首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work from this laboratory has reported the biotransformation of bile acids (BA) into the thioester-linked glutathione (GSH) conjugates via the intermediary metabolites formed by BA:CoA ligase and shown that such GSH conjugates are excreted into the bile in healthy rats as well as rats dosed with lithocholic acid or ursodeoxycholic acid. To examine whether such novel BA-GSH conjugates are present in human bile, we determined the concentration of the GSH conjugates of the five BA that predominate in human bile. Bile was obtained from three infants (age 4, 10, and 13 months) and the BA-GSH conjugates quantified by means of liquid chromatography (LC)/electrospray ionization (ESI)-linear ion trap mass spectrometry (MS) in negative-ion scan mode, monitoring characteristic transitions of the analytes. By LC/ESI-MS, only primary BA were present in biliary BA, indicating that the dehydroxylating flora had not yet developed. GSH conjugates of chenodeoxycholic and lithocholic acid were present in concentrations ranging from 27 to 1120 pmol/ml, several orders of magnitude less than those of natural BA N-acylamidates. GSH conjugates were not present, however, in the ductal bile obtained from 10 adults (nine choledocholithiasis, one bile duct cancer). Our results indicate that BA-GSH conjugates are formed and excreted in human bile, at least in infants, although this novel mode of conjugation is a very minor pathway.  相似文献   

2.
A thermostable, single polypeptide chain enzyme, esterase 2 from Alicyclobacillus acidocaldarius, was covalently conjugated in a site specific manner with an oligodeoxynucleotide. The conjugate served as a reporter enzyme for electrochemical detection of DNA hybridization. Capture oligodeoxynucleotides were assembled on gold electrode via thiol-gold interaction. The esterase 2-oligodeoxynucleotide conjugates were brought to electrode surface by DNA hybridization. The p-aminophenol formed by esterase 2 catalyzed hydrolysis of p-aminophenylbutyrate was amperometrically determined. Esterase 2 reporters allows to detect approximately 1.5 x 10(-18)mol oligodeoxynucleotides/0.6 mm2 electrode, or 3 pM oligodeoxynucleotide in a volume of 0.5 microL. Chemically targeted, single site covalent attachment of esterase 2 to an oligodeoxynucleotide significantly increases the selectivity of the mismatch detection as compared to widely used, rather unspecific, streptavidin/biotin conjugated proteins. Artificial single nucleotide mismatches in a 510-nucleotide ssDNA could be reliably determined using esterase 2-oligodeoxynucleotide conjugates as a reporter.  相似文献   

3.
Tyrosine-labelled free and glycine-conjugated bile acids were synthesized and radiolabelled with 125I to high purity. The synthetic method utilized excess tyrosine methyl ester hydrochloride (1.4 equiv.) and bile acid (one equiv.) via dicyclohexylcarbodiimide (1.4 equiv.) with yields of 90-93% for tyrosine bile acid conjugates and glycyltyrosine conjugates and 56-60% yields for the glycylglycyltyrosine conjugates. All of the eight iodinated tyrosine bile acids tested were rapidly excreted into bile following intravenous injection. In bile duct-cannulated rats with ligated renal pedicles under pentobarbital anaesthesia the percentages of injected dose recovered from bile within 20 min were as follows: cholylglycine ([14C]cholylGly), 81.2 +/- 1.3%; taurocholate ([14C]taurocholate), 94.3 +/- 1.0%; cholyltyrosine (125I-cholylTyr), 85.5 +/- 3.3%; deoxycholyltyrosine (125I-deoxycholylTyr), 87.9 +/- 6.3%; chenodeoxycholyltyrosine (125I-chenodeoxycholylTyr), 93.4 +/- 2.9; cholylglycyltyrosine (125I-cholylGlyTyr), 95.7 +/- 6.7%; deoxycholylglycyltyrosine (125I-deoxylcholylGlyTyr), 92.5 +/- 3.2%; chenodeoxycholylglycyltyrosine (125I-chenodeoxycholylGlyTyr), 94.1 +/- 3.1%; cholyldiglycyltyrosine (125I-cholylGlyGlyTyr), 85.2 +/- 3.6%, and deoxycholyldiglycyltyrosine (125I-deoxycholylGlyGlyTyr), 85.5 +/- 2.7%. Values are means +/- SD. Thus the biliary excretion of 125I-chenodeoxycholylGlyTyr, 125I-chenodeoxycholylTyr, 125I-deoxycholylGlyTyr and 125I-cholylGlyTyr was similar to that of [14C]taurocholate, the major naturally occurring bile acid in the rat, and the biliary excretion of all the tyrosine conjugates was similar to or exceeded that of [14C]cholylglycine. Conjugation with tyrosine enhanced the efficiency of plasma-to-bile transport of most naturally occurring bile acids. Comparison of glycyltyrosine conjugates with glycylglycyltyrosine conjugates suggests that any additional benefit derived by elongation of the side-chain is probably negated by obscuring the 12 alpha-hydroxyl function on the steroid nucleus in the bile acid glycylglycyltyrosine conjugates.  相似文献   

4.
1. The subcellular distribution of conjugates of cholic acid and chenodeoxycholic acid between cytosol, nuclei, mitochondria and microsomes in rat liver has been determined. 2. The partition coefficients for the distribution of these bile acids between subcellular fractions and buffer have been measured and used to construct a compartmental model of the amounts of conjugated bile acids present in the different subcellular organelles in vivo. 3. This model indicates that a large percentage of the bile acid in the rat liver is found in the nuclear fraction; 42% of the cholic acid conjugates and 27% of the chenodeoxycholic acid conjugates. Substantial amounts of bile acid are also present in microsomes and mitochondria suggesting that published estimates of the amounts of bile acids in these fractions are underestimates. 4. The model also allows the amount of bile acid which is in free solution in cytosol to be determined; 10.9% of the cholic acid conjugates and 4.1% of the chenodeoxycholic acid conjugates in rat liver were present in this fraction. Knowlege of the amount of free bile acid allows possible roles of the cytosolic bile binding proteins to be assessed.  相似文献   

5.
We developed and validated a simple method for measuring the individual glycine and taurine conjugates of bile acids in bile by high-performance liquid chromatography with a C18 reversed-phase column using an isocratic solvent system of acidified methanol—potassium phosphate. Without preliminary derivatization or purification, complete separation of the ten major conjugated bile acids present in bile could be achieved in 65 min. Total bile acid concentrations were identical when measured enzymatically and by summing the individual bile acids determined by high-performance liquid chromatography. Bile acid composition determined by gas—liquid chromatography correlated with results by high-performance liquid chromatography. Finally, measurements of individual glycine and taurine conjugates in human bile and in mixtures of bile acid standards by high-performance liquid chromatography and thin-layer chromatography gave similar results. This high-performance liquid chromatographic system permits simultaneous quantification of total and individual bile acids and their glycine and taurine conjugates in bile.  相似文献   

6.
The isolated perfused rat liver was used to examine the hepatic extraction, biliary secretion and effect on bile flow of the 2-fluoro-beta-alanine conjugates of cholic acid and chenodeoxycholic acid. The naturally occurring taurine and glycine conjugates of these bile acids were used for comparisons. The 2-fluoro-beta-alanine conjugates were extracted by the liver to a similar extent as the taurine and glycine conjugates. The biliary secretion rate and increase in bile flow were similar for all the cholic acid conjugates. On the other hand, the maximal biliary secretion rate of the 2-fluoro-beta-alanine conjugate of chenodeoxycholate was similar to that of the glycochenodeoxycholate, but 47% lower than that of taurochenodeoxycholate. In addition, the 2-fluoro-beta-alanine conjugate of chenodeoxycholate produced a decrease in bile flow that was comparable to that observed with the glycochenodeoxycholate (54% vs. 74%), but which was greater than that produced by the taurochenodeoxycholate (12%). In summary, these data demonstrate that the biological properties of the 2-fluoro-beta-alanine conjugates of cholic acid and chenodeoxycholic acid are not markedly different from those of the naturally occurring taurine and glycine conjugates. These data also suggest that the amino acid moiety can influence the biliary secretion and cholestatic properties of chenodeoxycholic acid conjugates.  相似文献   

7.
Studies were made of a) the relationship of bile acid structure and analytical recoveries (measured by 3-hydroxysteroid oxidoreductase) following vigorous alkaline hydrolysis of bile acid conjugates and b) the relationship of structure and hydrolysis time of taurine- and glycine bile acid conjugates in a reaction catalyzed by glycocholic acid hydrolase. Alkaline hydrolysis resulted in good recoveries of hydroxy and 7 and 12- oxo-bile acids but poor recoveries of 3-oxo-bile acids. Borohydride reduction of the 3-oxo-acids prevented these losses. Complete enzymatic hydrolysis of glycine conjugated bile acids was about five times more rapid than that of taurine conjugates. Hydrolysis of conjugates containing oxo groups was slow. Borohydride reduction of oxoacids corrected this and did not inhibit enzymatic hydrolysis. It was concluded that both vigorous alkaline and enzymatic hydrolysis are satisfactory in bile acid assays if borohydride reduction is instituted before the hydrolytic step. However, due to the presence of possible enzyme inhibitors and solubility difficulties, strong alkaline hydrolysis is preferable to enzymatic hydrolysis in fecal bile acid determinations at this time.  相似文献   

8.
1. Conjugated bile pigments, separated in two fractions by semi-quantitative t.l.c. performed on silicic acid with phenol/water as the developing solvent, were treated with diazotized ethyl anthranilate. Resulting dipyrrylazo derivatives were analysed by quantitative t.l.c. 2. The tentative structure elucidation of tetrapyrrolic bilirubin conjugates and semi-quantitative evaluation of rat bile, post-obstructive human bile and dog bile composition is presented. 3. Homogeneous and mixed hexuronic acid diesters of bilirubin containing glucuronic acid constitute 51% of the total conjugates in normal rat bile, 45% of those in human post-obstructive bile and 38% of those in obstructed rat biles. 4. Monoconjugated bilirubin amounts to 33% of total conjugated bile pigments in normal rat bile, and 17 and 14% in post-obstructive hepatic human bile and gall-bladder bile of dog respectively. After loading with unconjugated bilirubin a greater amount of monoconjugates (56%) occur in the rat bile, whereas bilirubin diglucuronide excretion is decreased (34%). 5. In gall-bladder bile of normal dog, 40% of glucose-containing diconjugates, 32% of homogeneous and/or mixed hexuronic acid (mainly glucuronic acid) diesters of bilirubin and 14% of xylose-containing diconjugates are estimated. 6. Increased amounts of bilirubin conjugates, including some with unidentified uronic acid groups, were observed in cholestatic rat biles and quantities of conjugates with glucuronic acid were decreased.  相似文献   

9.
Acyl-adenylates and acyl-CoA thioesters of bile acids (BAs) are reactive acyl-linked metabolites that have been shown to undergo transacylation-type reactions with the thiol group of glutathione (GSH), leading to the formation of thioester-linked GSH conjugates. In the current study, we examined the transformation of cholyl-adenylate (CA-AMP) and cholyl-coenzyme A thioester (CA-CoA) into a cholyl-S-acyl GSH (CA-GSH) conjugate by rat hepatic glutathione S-transferase (GST). The reaction product was analyzed by liquid chromatography (LC)/electrospray ionization (ESI)-linear ion trap mass spectrometry (MS). The GST-catalyzed formation of CA-GSH occurred with both CA-AMP and CA-CoA. Ursodeoxycholic acid, lithocholic acid, and 2,2,4,4-2H4-labeled lithocholic acid were administered orally to biliary fistula rats, and their corresponding GSH conjugates were identified in bile by LC/ESI-MS2. These in vitro and in vivo studies confirm a new mode of BA conjugation in which BAs are transformed into their GSH conjugates via their acyl-linked intermediary metabolites by the catalytic action of GST in the liver, and the GSH conjugates are then excreted into the bile.  相似文献   

10.
Liver-specific drug targeting by coupling to bile acids.   总被引:7,自引:0,他引:7  
Bile acids are selectively taken up from portal blood into the liver by specific transport systems in the hepatocyte plasma membrane. Therefore, studies were performed to evaluate the potential of bile acids as shuttles to deliver drugs specifically to the liver. The alkylating cytostatic drug chlorambucil and the fluorescent prolyl-4-hydroxylase inhibitor 4-nitrobenzo-2-oxa-1,3-diazol-beta-Ala-Phe-5-oxaproline-Gly were covalently linked via an amide bond to 7 alpha, 12 alpha,-dihydroxy-3 beta- (omega-aminoalkoxy)-5-beta-cholan-24-oic acid. The chlorambucil-bile acid conjugates S 2521, S 2539, S 2567, and S 2576 inhibited Na(+)-dependent [3H]taurocholate uptake in a concentration-dependent manner both into isolated rat hepatocytes and rabbit ileal brush border membrane vesicles, whereas the parent drug chlorambucil showed no significant inhibitory effect. The chlorambucil-bile acid conjugates were able to prevent photoaffinity labeling of bile acid binding proteins in rat hepatocytes by the photolabile [3H]7,7-azo derivative of taurocholic acid indicating their bile acid character. The chlorambucil-bile acid conjugate S 2577 was able to alkylate proteins demonstrating the drug character conserved in the hybrid-molecules. Liver perfusion experiments revealed a secretion profile of the chlorambucil-bile acid conjugate S 2576 into bile very similar to taurocholate compared to chlorambucil which is predominantly excreted by the kidney. 4-Nitrobenzo-2-oxa-1,3-diazol-beta-Ala-Phe-5-oxaproline-Gly- t-butylester (S 4404), a fluorescent peptide inhibitor of prolyl-4-hydroxylase, was not transported in intact form from portal blood into bile in contrast to its bile acid conjugate S 3744; about 25% of the peptide-bile acid conjugate S 3744 was secreted in intact form into bile within 40 min compared with less than 4% of the parent oxaprolylpeptide S 4404. In conclusion, these studies reveal that modified bile acid molecules can be used as "Trojan horses" to deliver a drug molecule specifically into the liver and the biliary system. This offers important pharmacological options for the development of liver-specific drugs.  相似文献   

11.
Bile salts present in gallbladder of wild and cultured red seabream, Pagrosomus major, a marine teleost were analyzed. The bile from wild red seabream was found to contain two previously unknown bile salts along with two known bile salts, taurocholate and taurochenodeoxycholate. Isolation of each bile salt was performed by column chromatography. Fast atom bombardment mass spectra of the unknown bile salts showed the molecular ions (M-H)- of m/z 544 and 528 which are shifted 30 mass units upfield compared to those (m/z 514 and 498) of taurocholate and taurochendeoxycholate, respectively; this is consistent with the presence of cysteinolic acid (mol wt 155) instead of taurine (mol wt 125). Enzymatic hydrolysis of the bile salts released cholic acid and chenodeoxycholic acid, respectively, and an amino acid that was identified as D-cysteinolic acid by direct comparison with an authentic sample. From these results, the bile salts in the bile of wild red seabream were identified as the conjugates of cholic acid and chenodeoxycholic acid with cysteinolic acid. 1H- and 13C-magnetic resonance spectra of the bile salts were also consistent with the proposed structure. The cysteinolic acid conjugates were found only in wild and not in cultured red seabream; this distinction seems to result from differences in dietary cysteinolic acid.  相似文献   

12.
Quantitative analyses of individual bile acids in biological samples are limited by the lengthy multistep preparations necessary. Using heptafluorobutyric acid anhydride in pyridine as derivatizing agent, we reduced several steps to one. Bile acids and their glycine and taurine conjugates form stable heptafluorobutyrate derivatives, climinating the need for deconjugation and preparation of methyl esters. The derivatives have been characterized by mass spectrometry, and optimum reaction yields have been determined. Operating conditions for analyzing the bile acid heptafluorobutyrates by gas-liquid chromatography on various column packings were investigated, and 0.5% QF-1 or 3% OV-255 was found suitable. The bile acid derivatives were identical whether starting with the bile acid or the glycine or taurine conjugates. The procedure was applied to a quantitative analysis of artificial mixtures of bile acids and bile conjugates, and also of human bile. The results compared favorably to those obtained with a 3 alpha- and 7 alpha-hydroxysteroid dehydrogenase fluorimetric method.  相似文献   

13.
1. Bile salts of the green turtle Chelonia mydas (L.) were analysed as completely as possible. 2. They consist of taurine conjugates of 3 alpha, 7 alpha, 12 alpha, 22 xi-tetrahydroxy-5 beta-cholestan-26-oic acid (tetrahydroxysterocholanic acid) and 3 alpha 12 alpha, 22 xi-trihydroxy-5 beta-cholestan-26-oic acid, with minor amounts of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5beta-cholan-24-oic acid (cholic acid), 3alpha, 12 alpha-dihydroxy-5beta-cholan-24-oic acid (deoxycholic acid) and possibly other bile acids. 3. Cholic acid and deoxycholic acid represent the first known examples of bile acids common to chelonians and other animal forms: they may indicate independent evolution in chelonians to C24 bile acids. 4. The discovery of a 7-deoxy C27 bile acid is the first evidence that C27 bile acids or their conjugates have an enterohepatic circulation.  相似文献   

14.
A liquid chromatography-diode array detection-electrospray ionization ion trap mass spectrometry (LC-DAD-ESI-MS(n)) method was established for the analysis of danshensu, caffeic acid, ferulic acid and isoferulic acid in rat plasma, bile, urine and feces after oral administration or intravenous injection. Liquid-liquid extraction was employed for the preparation of biosamples, and the chromatographic separation was carried out using an Agilent Zorbax Extend C(18) reversed phase column and acetonitrile-0.1% formic acid as the mobile phase. Totally nineteen metabolites were detected and identified as prototype, methylated, hydroxylated, sulfated and glucuronized conjugates. The metabolism of the individual phenolic acids in biosamples was investigated, and the metabolic pathway was proposed. By comparing the metabolism of different compounds which shared similar structures, we were able to find that methylation was the main pathway of danshensu metabolism, and the double bond on the side chain was critical for the drug excretion via bile and the formation of glucuronized conjugates. The results proved that the established method was simple, sensitive and reliable, which could be used to detect and identify the structures of metabolites and to better understand their in vivo metabolism.  相似文献   

15.
Uegaki S  Takikawa H  Yamanaka M 《Steroids》1999,64(11):790-795
Biliary organic anion excretion is mediated by an ATP-dependent primary active transporter, canalicular multispecific organic anion transporter/multidrug resistance protein 2. On the other hand, a multiplicity of canalicular organic anion transporter/multidrug resistance protein 2 has been suggested. Therefore, to examine the effect of hydrophobicity on the substrate specificity of canalicular multispecific organic anion transporter/multidrug resistance protein 2, we examined the effect of organic anions and bile acid conjugates on biliary excretion of three taurine-conjugated bile acid sulfates with different hydrophobicity, taurolithocholate-3-sulfate, taurochenodeoxycholate3-sulfate, and taurocholate-3-sulfate in rats. Biliary excretions of these bile acid conjugates were delayed in Eisai hyperbilirubinemic rats. Biliary excretion of these bile acid conjugates was inhibited by sulfobromophthalein, whereas biliary excretion and taurocholate-3-sulfate was not inhibited by phenolphthalein glucuronide. Taurolithocholate-3-sulfate and ursodeoxycholate-3-glucuronide decreased biliary excretion of taurochenodeoxycholate-3-sulfate and taurocholate-3-sulfate, but ursodeoxycholate-3,7-disulfate did not affect biliary excretion of taurochenodeoxycholate-3-sulfate and taurocholate-3-sulfate. These findings indicate that very hydrophilic organic anions are not good substrates of canalicular multispecific organic anion transporter/multidrug resistance protein 2.  相似文献   

16.
We have examined the possibility of assessing primary bile acid pool sizes from the spillover of the bile acids into systemic blood after intestinal exposure to the total endogenous bile acid pool; the studies were carried out in 16 healthy subjects. Bile acid spillover was calculated as the integrated area under the curve of bile acid conjugates in serum of each primary bile acid class in response to a well-defined sustained cholecystokinin-induced stimulus of the enterohepatic circulation for 55 min causing complete gallbladder emptying. Serum levels of each species of primary bile acid conjugates were measured by two specific and sensitive radioimmunoassays, one for conjugated cholate and one for conjugated chenodeoxycholate. Primary bile acid pool sizes determined with [24-14C]cholic acid and [24-14C]chenodeoxycholic acid according to Lindstedt (1957. Acta Physiol. Scand. 40:1-9) served as reference. Bile acid conjugates of both species reached a peak 70 min after the start of the cholecystokinin infusion, probably reflecting simultaneous intestinal absorption of both primary bile acids in this model. Highly significant linear correlations were found between the integrated areas under the curve and primary bile acid pool sizes, which were closer for chenodeoxycholate (n = 16, r = 0.81, P less than 0.001) than for cholate (n = 16, r = 0.74, P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Alkaline solvent systems for thin-layer chromatography of bile acids   总被引:2,自引:0,他引:2  
Thin-layer chromatographic separation of the common bile acids and their taurine and glycine conjugates in chloroform-methanol-ammonia is reported. An alkaline system offers advantages for the separation and nondestructive staining of bile acid conjugates.  相似文献   

18.
The 3-sulfates of the S-acyl glutathione (GSH) conjugates of five natural bile acids (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic) were synthesized as reference standards in order to investigate their possible formation by a rat liver cytosolic fraction. Their structures were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion-trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. This method was used to determine whether the 3-sulfates of the bile acid-GSH conjugates (BA-GSH) were formed when BA-GSH were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate had been added. The S-acyl linkage was rapidly hydrolyzed to form the unconjugated bile acid. A little sulfation of the GSH conjugates occurred, but greater sulfation at C-3 of the liberated bile acid occurred. Sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus GSH conjugates of bile acids as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.  相似文献   

19.
20.
In this study, we compared in vitro calcium binding by the taurine and glycine conjugates of the major bile acids in human bile: cholic (CA), chenodeoxycholic (CDCA) and deoxycholic (DCA) acids, together with the cholelitholytic bile acids ursodeoxycholic (UDCA) and ursocholic (UCA) acids. At physiological total calcium (CaTOT) (1-15 mM) and bile acid (BA) (10-50 mM) concentrations, all the bile acids caused concentration-dependent falls in [Ca2+], suggesting calcium binding. Except for glycine-conjugated CDCA, all the other calcium-bile acid complexes were soluble in 150 mM NaCl. The calcium binding affinities followed the pattern: dihydroxy (CDCA, UDCA and DCA) greater than trihydroxy (CA and UCA) bile acids, and glycine conjugates greater than taurine conjugates. The glycine conjugate of UDCA, which increases during UDCA treatment, had the highest calcium binding affinity. Ten-20 mM phospholipid modestly increased calcium binding by CA conjugates, but not by CDCA, UDCA, and DCA conjugates. Phospholipid also prevented the precipitation of glyco-CDCA in the presence of calcium. Bile acid-calcium biding was pH-independent over the range 6.5-8.5. The different calcium binding affinities of the major biliary bile acids may partly explain their varying effects on biliary calcium secretion. The results also suggest that neither precipitation of calcium-bile acid complexes nor impaired calcium binding by bile acids is important in the pathogenesis of human calcium gallstone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号