形成多聚核糖体、液泡减小。退化助细胞含花粉管释放的物质,其合点端迴抱合子。极核已分裂成数个胚乳游离核,中央细胞中细胞器呈活化状态。反足细胞仍在继续增殖。讨论了卵细胞的极性、助细胞的退化、卵器与中央细胞间界壁的变化、反足细胞的分裂特点等问题。  相似文献   

7.
8.
Guerin J  Rossel JB  Robert S  Tsuchiya T  Koltunow A 《Planta》2000,210(6):914-920
Hieracium is a member of the Asteraceae family, and contains sexual species in addition to apomictic species that reproduce by apospory and produce seed without fertilization. A homologue of the floral organ-identity gene DEFICIENS (DEF) was isolated from an apomictic line of Hieracium piloselloides (Vill.) following differential display between mature ovules and those initiating autonomous embryogenesis. The gene termed HPDEF has 93% amino acid identity with GDEF2, a DEF homologue isolated from Gerbera hybrida (D. Yu et al., 1999, Plant J. 17: 51–62), another member of the Asteraceae. In-situ analysis showed that early in floral development HPDEF is expressed in stamen and petal primordia, indicating expected B-function activity, according to the ABC model of floral organ identity (J. L. Bowman et al., 1991, Development 112: 1–20; E. S. Coen and E. M. Meyerowitz, 1991, Nature 353: 31–37). However, HPDEF expression was also observed in ovule primordia and expression continued in developing ovules until anthesis, indicating that this gene may have a role in ovule development. Expression of HPDEF was not detected in megaspore mother cells, or in sexual or aposporous embryo sacs. In sexual Hieracium, HPDEF was uniformly expressed throughout the ovule integument until anthesis. In most ovules of the apomict, however, HPDEF expression was transiently down-regulated in a specific zone in the chalazal region where cells initiating aposporous embryo sac formation differentiate. Uniform low-level HPDEF expression was subsequently observed prior to anthesis in ovules from sexual and apomictic plants. HPDEF may be down-regulated as a consequence of apomictic initiation and/or its down-regulation may facilitate progression of apomictic events. Received: 15 September 1999 / Accepted: 12 October 1999  相似文献   

9.
 The ultrastructure of the egg apparatus of the sexual (aestivum)-Salmon line (aS) and the isogenic but alloplasmic (kotschyi)-Salmon line (kS) of the Salmon system of wheat was studied by transmission electron microscopy 3 days before and during anthesis. Additionally, the zygotic stage of aS, 17 h after pollination, was included. Metabolic activity of egg cells from the sexual line aS was low 3 days before anthesis and increased dramatically after pollination and fertilization. This timing of increased activity was evident because of changes occurring in the egg cell nucleus and nucleolus, polysomes, endoplasmic reticulum and Golgi apparatus, and the completion of the cell wall around the zygote. In contrast to the sexual line, the egg cell of the parthenogenetic line showed high activity 3 days before anthesis. The metabolic and ultrastructural characters observed in the nucleus and cytoplasm of the kS line 3 days before and during anthesis corresponded with those of the isogenic sexual line aS during anthesis and 17 h after pollination, respectively. High metabolic activity observed in the persistent synergid of kS may be connected with the occurrence of additional embryos in seeds (twins) of this line. Received: 25 November 1997 / Revision accepted: 16 April 1998  相似文献   

10.
Summary Actin organization was observed inm-maleimidobenzoic acid N-hydroxysuccinimide ester(MBS)-treated maize embryo sacs by confocal laser scanning microscopy. The results revealed that dynamic changes of actin occur not only in the degenerating synergid, but also in the egg during fertilization. The actin filaments distribute randomly in the chalazal part of the synergid before fertilization; they later become organized into numerous aggregates in the chalazal end after pollination. The accumulation of actin at this region is intensified after the pollen tube discharges its contents. Concurrently, actin patches have also been found in the cytoplasm of the egg cell and later they accumulate in the cortical region. To compare with MBS-treated maize embryo sacs, we have performed phalloidin microinjection to label the actin cytoskeleton in living embryo sacs ofTorenia fournieri. The results have extended the previous observations on the three-dimensional organization of the actin arrays in the cells of the female germ unit and confirm the occurrence of the actin coronas in the embryo sac during fertilization. We have found that there is an actin cap occurring near the filiform apparatus after anthesis. In addition, phalloidin microinjection into the Torenia embryo sac has proved the presence of intercellular actin between the cells of the female germ unit and thus confirms the occurrence of the actin coronas in the embryo sac during fertilization. Moreover, actin dynamic changes also take place in the egg and the central cell, accomplished with the interaction between the male and female gametes. The actin filaments initially organize into a distinct actin network in the cortex of the central cell after anthesis; they become fragmented in the micropylar end of the cell after pollination. Similar to maize, actin patches have also been observed in the egg cortex after pollination. This is the first report of actin dynamics in the living embryo sac. The results suggest that the actin cytoskeleton may play an essential role in the reception of the pollen tube, migration of the male gametes, and even gametic fusion.  相似文献   

11.
In angiosperms, a zygote generally divides into an asymmetric two-celled embryo consisting of an apical and a basal cell. This unequal division of the zygote is a putative first step for formation of the apical–basal axis of plants and is a fundamental feature of early embryogenesis and morphogenesis in angiosperms. Because fertilization and subsequent embryogenesis occur in embryo sacs, which are deeply embedded in ovular tissue, in vitro fertilization of isolated gametes is a powerful system to dissect mechanisms of fertilization and post-fertilization events. Rice is an emerging molecular and experimental model plant, however, profile of the first zygotic division within embryo sac and thus origin of apical–basal embryo polarity has not been closely investigated. Therefore, in the present study, the division pattern of rice zygote in planta was first determined accurately by observations employing serial sections of the egg apparatus, zygotes and two-celled embryos in the embryo sac. The rice zygote divides asymmetrically into a two-celled embryo consisting of a statistically significantly smaller apical cell with dense cytoplasm and a larger vacuolated basal cell. Moreover, detailed observations of division profiles of zygotes prepared by in vitro fertilization indicate that the zygote also divides into an asymmetric two-celled embryo as in planta. Such observations suggest that in vitro-produced rice zygotes and two-celled embryos may be useful as experimental models for further investigations into the mechanism and control of asymmetric division of plant zygotes.  相似文献   

12.
Potassium antimonate was used to localize Ca2+ in tobacco ovules from 0 to 7 d after anthesis in pollinated and emasculated flowers. Antimonate binds “loosely bound” Ca2+ into calcium antimonate; less-soluble forms are unavailable and free calcium usually escapes. Ovules are immature at anthesis. Abundant calcium precipitates in nucellar cells surrounding the micropylar canal. A difference between calcium in the two synergids emerges at 1 d, which is enhanced in pollinated flowers. The future receptive synergid accumulates more precipitates in the nucleus, cytoplasm and cell walls. After fertilization, micropyle precipitates diminish, and the ovule is unreceptive to further tube entry. In emasculated flowers 6 d after anthesis, ovular precipitates essentially disappear; however, flowers pollinated at 4–5 d and collected 2 d later largely restore their prior concentration of precipitates. Ovular precipitates occur initially in the nucellus, then the embryo sac, and finally the synergid and micropylar filiform apparatus. Possibility, calcium is released from the embryo sac, although no structural evidence of exudate formation was observed. Calcium precipitates in the ovule correlate with the ability of the ovule to be fertilized, suggesting that successful pollen tube entry and later development may require calcium of the class precipitated by antimonate. Received: 14 August 1996 / Accepted: 9 October 1996  相似文献   

13.
Huang BQ  Fu Y  Zee SY  Hepler PK 《Protoplasma》1999,209(1-2):105-119
Actin organization was observed in m-maleimidobenzoic acid N-hydroxysuccinimide ester(MBS)-treated maize embryo sacs by confocal laser scanning microscopy. The results revealed that dynamic changes of actin occur not only in the degenerating synergid, but also in the egg during fertilization. The actin filaments distribute randomly in the chalazal part of the synergid before fertilization; they later become organized into numerous aggregates in the chalazal end after pollination. The accumulation of actin at this region is intensified after the pollen tube discharges its contents. Concurrently, actin patches have also been found in the cytoplasm of the egg cell and later they accumulate in the cortical region. To compare with MBS-treated maize embryo sacs, we have performed phalloidin microinjection to label the actin cytoskeleton in living embryo sacs of Torenia fournieri. The results have extended the previous observations on the three-dimensional organization of the actin arrays in the cells of the female germ unit and confirm the occurrence of the actin coronas in the embryo sac during fertilization. We have found that there is an actin cap occurring near the filiform apparatus after anthesis. In addition, phalloidin microinjection into the Torenia embryo sac has proved the presence of intercellular actin between the cells of the female germ unit and thus confirms the occurrence of the actin coronas in the embryo sac during fertilization. Moreover, actin dynamic changes also take place in the egg and the central cell, accomplished with the interaction between the male and female gametes. The actin filaments initially organize into a distinct actin network in the cortex of the central cell after anthesis; they become fragmented in the micropylar end of the cell after pollination. Similar to maize, actin patches have also been observed in the egg cortex after pollination. This is the first report of actin dynamics in the living embryo sac. The results suggest that the actin cytoskeleton may play an essential role in the reception of the pollen tube, migration of the male gametes, and even gametic fusion.  相似文献   

14.
水稻雌蕊与胚囊中钙的超微细胞化学定位   总被引:14,自引:2,他引:12  
用焦锑酸盐沉淀法对水稻(OryzasativaL.)授粉前后雌蕊和胚囊中的钙进行了超微细胞化学定位。结果表明,柱头乳突细胞表面和花柱薄壁细胞中均含钙沉淀;开花前1d,整个胚囊中含钙较少,两个助细胞中钙分布无差异;临近开花时,1个助细胞已退化,其钙含量明显增加;开花后6h,胚囊已受精,退化助细胞中钙含量进一步增加;受精前卵细胞中钙主要分布在液泡中,核和胞质中较少;受精后,其钙含量明显增加,主要分布于核中。重点讨论了钙与助细胞退化和卵细胞激活的关系。  相似文献   

15.

Background  

In flowering plants, gametogenesis generates multicellular male and female gametophytes. In the model system Arabidopsis, the male gametophyte or pollen grain contains two sperm cells and a vegetative cell. The female gametophyte or embryo sac contains seven cells, namely one egg, two synergids, one central cell and three antipodal cells. Double fertilization of the central cell and egg produces respectively a triploid endosperm and a diploid zygote that develops further into an embryo. The genetic control of the early embryo patterning, especially the initiation of the first zygotic division and the positioning of the cell plate, is largely unknown.  相似文献   

16.
黑节草从传粉到受精约需130d,精子在花粉管中形成,胚囊发育属蓼型胚囊,因反足细胞较早退化,故受精前胚囊多只由卵器和中央细胞组成。精卵核融合时,精核染色质进入卵核后凝集成颗粒状,并在原位与卵核的染色质融合,雌、雄性核仁一直维持至合子的第一次分裂期前。双受精作用正常,属于有丝分裂前配子融合类型,初生胚乳核发生2-3次分裂后逐渐退化消失,胚的发育局限于球形胚阶段。  相似文献   

17.
The structural and histochemical changes of the egg apparatus in the polyembryonic rice (Oryza sativa L.), ApⅢ with the highest frequence of additional embryos among the polyembryonic rice investigated, before and after fertilization were studied and compared with those of normal and other polyembryonic rices in a similar developmental period. A total of 2 932 ovules were observed and each of them contained only asingle embryo sac with a set of egg apparatus. Among 1 655 embryo sacs, there were 1 643 embryo sacs (99.27%) with one normal egg apparatus in each embryo sac, and only 12 embryo sacs (0.73%) from the remainder with 4 celled egg apparatus, i.e. two eggs and two synergids. Neither the numerous poly egg apparatus and egg like cells, nor the double set of embryo sacs each containing one egg apparatus and other abnormal egg apparatus in single ovary, which were reported by earlier investigators to have high frequency of embryo production in SB 1 and ApⅣ, were observed. The egg cell was located at the subterminal site of the micropylar end of embryo sac. The cytoplasm of egg cell was rich in protein materials and poly saccharide grains, which did not disappear until the division of zygote. The prominent nucleus was closely surrounded by protein and polysaccharide grains, which did not disappear until the division of zygote. No cytological difference was found between egg cells from the normal and abnormal egg apparatus. The two synergids were fully developed and situated at the upper most part of the micropylar end of the mature embryo sac. In most embryo sacs, the synergids were flask shaped with longer necks, and a widened cap shaped top, in close contact with the micropyle. The synergids had a well developed filiform apparatus. The characteristic appearance of the filiform apparatus as well as the cap neck region of synergids before and after pollen tube penetration were easily distinguishable from the egg cell. The structure, the stainability with Coomassie Brilliant Blue and PAS reaction, the process of accumulation, distribution and disapperance of the cytoplasmic protein materials and polysaccharide grains of the two synergids, the persistent and rarely the receptive synergids before and after pollen tube penetration, were closely similar to those of egg cell of the same developmental stage. In comparison with normal and other polyembryonic rice reported, the size of nucleus and nucleolus and their stainability also strongly resembled those of egg cell. Based on the results observed, the main conclusions are summarized as follows: (1) the additional embryos very frequently developed in the young and mature seed of polyembryonic rice ApⅢ were produced by one or two synergids of normal egg apparatus, rarely by 4 celled egg apparatus; (2) during fertilization, the synergids, in addition to the natural specific function of introducing pollen tube and transferring sperms to egg cell and central cell, could be closely associated with the potentiality to breed one or two additional embryos; and (3) as compared with that of normal or other polyembryonic rice it is firstly disclosed that in a few embryo sacs of ApⅢ, the cytoplasmic and nuclear structure, the active anabolism and catabolism of protein and polysaccharide materials and the delayed disorganization at the mid basal region of the receptive and persistent synergid still remained unchanged before the division of zygote. Such salient features could be the predisposition for the origin of additional embryos in ApⅢ.  相似文献   

18.
Cell-to-cell communication can be blocked by intracellular injections of antibodies raised against gap junction proteins, but the mechanism of channel obstruction is unknown. Binding to connexins could lead to a conformational change, interfere with regulatory domains or cause a steric hindrance. To address these questions, the effects on cell-to-cell communication of affinity purified polyclonal antibodies raised against peptides reproducing the intracellular sequences 5–17, 314–322 and 363–382 of rat connexin43 were investigated in cultured rat ventricular cells. The antibodies against sequence 363–382 were characterized by immunoblotting and immunocytochemistry. Characterization of antibodies 5–17 and 314–322 has been previously reported. In a first series of experiments, the effect on gap junctional communication was assessed by injecting a junction-permeant fluorescent dye into cells adjacent to one cell previously microinjected with antibodies. In a second series, junctional permeability was quantitatively determined on records of fluorescence recovery after the photobleaching of 6-carboxyfluorescein-loaded cells. Antibodies 5–17 marked a 43 kDa band on immunoblots, but did not immunolabel gap junctions and had no functional effect. Antibodies 314–322 recognized the 43 kDa protein and labeled the intercalated disks, but failed to interfere with junctional permeability. Antibodies to the nearby sequence 363–382, for which all immunospecific tests had been positive, caused a delayed diffusional uncoupling in 50% of the microinjected cells. It is suggested that the blocking of junctional communication by antibodies results from interference with a regulatory domain of the connexin. Received: 25 July 1995/Revised: 21 December 1995  相似文献   

19.
Actin coronas in normal and indeterminate gametophyte1 embryo sacs of maize   总被引:2,自引:2,他引:0  
 The actin cytoskeletal organization and nuclear behavior of normal and indeterminate gametophyte1 (ig1) embryo sacs of maize were examined during fertilization. After pollination, during degeneration of one of the synergids and before arrival of the pollen tube, the cytoskeletal elements undergo dramatic changes including formation of the actin coronas at the chalazal end of the degenerating synergid and at the interface between the egg cell and central cell. The actin coronas are present only for a limited period of time and their presence is coordinated with pollen tube arrival and fusion of the gametes; they disappear before the zygote divides. This allows us to estimate the frequency of fertilized ovules along the ear. Up to 88% of the ovules on an ear contain actin coronas in the embryo sacs when observed 16–19 h after pollination, indicating the high frequency of fertilizing kernels along the ear at this stage. In the ig embryo sacs, two or more degenerated synergids containing actin coronas at their chalazal ends receive multiple pollen tubes for gametic fusion and can consequently give rise to twin or polyembryos. These findings with the monocot maize are consistent with previous reports on the dicots Plumbago and Nicotiana, suggesting that the formation of actin coronas in the embryo sac during fertilization is a universal phenomenon in angiosperms and is part of a mechanism of interaction between gametic signaling and actin cytoskeleton behavior which appears to precisely position and facilitate the access of male gametes to the egg cell and central cell for fusion. Received: 15 May 1998 / Revision accepted: 17 August 1998  相似文献   

20.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号