首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The entry of Na+ or H+ into cells of Escherichia coli via the melibiose transport system was stimulated by the addition of certain galactosides. The principal cell used in these studies (W3133) was a lactose transport negative strain of E. coli possessing an inducible melibiose transport system. Such cells were grown in the presence of melibiose, washed, and incubated in the presence of 25 microM Na+. The addition of thiomethylgalactoside (TMG) resulted in a fall in Na+ concentration in the incubation medium. No TMG-stimulated Na+ movement was observed in uninduced cells. In an alpha-galactosidase negative derivative of W3133 (RA11) a sugar-stimulated Na+ uptake was observed in melibiose-induced cells on the addition of melibiose, thiodigalactoside, methyl-alpha-galactoside, methyl-beta-galactoside, and galactose, but not lactose. It was inferred from these studies that the substrates of the melibiose system enter the cell on the melibiose carrier associated with the simultaneous entry of Na+ when this cation is present in the incubation medium. Extracellular pH was measured in unbuffered suspensions of induced cells in order to study proton movement across the membrane of cells exposed to different galactosides. In the absence of external Na+ or Li+ the addition of melibiose or methyl-alpha-galactoside resulted in marked alkalinization of the external medium (consistent with H+-sugar cotransport). On the other hand TMG, thiodigalactoside, and methyl-beta-galactoside gave no proton movement under these conditions. When Na+ was present, the addition of TMG or melibiose resulted in acidification of the medium. This observation is consistent with the view that the entry of Na+ with TMG or melibiose carries into the cell a positive charge (Na+) which provides the driving force for the diffusion of protons out of the cell. It is concluded that the melibiose carrier recognition of cations differs with different substrates.  相似文献   

2.
The substrate binding reaction of the melibiose carrier was analyzed by studying [3H]p-nitrophenyl-alpha-D-galactopyranoside (Np alpha Gal) binding to de-energized membrane vesicles from Escherichia coli RA11 as a function of H+ and Na+ (or Li+) concentrations. The data indicate first that Na+ (or Li+) activates Np alpha Gal binding at all pH values tested between 5.5 and 7.5 and second that H+ inhibits the Na+ (or Li+)-dependent activating effect on Np alpha Gal binding. Similar conclusions were drawn for melibiose and methyl-1-thio-beta-D-galactoside binding activities. Unexpectedly, Np alpha Gal, melibiose, and methyl-1-thio-beta-D-galactoside binding activities are insensitive to a variety of SH reagents which completely block transport activity. Quantitative analysis of the effects of H+ and Na+ ions on the parameters of Np alpha Gal binding show that 1) the maximal number of binding sites is constant irrespective of the concentration of Na+ or Li+ in the range of pH between 6 and 7.5 and 2) the apparent dissociation constant for Np alpha Gal binding varies with both Na+ and H+ according to a relation described by a linear combination of the concentration of H+ and the reciprocal of Na+ concentration. These results can be accounted for by a model which assumes sequential binding of the cation and substrate in this order and competition between Na+ and H+ for a common cationic binding site on the porter. Predictions of the proposed binding model for a carrier mechanism catalyzing sugar transport according to a Na+ symport mode or a H+ symport mode are discussed.  相似文献   

3.
Escherichia coli K-12 strains in the absence of the lactose carrier grew on the disaccharide melibiose as the sole source of carbon. The presence of 0.1 mM Li+ in the medium strongly inhibited growth of such cells, and Li+-resistant mutants appeared after several days of incubation. These mutants showed altered cation coupling to melibiose transport via the melibiose carrier. Cotransport between H+ and melibiose was lost in the mutants, although Na+-melibiose cotransport was retained. We observed no Li+-melibiose cotransport. Therefore, these mutants represent a new type of cation-coupling mutants of the melibiose carrier.  相似文献   

4.
The mechanism of melibiose symport by the melibiose permease of Escherichia coli was studied by looking at the modifications of the facilitated diffusion properties of the permease which arise upon substitution of the coupled cations (H+, Na+, or Li+). Kinetic analysis of melibiose influx and efflux down a concentration gradient, exchange at equilibrium, and counterflow were examined in de-energized membrane vesicles resuspended in media allowing melibiose to be co-transported with either H+, Na+, or Li+. The data show that the maximal rates of melibiose efflux coupled to either H+, Na+, or Li+ are between 10 and 40 times faster than the corresponding influxes. This suggests that the permease functions asymmetrically. Cross-comparison between the rates of net [3H]melibiose entry during the influx reactions coupled to either cation and corresponding unidirectional sugar inflow during exchange and counterflow reactions leads to the conclusions that: 1) the step involving release of the co-substrates from the permease on the inner surface of the membrane is sequenced (sugar first and then coupled cation); 2) this step is rate determining for cycling of the permease. The Na+-melibiose passive flux data indicate in particular that release of Na+ ions rather than release of sugar into the intravesicular space is the slowest step during permease cycling. This property would hamper net passive Na+-melibiose influx but should allow exchange of sugar without concomitant exchange of the coupled cation. Finally, evidence is provided suggesting that the relative rates of release of the two co-substrates from the permease on the inner membrane surface varied considerably in relation to the identity of the coupled cation.  相似文献   

5.
The melB gene coding for the melibiose carrier of Klebsiella pneumoniae was cloned and sequenced. There were two potential translation initiation sites. It was predicted that the melibiose carrier consists of 471 (or 467) amino acid residues. Seventy-eight percent of the 471 amino acids were identical to the Escherichia coli melibiose carrier. Sugar transport characteristics were studied using an E. coli mel- mutant expressing cloned K. pneumoniae melB gene. Accumulation of melibiose via the K. pneumoniae melibiose carrier was not stimulated by adding NaCl or LiCl which stimulates melibiose accumulation via the E. coli melibiose carrier. Lactose was accumulated only in the presence of LiCl. TMG (methyl-1-thio-beta-D-galactopyranoside) was accumulated in the absence of added NaCl or LiCl. The accumulation was stimulated by LiCl but not by NaCl. Rapid H+ uptake was observed when melibiose or TMG was added to cell suspensions. These results suggest that the preferred cation couplings via K. pneumoniae melibiose carrier are H(+)-melibiose, Li(+)-lactose, and H+/Li(+)-TMG. This coupling spectrum is quite different from that of the E. coli melibiose carrier. It is of special interest that the K. pneumoniae melibiose carrier seems to be lacking the ability to recognize Na+ which is a preferred coupling cation of the E. coli melibiose carrier for all known sugar substrates. Further investigation of these two carriers may give us insight into the Na+ recognition site.  相似文献   

6.
The mechanism of melibiose symport by the melibiose permease of Escherichia coli was investigated by further analyzing the Na+ (H+ or Li+)-coupled facilitated diffusion reactions catalyzed by the carrier in de-energized membrane vesicles, with particular emphasis on the reaction of sugar exchange at equilibrium. It is first shown that melibiose exchange at equilibrium proceeds without concomitant movement of Na+, i.e. the coupled cation is kinetically occluded during the melibiose exchange reaction. These results provide further experimental support for the model of Na+ sugar co-transport of the physiological substrate melibiose previously suggested (Bassilana, M., Pourcher, T., and Leblanc, G. (1987) J. Biol. Chem. 262, 16865-16870) in which: 1) the mechanisms of co-substrate binding to (or release from) the carrier are ordered processes on both the outer (Na+ first, sugar last) and inner membrane surfaces (sugar first, Na+ last) and give rise to a mirror-type model; 2) release of Na+ from the carrier on the inner membrane surface is very slow and rate-limiting for carrier cycling but is fast on the opposite side, contributing to the asymmetrical functioning of the permease. On the other hand, analysis of the exchange of identical sugars (homologous exchange) and different sugar analogs (heterologous exchange) indicates that the overall rate of sugar exchange reaction coupled to Na+ or Li+ is limited by the rate of one (or more) partial step(s) associated with the inflow of co-substrates and most probably by the rate of sugar release into the intravesicular medium. It is proposed that the variability of the facilitated diffusion reactions catalyzed by the carrier in the presence of different coupled cations and/or sugar analogs reflects variations in the rate of co-substrate release from the carrier on the inner membrane surface.  相似文献   

7.
Cation coupling to melibiose transport in Salmonella typhimurium.   总被引:2,自引:2,他引:0       下载免费PDF全文
Melibiose transport in Salmonella typhimurium was investigated. Radioactive melibiose was prepared and the melibiose transport system was characterized. Na+ and Li+ stimulated transport of melibiose by lowering the Km value without affecting the Vmax value; Km values were 0.50 mM in the absence of Na+ or Li+ and 0.12 mM in the presence of 10 mM NaCl or 10 mM LiCl. The Vmax value was 140 nmol/min per mg of protein. Melibiose was a much more effective substrate than methyl-beta-thiogalactoside. An Na+-melibiose cotransport mechanism was suggested by three types of experiments. First, the influx of Na+ induced by melibiose influx was observed with melibiose-induced cells. Second, the efflux of H+ induced by melibiose influx was observed only in the presence of Na+ or Li+, demonstrating the absence of H+-melibiose cotransport. Third, either an artificially imposed Na+ gradient or membrane potential could drive melibiose uptake in cells. Formation of an Na+ gradient in S. typhimurium was shown to be coupled to H+ by three methods. First, uncoupler-sensitive extrusion of Na+ was energized by respiration or glycolysis. Second, efflux of H+ induced by Na+ influx was detected. Third, a change in the pH gradient was elicited by imposing an Na+ gradient in energized membrane vesicles. Thus, it is concluded that the mechanism for Na+ extrusion is an Na+/H+ antiport. The Na+/H+ antiporter is a transformer which converts an electrochemical H+ gradient to an Na+ gradient, which then drives melibiose transport. Li+ was inhibitory for the growth of cells when melibiose was the sole carbon source, even though Li+ stimulated melibiose transport. This suggests that high intracellular Li+ may be harmful.  相似文献   

8.
The entry of Na+ or H+ into cells of Escherichia coli via the melibiose transport system was stimulated by the addition of certain galactosides. The principal cell used in these studies (W3133) was a lactose transport negative strain of E. coli possessing an inducible melibiose transport system. Such cells were grown in the presence of melibiose, washed, and incubated in the presence of 25 μM Na+. The addition of thiomethylgalactoside (TMG) resulted in a fall in Na+ concentration in the incubation medium. No TMG-stimulated Na+ movement was observed in uninduced cells. In an α-galactosidase negative derivative of W3133 (RA11) a sugar-stimulated Na+ uptake was observed in meliboise-induced cells on the addition of melibiose, thiodigalactoside, methyl-α-galactoside, methyl-β-galactoside, and galactose, but not lactose. It was inferred from these studies that the substrates of the melibiose system enter the cell on the melibiose carrier associated with the simultaneous entry of Na+ when this cation is present in the incubation medium.

Extracellular pH was measured in unbuffered suspensions of induced cells in order to study proton movement across the membrane of cells exposed to different galactosides. In the absence of external Na+ or Li+ the addition of melibiose or methyl-α-galactoside resulted in marked alkalinization of the external medium (consistent with H+-sugar cotransport). On the other hand TMG, thiodigalactoside, and methyl-β-galactoside gave no proton movement under these conditions. When Na+ was present, the addition of TMG or melibiose resulted in acidification of the medium. This observation is consistent with the view that the entry of Na+ with TMG or melibiose carries into the cell a positive charge (Na+) which provides the driving force for the diffusion of protons out of the cell. It is concluded that the melibiose carrier recognition of cations differs with different substrates.  相似文献   

9.
In order to investigate the ionic requirements for inositol trisphosphate production, brown adipocytes were prelabelled with myo-[3H]inositol and the formation of inositol trisphosphates and inositol bisphosphates as a consequence of alpha 1-adrenergic stimulation was monitored. Omission of Ca2+ from the incubation medium diminished the norepinephrine-induced increase in inositol trisphosphate levels, but it would seem that this reduction can be fully accounted for by a decreased level of the 'inactive' isomer inositol 1,3,4-trisphosphate. Omission of Na+ fully abolished the norepinephrine-induced inositol trisphosphate response. However, it was observed that the presence of Li+ in the incubation medium could fully reconstitute the ability of the cells to yield the early response of inositol trisphosphate production; Li+ could, however, not substitute for Na+ in the entire alpha 1-adrenergic cellular pathway. It was concluded that the Na+-dependent step is found in the coupling mechanism between the alpha 1-receptor and the activation of the phosphodiesterase responsible for inositol trisphosphate production. Thus, all events in the alpha 1-adrenergic pathway which are consequences of IP3 production should appear to be Na+-dependent in these cells.  相似文献   

10.
We isolated mutants of Escherichia coli which showed Li+-resistant growth on melibiose. The melibiose carrier of the mutants lost the ability to couple to H+, whereas it retained the ability to couple to Na+. The mutated gene, melB, of the mutants was cloned, and the nucleotide sequence was determined. The nucleotide replacements caused the following substitutions of amino acid residues in the melibiose carrier: Pro-142 with Ser, Leu-232 with Phe, or Ala-236 with Thr or Val. These amino acid residues are located in slightly hydrophobic regions of the melibiose carrier. The results provide strong support for the idea that such regions or their vicinities which contain those amino acid residues play an important role in H+ (or Li+) recognition or H+ (or Li+) transport by the melibiose carrier.  相似文献   

11.
Revertants that showed normal cation recognition for melibiose transport were isolated from mutants with altered cation recognition (W3133-2S and W3133-2T) of Escherichia coli. Although the original two mutants possessed a second alteration, an increased activity of the Na+(Li+)/H+ antiporter, the revertants, which possessed the normal melibiose carrier, still showed altered properties of the Na+(Li+)/H+ antiporter. These results support the view that the alterations in the melibiose carrier and in the Na+(Li+)/H+ antiporter, observed in the mutants, are not genetically linked.  相似文献   

12.
The mechanism of melibiose transport was studied in cells containing plasmid pAA22 which expresses the mutant lactose carrier (serine-306 to leucine) cloned from Escherichia coli AA22. These studies were of interest because several lines of evidence suggested that the AA22 mutation conferred novel properties upon the lactose carrier, decreasing turnover with several beta-galactoside substrates, increasing turnover with melibiose, and abolishing active accumulation even though equilibration occurred via symport with H+. Although severely defective in active melibiose accumulation, the present study indicates that in cells poisoned with azide the AA22 carrier does in fact equilibrate melibiose across the membrane more rapidly than the normal lactose carrier. Similarly, melibiose efflux from cells preloaded with melibiose was more rapidly catalyzed by the AA22 carrier than by the normal carrier (pH 7.0). Furthermore, although external H+ did reduce net melibiose efflux to a rate slower than seen in equilibrium exchange, a lower than normal pH was required to achieve this effect. Therefore, at pH 7.0, the AA22 carrier (but not the normal carrier) catalyzed net efflux at a rate approaching that for the exchange process (which was pH-resistant in both the mutant and the parent). At pH 8.0 both the AA22 carrier and the normal carrier catalyzed net melibiose efflux at a rate identical to the equilibrium exchange rate. We suggest (i) that the sensitivity of melibiose efflux to external pH indicates that during efflux the AA22 carrier interacts with protons in a manner similar to the normal carrier (i.e., sugar is cotransported with H+) and hence the absence of accumulation is not explained by internal leak via a binary carrier-melibose complex; and (ii) that the modest increase in rate constants for melibiose exit reflect small changes in activation energy (1 kcal/mol) consistent with a steric mechanism possibly involving van der Waals contacts.  相似文献   

13.
An aspartic residue (Asp55) located in the putative transmembrane alpha-helix II of the melibiose(mel) permease of Escherichia coli was replaced by Cys using oligonucleotide-directed, site-specific mutagenesis. Although D55C permease is expressed at 0.7 times the level of wild type permease, the mutated mel permease loses the ability to catalyse Na+ or H+ coupled melibiose transport against a concentration gradient. (3H) p-nitrophenyl-alpha-D-galactoside (NPG) binding studies demonstrated that D55C permease binds the sugar co-substrate but Na+ (or Li+) ions do no longer enhance the affinity of D55C permease for the co-transported sugar. In addition sugar binding on D55C permease but not on wild type permease is inactivated by sulfhydryl reagents and the inhibition protected by an excess of melibiose. These observations suggest 1) that the negatively-charged Asp55 residue, expected to be within the membrane embedded domain near the NH2 extremity of mel permease, is in or near the Na(+)-binding site and 2) that the cation and sugar binding sites may be overlapping.  相似文献   

14.
Proton influx was measured after imposition of an electrochemical potential difference for protons (delta muH+) across the cell membrane of the anaerobe, Streptococcus lactis. As delta muH+ was increased, there was an approximately parallel increase in proton entry, until delta muH+ attained 175 to 200 mV. At this point, a new pathway became available for proton entry, allowing an abrupt increase in both the rate and extent of H+ influx. This gated response depended upon the value of delta muH+ itself, and not upon the value of either the membrane potential or the pH gradient. For delta muH+ above 175 to 200 mV, elevated proton entry occurred only in cells having a functional membrane-bound Ca2+-stimulated, Mg2+stimulated adenosine 5'-triphosphatase (EC 3.6.1.3). When present, elevated proton entry coincided with the appearance of net synthesis of adenosine 5'-triphosphate catalyzed by this adenosine 5'-triphosphatase. These observations demonstrate that membrane-bound adenosine 5'-triphosphatase catalyzes an obligatory coupling between the inward movement of protons and synthesis of adenosine 5'-triphosphate.  相似文献   

15.
Extrusion of sodium ion from cells of Escherichia coli was measured using an Na+ electrode. When oxygen was supplied to an anaerobic cell suspension, extrusion of Na+ was observed. The addition of glucose under anaerobic conditions also caused Na+ efflux. The extrusion of Na+ energized by respiration and glycolysis was completely inhibited by a proton conductor, carbonyl cyanide m-chlorophenylhydrazone. These observations are consistent with the view that Na+ transport occurs secondarily to H+ circulation. Interestgly, induction of the melibiose transport system, which is coupled to Na+, greatly enhanced Na+ transport activity.  相似文献   

16.
Guan L  Jakkula SV  Hodkoff AA  Su Y 《Biochemistry》2012,51(13):2950-2957
The melibiose permease of Salmonella typhimurium (MelB(St)) catalyzes symport of melibiose with Na(+), Li(+), or H(+), and bioinformatics analysis indicates that a conserved Gly117 (helix IV) is part of the Na(+)-binding site. We mutated Gly117 to Ala, Pro, Trp, or Arg; the effects on melibiose transport and binding of cosubstrates depended on the physical-chemical properties of the side chain. Compared with WT MelB(St), the Gly117 → Ala mutant exhibited little difference in either cosubstrate binding or stimulation of melibiose transport by Na(+) or Li(+), but all other mutations reduced melibiose active transport and efflux, and decreased the apparent affinity for Na(+). The bulky Trp at position 117 caused the greatest inhibition of melibiose binding, and Gly117 → Arg yielded less than a 4-fold decrease in the apparent affinity for melibiose at saturating Na(+) or Li(+) concentration. Remarkably, the mutant Gly117 → Arg catalyzed melibiose exchange in the presence of Na(+) or Li(+), but did not catalyze melibiose translocation involving net flux of the coupling cation, indicating that sugar is released prior to release of the coupling cation. Taken together, the findings are consistent with the notion that Gly117 plays an important role in cation binding and translocation.  相似文献   

17.
The Escherichia coli lactose carrier is an energy-transducing H+/galactoside cotransport protein which strictly couples sugar and proton transport in 1:1 stoichiometry. Here we describe five lactose carrier mutants which catalyze "uncoupled" sugar-independent H+ transport. Symptoms similar to uncoupling by a proton ionophore have been observed in cells expressing these mutant carriers. The mutations occur at two separate loci, encoding substitutions either for alanine 177 (valine) or tyrosine 236 (histidine, asparagine, phenylalanine, or serine). Compared to the parent, cells expressing the valine 177 carrier grew slowly on minimal media with glucose as carbon source. When washed cells were incubated in the absence of added sugars the mutant showed a reduced protonmotive force compared with the parent. Addition of either thiodigalactoside or alpha-p-nitrophenylgalactoside reduced the defect in protonmotive force. Sugar-independent H+ entry rate into cells expressing either the normal carrier or the Val-177 mutant were measured directly using the pH electrode. Following sudden acidification of the external medium (by either oxygen-pulse or acid-pulse) protons entered more rapidly into cells expressing the Val-177 carrier. This novel sugar-independent mode of H+ transport probably depends on an acquired capacity of the Val-177 carrier to bind the transported proton with higher than normal affinity in a transition state involving the binary carrier/H+ complex.  相似文献   

18.
A study has been made of the sugar substrate specificities and the cation specificities of the melibiose transport system of Escherichia coli. The following beta-galactosides were found to be transported: lactose, L-arabinose-beta-D-galactoside, D-fructose-beta-D-galactoside, o- and p-nitrophenyl-beta-D-galactosides. These beta-galactosides were cotransported with Na+ but not with H+. The alpha-galactosides raffinose, melibiose and p-nitrophenyl-alpha-galactoside were transported with either H+ or Na+. Of the monosaccharides tested D-galactose could use either Na+ or H+ for cotransport whereas D-fucose, L-arabinose and D-galactosamine could use only Na+. The sugar specificity requirements for H+ cotransport are therefore more exacting than those for Na+ cotransport.  相似文献   

19.
alpha 2-Adrenergic receptors (alpha 2-AR) are negatively coupled to adenylyl cyclase via the GTP-binding protein Gi. However, inhibition of adenylylcyclase does not account for many effector cell responses to alpha 2-AR agonists, suggesting that the receptor can couple to other signal transduction pathways. One potential pathway may be the stimulation of Na+/H+ exchange elicited by alpha 2-AR activation in renal proximal tubule cells, platelets, and the NG-10815 cell line. To determine whether the various receptor-effector coupling mechanisms operate in a tissue-specific manner, we studied the effect of alpha 2-AR activation on basal and stimulated Na+/H+ exchange in epithelial cells isolated from human colon (HT-29 adenocarcinoma cells). Na+/H+ exchange was measured by quantitation of intracellular hydrogen ion concentration (acetoxymethyl ester 2,7-biscarboxyethyl-5(6)carboxyfluorescein) and 22Na+ uptake. HT-29 cells expressed an amiloride-sensitive Na+/H+ exchanger that was activated by reduction of intracellular pH (pHi) to 6.0 but was quiescent at a physiological pHi. The rapid alkalinization observed after acid loading (0.57 +/- 0.07 pH units/min/10(4) cells) was dependent on external sodium and was blocked by amiloride (Ki approximately 2.1 microM). Although epinephrine and the selective alpha 2-AR agonists clonidine and UK-14304 inhibited forskolin-activated adenylylcyclase, these compounds did not alter basal Na+/H+ exchange. Stimulated Na+/H+ exchange was similarly unaffected by epinephrine. In contrast, stimulated Na+/H+ exchanger activity was completely inhibited by the selective alpha 2-agonists clonidine, UK-14304, and guanabenz. This inhibitory effect was not blocked by the alpha 2-AR antagonist rauwolscine, and it is likely due to a direct interaction with the exchanger molecule itself. Structure/activity studies indicated that the compounds inhibiting exchanger activity possess either an imidazoline or guanidinium moiety. Although these molecules bear structural similarity to amiloride, they did not inhibit the amiloride-sensitive epithelial sodium channel in toad urinary bladder, suggesting that these compounds may be useful as "amiloride-like" ligands selective for the Na+/H+ exchanger. These data indicate that in the HT-29 intestinal cell line, in contrast to observations in other tissues, alpha 2-adrenergic receptors are not coupled to the Na+/H+ exchanger, suggesting that the cell-signaling mechanisms utilized by the alpha 2-AR are tissue specific.  相似文献   

20.
Recent investigations have indicated that cellular rheogenic properties may interfere with the correct estimation of Na+ and amino transport stoichiometry. We have reevaluated the stoichiometry of Na+ and alpha-aminoisobutyric acid (alpha-AIB) cotransport in Ehrlich ascites tumor cells depleted of Na+ and ATP by incubation in Na+-free HEPES-buffered medium (pH 7.2) containing 160 mM K+ and 2.5 microM valinomycin. Transfer of the cells to a medium with 10 mM 22Na+, 10 mM 3H-AIB, and 150 mM K+ resulted in an enhancement of Na+ flux above basal levels, which represents 0.6 of the AIB uptake. Under these conditions the membrane potential, -7.0 +/- 0.1 mV (SEM), does not change with the addition of AIB, -7.3 +/- 0.6 mV (SEM). HgCl2 (10 microM) added to the medium inhibited AIB flux and AIB-stimulated Na+ flux by 45-50% but did not change the coupling ratio. HgCl2 (10 microM) does not inhibit the basal Na+ flux nor does it affect cellular Na+ or K+ content. In physiological medium cotransport is electrogenic. The membrane potential of Ehrlich cells in physiological medium is -22.3 +/- 0.8 mV (SEM) and depolarizes to -16.7 +/- 0.7 mV (SEM) upon addition of AIB. Under these conditions the coupling ratio was highly variable but the ratio of codepression is 0.90 +/- 0.02 (SEM) in the presence of HgCl2 (10 microM). These results are consistent with a model (Smith and Robinson, 1981) in which the stoichiometry is one cosubstrate molecule per molecule of alpha-AIB. We suggest that H+ provides the alternative cosubstrate in this low Na+ environment and that in high Na+ medium the Na+:AIB stoichiometry approaches 1:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号