首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20–30 % lipid and 50–75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2–3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.  相似文献   

2.
The effects of ionizing irradiation (0, 600, 1,500, or 3,000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1,500 or 3,000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3,000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components.  相似文献   

3.
Circulating stem cells home within the myocardium, probably as the first step of a tissue regeneration process. This step requires adhesion to cardiac microvascular endothelium (CMVE). In this study, we studied mechanisms of adhesion between CMVE and mesenchymal stem cells (MSCs). Adhesion was studied in vitro and in vivo. Isolated 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-labeled rat MSCs were allowed to adhere to cultured CMVE in static and dynamic conditions. Either CMVE or MSCs were pretreated with cytokines [IL-1beta, IL-3, IL-6, stem cell factor, stromal cell-derived factor-1, or TNF-alpha, 10 ng/ml]. Control or TNF-alpha-treated MSCs were injected intracavitarily in rat hearts in vivo. In baseline in vitro conditions, the number of MSCs that adhered to CMVE was highly dependent on the flow rate of the superfusing medium but remained significant at venous and capillary shear stress amplitudes. Activation of both CMVE and MSCs with TNF-alpha or IL-1beta before adhesion concentration dependently increased adhesion of MSCs at each studied level of shear stress. Consistently, in vivo, activation of MSCs with TNF-alpha before injection significantly enhanced cardiac homing of MSCs. TNF-alpha-induced adhesion could be completely blocked by pretreating either CMVE or MSCs with anti-VCAM-1 monoclonal antibodies but not by anti-ICAM-1 antibodies. Adhesion of circulating MSCs in the heart appears to be an endothelium-dependent process and is sensitive to modulation by activators of both MSCs and endothelium. Inflammation and the expression of VCAM-1 but not ICAM-1 on both cell types have a regulatory effect on MSC homing in the heart.  相似文献   

4.
Distribution of cells (L929, LS, LSM) in the two-phase polymer system was studied in addition to characterization of their karyotypes. In the course of LSM cell passages, the increased ratio of cells with a reduced number of chromosomes was found. The results obtained show that in the process of adaptation of the suspension cell culture to the growth as monolayer (the culture of LSM cells) the changes of the cell surface do not dependent on the chromosome number.  相似文献   

5.
The effects of glucose extremes on vascular physiology and endothelial cell function have been examined across a range of time scales. Not unexpectedly, chronic glucose exposure induces long term tissue effects. Yet short term exposure can also impose lasting consequences. The persistence of vascular pathology after euglycemic restoration further suggests a glucose exposure memory. Slow turnover reservoirs such as basement membrane are candidates for prolongation of acute events. We hypothesized that glucose-induced vascular dysfunction is related to altered vasoactive compound handling within the endothelial cell-basement membrane co-regulatory unit. Endothelial cell basement membrane-associated fibroblast growth factor-2 increased linearly with culture glucose within days of elevated glucose exposure. Surprisingly, basement membrane fibroblast growth factor-2 binding kinetics remained unchanged. The glucose-induced increase in basement membrane fibroblast growth factor-2 was instead related to enhanced endothelial cell fibroblast growth factor-2 release and permeability. Cellular fibroblast growth factor-2 release occurred concomitant with apoptosis but was not blocked by caspase inhibitors. These data suggest that release was associated with sub-lethal early apoptotic cell membrane damage, perhaps related to reactive oxygen species formation. High glucose basement membrane in turn enhanced endothelial cell proliferation in a fibroblast growth factor-2-dependent manner. We now show that glucose-induced alterations in endothelial cell function promote changes in basement membrane composition, and these changes further affect endothelial cell function. These data highlight the interrelationship of cell and basement membrane in pathological conditions such as hyperglycemia. These phenomena may explain long term effects on the endothelium of short term exposure to glucose extremes.  相似文献   

6.
Peripheral myelin protein 22 (PMP22) is associated with a subset of hereditary peripheral neuropathies. Although predominantly recognized as a transmembrane constituent of peripheral nerve myelin, PMP22 is localized to epithelial and endothelial cell-cell junctions, where its function remains unknown. In this report, we investigated the role of PMP22 in epithelial biology. Expression of human PMP22 (hPMP22) slows cell growth and induces a flattened morphology in Madin-Darby canine kidney (MDCK) cells. The transepithelial electrical resistance (TER) and paracellular flux of MDCK monolayers are elevated by hPMP22 expression. After calcium switch, peptides corresponding to the second, but not the first, extracellular loop of PMP22 perturb the recovery of TER and paracellular flux. Finally, subsequent to wounding, epithelial monolayers expressing hPMP22 fail to migrate normally. These results indicate that PMP22 is capable of modulating several aspects of epithelial cell biology, including junctional permeability and wound closure.  相似文献   

7.
Angiogenesis plays a central role in a variety of important biological processes such as reproduction, tissue development, and wound healing, as well as being critical to tumor formation in cancer. The development of chromosomal substitution (consomic) rat strains has permitted the chromosomal localization of genetic factors critical to angiogenesis, but many questions remain as to the mechanisms involved. Here we utilize a novel cell capture assay to assess changes in the functional expression of vascular endothelial growth factor (VEGF) receptors on the surface of vascular endothelial cells isolated from rat strains that are normal or impaired in angiogenesis. We show that functional VEGF receptor expression is increased under hypoxic conditions in rat strains that exhibit normal angiogenesis but not in a strain impaired in angiogenesis. This result implicates the dysregulation of VEGF receptor expression levels on the endothelial cell surface as a key factor in impaired angiogenesis.  相似文献   

8.
The isoenzyme hexokinase (HK) spectrum from normal rat large intestinal mucosa consisted of 3 isoenzymes. In tumours of this localization induced by 1,2-dimethylhydrazine there proved to be a lack or marked decrease in the most rapid anodic isoenzyme. Only one HK isoenzyme was found in the metastases. Km (glucose) for tumour HK was 2--3 times lower than for normal intestinal HK; the HK activity was detected in the serum from the 1st month of the carcinogenic administration, and by the 5th month it was found in 80% of the tumour-bearing animals. No serum HK activity was ever found in control rats.  相似文献   

9.
10.
Mammalian cells selected for resistance to concanavalin A (ConA) cytotoxicity exhibit modifications in some fundamental cellular properties. Three independently isolated ConA-resistant hamster cell lines exhibit a complex phenotype which includes: obvious temperature-sensitive growth properties; altered cellular morphology on solid surfaces; enhanced sensitivity to membrane-active agents such as phenethyl alcohol and sodium butyrate; altered lectin agglutination properties; modified adhesiveness to substratum properties; and defective lectin-receptor mobility characteristics. Selection of a reverant cell line which showed a near wild-type sensitivity to the cytotoxic effects of ConA also showed growth and membrane-associated properties that were very similar to parental wild-type cells. Somatic cell hybrids formed through the fusion of wild-type and lectin-resistant cells exhibited the ConA-sensitive phenotype, and possessed growth and membrane-associated properties that were very similar to pseudodiploid wild-type cells and control cultures of pseudotetraploid hybrid cells. The results presented in this communication support the view that ConA is an excellent selective agent for obtaining mammalian cells with altered growth and surface membrane properties and provides convincing evidence that the altered cellular properties exhibited by the lectin-resistant cell lines are directly related to ConA resistance.  相似文献   

11.
Vascular endothelial cells cultured in the presence of fibroblast growth factor (FGF) devide actively when seeded at low or clonal cell densities and upon reachin confluence adopt a morphologic appearance and differentiated properties similar to those of the vascular endothelium in vovi. In this review, we present some of our recent observations regarding the characteristics (both structural and functional) of these endothelial cells and the role of FGF in controlling their proliferation and normal differentation. At confluence the endothelial cells from a monolayer of closely apposed and nondividing cell that have a nonthrombogenic apical surface and can no longer internalize bound ligands such as low-density lipoprotein (LDL). The adoption of these properties is correlated and possibly causally related to changes in the cell surface such as the appearance of a 60,000 molecular weight protein (CSP-60); the disappearance of fibronectin from the apical cell surface and its concomitant accumulation in the basal lamina; and a restriction of the lateral mobility of various cell surface receptor sites. In contrast, endothelial cells that are maintained in the absence of FGF undergo within three passages alterations that are incompatible with their in vivo morphologic apperarance and physiologic beharior. They grow at confluence on top of each other and hence can no longer adopt both the structural (CSP-60, cell surface polarity) and functional (barrier function, nonthrombogenicity) attributes of differentiated endothelial cell. Since these characteristics can be reacquired in response to readdition of FGF, in addition to being a mitogen FGF may also be involved in controlling the differentitation and phenotypic expression of the vascular endothelium.  相似文献   

12.
Selective permeability of endocardial endothelium has been suggested as a mechanism underlying the modulation of the performance of subjacent myocardium. In this study, we characterized the organization and permeability of junctional complexes in ventricular endocardial endothelium in rat heart. The length of intercellular clefts viewed en face per unit endothelial cell surface area was lower, and intercellular clefts were deeper in endocardial endothelium than in myocardial vascular endothelium, whereas tight junctions had a similar structure in both endothelia. On this basis, endocardia endothelium. might be less permeable than capillary endothelium. However, confocal scanning laser microscopy showed that intravenously injected dextran 10000 coupled to Lucifer Yellow penetrated first the endocardial endothelium and later the myocardial capillary endothelium. Penetration of dextran 10000 in myocardium occurred earlier through subepicardial capillary endothelium than through subendocardial capillary endothelium. Penetration of tracer might thus be influenced by hydrostatic pressure. Dextran of MW 40000 did not diffuse through either endocardial endothelium or capilary endothelium. The ultrastructure of endocardial endothelium may constitute an adaptation to limit diffusion driven by high hydrostatic pressure in the heart. Differences in paracellular diffusion of dextran 10000 between endocardial endothelium and myocardial vessels, may result from differing permeability properties of the endocardium and underlying myocardium.  相似文献   

13.
14.
Lymphatic endothelium: morphological, molecular and functional properties   总被引:12,自引:0,他引:12  
The lymphatic microvasculature is uniquely adapted for the continuous removal of interstitial fluid and proteins, and is an important point of entry for leukocytes and tumor cells. The traditional view that lymphatic capillaries are passive participants in these tasks is currently being challenged. This overview highlights recent advances in our understanding of the molecular mechanisms underlying the formation and function of lymphatic vessels.  相似文献   

15.
16.
17.
We present the molecular characterization of a cell surface antigen, B 7.2, that is expressed on activated B lymphocytes. The BCL1 and CH12 B lymphoma cells express the B 7.2 antigen constitutively. In small resting B cells from spleen, the B 7.2 expression is induced during polyclonal growth in response to mitogenic stimulation. B 7.2 expression also occurs with a significant frequency in cells from fresh lymphoid tissues. The endogenous expression of the B 7.2 antigen is high in spleen and lymph nodes, and is undetectable in the thymus. The B 7.2 antigen is a microheterogeneous 45,000 to 50,000 dalton glycoprotein with a single polypeptide chain, intramolecular S--S bonds, and N-linked glycan moieties. The folded structure of the B 7.2 antigen appears to contain a domain with hydrophilic properties exposed on the cell surface and a hydrophobic segment that may comprise a transmembrane portion. Considering the observed expression pattern and the molecular structure, we speculate that the B 7.2 antigen has a specific function in regulation of B cell activation, perhaps as a receptor for a regulatory ligand or as a ligand recognized by other B or T cells.  相似文献   

18.
During angiogenesis, formerly differentiated human microvascular endothelial cells (HMECs) return to a proliferative growth state. Many fundamental questions regarding HMEC function, such as how HMECs adapt to changes in bioenergetic requirements upon return to proliferative growth, remained unanswered. In this study, we evaluated whether modifications in HMEC bioenergetic profiles and glutathione (GSH) levels accompanied the cellular transition between differentiated and proliferative growth. To provide insight into the continuum of cellular adaptations that occur during this transition, we used a method recently developed in our laboratory that induces a state of morphological and functional predifferentiation in HMECs. Cellular morphology, in conjunction with flow cytometric DNA analyses and HMEC functional assays (the directed migration and intercellular association involved in microtubule formation) were employed to validate the HMEC culture state of growth. Analysis of the HPLC nucleotide profiles disclosed several findings common to all culture growth states. These uniform findings, e.g., cellular energy charges > 0.90, and highly reduced redox states, revealed that cultured HMECs maintain high rates of oxidative metabolism. However, there were also significant, culture growth state related differences in the nucleotide profiles. Proliferative HMECs were shown to possess significantly higher (relative to both large vessel endothelial cells, and differentiated HMECs) levels of GSH and specific nucleotides which were related with a return to the active cell cycle-ATP, GTP, UTP, and CTP, and NADPH. Further, the nucleotide profiles and GSH levels of the predifferentiated HMECs were determined to be intermediate between levels obtained for the proliferative and differentiated HMECs. The results of this study demonstrate that the capacity to modulate their cellular bioenergetic status during growth state transitions is one of the adaptations that enable HMECs to retain a growth state reciprocity. In addition, our findings also show that HMECs, especially during the proliferative growth state, are biochemically distinct from endothelial cells harvested from large vessels, and therefore suggest that HMECs are the cells of choice to employ when studying diseases that affect the human microvasculature.  相似文献   

19.
A method whereby lactoperoxidase-catalyzed 125I-iodination of plasma membrane lipids can be achieved is described. The reaction results in a uniform and stable labeling of neutral lipids, phospholipids, lysophosphatides, free fatty acids, and triacylglycerides. By the use of this method, the action of antibody plus complement (C) on the specific release of lipid from the plasma membrane of line-10 tumor cells was studied. Within 15 min after the addition of C to antibody-sensitized cells, the enhanced release of specific lipid classes from the cell surface was observed; these lipids included sphingomyelin, phosphatidylserine, and phosphatidylcholine. The release of phosphatidylethanolamine and, in some instances, triglycerides, was reduced after antibody-C attack. Neither the specificity of the antibody used to sensitize the cells nor the ability of the antibody plus C to be cytotoxic to the cells appeared to affect the identity or amounts of lipids released from the cells.  相似文献   

20.
The intracellular ionic distribution in uncleaved and cleaving Ambystoma eggs was investigated by analysing the influx of 3H2O, by determining the total content of Na+, K+ and Cl? in extracts of eggs at different stages by both flame spectrophotometry and ion-selective microelectrodes, and by the continuous measurement of the Na+, K+ and Cl? activities (aNai, aKi and aCli) using intracellular ion-selective microelectrodes. The electrical membrane potential (Em) and membrane resistance (Rm) were measured continuously in uncleaved and normally cleaving eggs as well as in eggs cleaving after removal of the vitelline membrane. The latter eggs expose their newly formed cleavage membrane to the external medium. Ionic permeability of the cell membrane before and during cleavage was analysed by a statistical comparison of the experimentally determined relationship between Em and the ionic gradients across the cell membrane with those predicted theoretically from a constant field equation in dependence on the relative permeability, through insertion of the measured intracellular ion activities.3H2O influx revealed the existence of a single intracellular water compartment (3.06 μl/egg) and a low water permeability (5.35 × 10?5 cm sec?1). Na+, K+ and Cl? concentrations were constant at 54.1, 72.1 and 73.1 mM respectively, while aNai, aKi and aCli were constant at 5.8, 51.8 and 59.7 mM respectively. It was concluded that all Cl? ions are in solution, while 12.5% of all K+ and 86% of all Na+ is bound. The uncleaved egg showed a positive Em of ca 40 mV and a specific membrane resistance of 39 kOhm cm2. Em could be described by a constant field equation with a permeability ratio PKPNa= 0.073. Shortly after the onset of first cleavage, Em rapidly decreased concomitant with a rise in Rm (68.5 kOhm cm2). This was interpreted as a drop in Na+ permeability. During the cleavage process Em progressively hyperpolarized and Rm decreased due to the insertion of a small fraction (3.3%) of the newly formed intercellular membrane into the cleavage furrow. This new membrane had a low specific resistance (0.69 kOhm cm2). Both in normally cleaving eggs and in eggs cleaving in the absence of the vitelline membrane Em behaved according to the constant field equation, PNaPK being 0.69 and 0.39, respectively. The differences with other amphibian eggs were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号