共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seed dormancy and germination. 总被引:25,自引:0,他引:25
3.
The metabolism of organic dormancy-breaking chemicals is poorly defined and may provide clues to their mode of action. Therefore, hydrated, dormant seeds of red rice ( Oryza sativa L.) were exposed to dormancy-breaking treatments of propionate-2-13 C (22 m W ) or propanol-1-13 C (75 m M ) for 24 h at 30°C. Embryo extracts were analyzed by 13 C-nuclear magnetic resonance spectroscopy. Metabolism of propionate and propanol to 3-hydroxypropionate, an intermediate of the modified β-oxidation pathway, was detected after 2 and 4 h, respectively. This occurred prior to the onset of dormancy-breaking which required 12 h of chemical exposure. Accumulation of 3-hydroxypropionate was rapid and linear in the embryos of propionate-treated seeds. In the embryos of propanol-treated seeds, the level of 3-hydroxypropionate reached a plateau at 4 h. Following 24 h of contact with propionate, labeled citrate was detected in the embryos. The decrease in tissue pH associated with the dormancy-breaking process was fully accounted for by direct acid uptake and metabolic production of 3-hydroxypropionate. 相似文献
4.
5.
Nitrogen dioxide at 4 to 8 ml 1−1 breaks dormancy of dehulled, unimbibed seeds of red rice ( Oryza sativa L.) with minimum exposure times to the gas of 20 min or less. The response is independent of incubation medium pH following treatment. Germination is complete within 2 days but proceeds 4 to 6 h more slowly than non-dormant controls. The magnitude of response at a constant NO2 dose is dependent upon initial seed moisture. There was less than 40% germination at 9.6% initial moisture while germination was 95% at 12% initial moisture. NO2 treatment also breaks dormancy of imbibing, dehulled seeds, but the response is dependent upon the pH of the medium. Dormancy is broken at pHs close to the pKa of nitrous acid. Intact, unimbibed or imbibing seeds respond to NO2 treatment only if partially dry-afterripened prior to exposure. 相似文献
6.
Hydrogen cyanide and embryonal dormancy in apple seeds 总被引:3,自引:0,他引:3
Embryos of apple ( Malus domestica Borh. cv. Antonówka) were treated with 1 m M gaseous HCN for 6 h and cultured under a 12 h photoperiod. HCN pretreatment stimulated germination, increased the length of hypocotyls, shortened the main root and decreased the percentages of seedlings with asymmetrically grown as well as with asymmetrically greened cotyledons. High activity of β-cyanoalanine synthase (EC 4.4.1.9) and a sharp increase in cyanogen content during embryo culture suggested very low levels of endogenous HCN. despite the activity of HCN releasing enzymes. The obtained data allow us to postulate an important role for cyanide in the regulatory complex controlling dormancy in apple seeds. Experiments with respiratory inhibitors indicated, however, that HCN pretreatment affected neither the alternative electron transport pathway nor residual respiration. 相似文献
7.
On the role of abscisic acid in seed dormancy of red rice 总被引:2,自引:0,他引:2
Abscisic acid (ABA) is commonly assumed to be the primary effector of seed dormancy, but conclusive evidence for this role is lacking. This paper reports on the relationships occurring in red rice between ABA and seed dormancy. Content of free ABA in dry and imbibed caryopses, both dormant and after-ripened, the effects of inhibitors, and the ability of applied ABA to revert dormancy breakage were considered. The results indicate: (i) no direct correlation of ABA content with the dormancy status of the seed, either dry or imbibed; (ii) different sensitivity to ABA of non-dormant seed and seed that was forced to germinate by fluridone; and (iii) an inability of exogenous ABA to reinstate dormancy in fluridone-treated seed, even though applied at a pH which favoured high ABA accumulation. These considerations suggest that ABA is involved in regulating the first steps of germination, but unidentified developmental effectors that are specific to dormancy appear to stimulate ABA synthesis and to enforce the responsiveness to this phytohormone. These primary effectors appear physiologically to modulate dormancy and via ABA they effect the growth of the embryo. Therefore, it is suggested that ABA plays a key role in integrating the dormancy-specific developmental signals with the control of growth. 相似文献
8.
BACKGROUND AND AIMS: The relationship between ethylene production and both seed dormancy and germination was investigated using red rice (weedy rice) as a model species. METHODS: Both fully dormant and after-ripened (non-dormant) naked caryopses were incubated with or without inhibitors of ethylene synthesis [aminoethoxyvinylglycine (AVG)] and perception [silver thiosulfate (STS)], or in the presence of the natural ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of ethylene emissions were measured with a sensitive laser-photoacoustic system. KEY RESULTS: Dormant red rice caryopses did not produce ethylene. In non-dormant caryopses, ethylene evolution never preceded the first visible stage of germination (pericarp splitting), and ethylene inhibitors completely blocked ethylene production, but not pericarp splitting. Accordingly, endogenous ACC appeared to be lacking before pericarp splitting. However, early seedling growth (radicle or coleoptile attaining the length of 1 mm) followed ethylene evolution and was delayed by the inhibitors. Wounding the dormant caryopses induced them to germinate and produce ethylene, but their germination was slow and pericarp splitting could be speeded up by ethylene. CONCLUSIONS: The findings suggest that, in red rice, endogenous ethylene stimulates the growth of the nascent seedling, but does not affect seed dormancy or germination inception. Correspondingly, this phytohormone does not play a role in the dormancy breakage induced by wounding, but accelerates germination after such breakage has occurred. 相似文献
9.
10.
11.
Formate dehydrogenase (EC 1.2.1.2) prepared from peas (Pisum sativum) was a two-subunit enzyme. The enzyme accelerated the formation of an NAD+-cyanide compound having an adsorption band at 330 nm. The enzyme was able to bind one NAD+ molecule per each subunit but only 1 mole of NAD+-cyanide compound was formed per two subunits. The complex of NAD+, cyanide, and the enzyme was very stable and had no catalytic activity. Azide inhibited the formate dehydrogenase reaction in two different ways. By incubation of the enzyme with azide in the presence of NAD+, half of its catalytic activity was lost. The remaining activity was also inhibited by azide but this inhibition was removed competively by formate. Contrary to the case of cyanide the inhibition by azide could be removed by dialysis and no spectral species due to the addition compound of NAD+ and azide could be observed. The data from double recipricol plots of the initial velocity and the formate concentration led to a conclusion that formate dehydrogenase has two sites with about equal catalytic activity. The Km for formate was different for the two catalytic sites (1.67 and 6.25 mM) but the difference was not noticeable in the case of the Km for NAD+. 相似文献
12.
Acetone condensation products reported to have growth regulatingproperties were tested for their effects on seed germination.The active compoundsisoxylitones, isophorone, diacetonealcohol and phorone inhibited seed germination. The degree ofinhibition depends on the particular compound, its concentration,and the light and temperature environment of the imbibed seeds.Germination studies involving light quality, light energiesand temperature, and light microscope studies indicated little,if any, penetration of the chemicals into the seed but rathersurface effects. The results suggest that the chemicals inducedmembrane impermeability which was partially relieved by redlight and by a brief high-temperature treatment. (Received May 10, 1976; ) 相似文献
13.
Missio A Marchioro C Rossi T Panunzio M Selva S Seneci P 《Biotechnology and bioengineering》2000,71(1):38-43
The support of a delicate reagent on a solid matrix allows for better and safer handling of the reagent itself. Because we had an interest in silicon-based supported reagents(1) we turned our attention to a polymer-supported trialkylsilyl cyanide and trialkylsilyl azide starting from a commercially available trialkylsilane resin. The supported cyanide was obtained with excellent yield and proved to be shelf-stable. This supported reagent was reacted with a series of aldehydes and ketones yielding the corresponding polymer-supported cyanohydrins in good-to-excellent yields. A stability study on a model cyanohydrin demonstrated that these supported intermediates also can be stored for a prolonged time. For the last step, a cleavage strategy that could release either cyanohydrins or alpha-hydroxy esters was adopted. Finally, we prepared a polymer-supported trialkylsilyl azide, which also proved to be shelf-stable. 相似文献
14.
Abstract. Many Rumex species show similar seed dormancy characteristics but there is more information concerning R. crispus and R. obtusifolius than other species. These species respond positively to red or white light. Far-red light applied for short periods may promote or inhibit germination depending on the timing of the irradiation in relation to temperature change; but long periods of far-red inhibit germination. Seeds may also be stimulated to germinate in the dark by low-temperature stratification at 15°C or less providing the temperature of the seeds is subsequently raised to a minimum of about 15°C. Seeds can, however, germinate at lower temperatures providing they have received other appropriate stimulatory treatment. Seeds also respond to alternating temperatures. In a diurnal cycle the minimum upper temperature required is about 15°C and the maximum lower temperature is about 25°C. The optimum period spent at the upper temperature is about 8 h when it is 15–25°C but the optimum period decreases as the upper temperature is increased above this range so that at 45°C, for example, it is only about 30 min. The period spent at the lower temperature in a diurnal cycle is not critical. Providing these criteria are met, the percentage germination increases with the number and amplitude of the cycles. The warming part of the cycle is necessary for the response but so far there is no convincing evidence that cooling itself is important. Secondary dormancy is induced at constant temperatures at a rate dependent on temperature, but apparently only in the presence of oxygen. This feature affects the optimum timing of a temperature change or exposure to light. Strong positive interactions are shown between stimulatory temperature treatments and white or red light. Unlike many other weed species the seeds respond only slightly to nitrate ions. The implications of these responses are discussed in relation to field behaviour. 相似文献
15.
16.
岷谷木蓝(Indigofera lenticellata)是横断山区干旱河谷广泛分布的豆科灌木.本文对其种子的休眠与萌发特征进行了研究.结果表明:岷谷木蓝种子具有物理休眠,其萌发困难的原因在于种皮的不透水性;种子的硬实比率高(85%),针刺种皮和沙摩处理能有效打破种子休眠,提高发芽率,其中沙摩7 h最为快速有效.岷谷木蓝种子发芽温度范围较广,10℃~30℃均可发芽,最适温度范围为20℃~30℃,低温不利于种子萌发.岷谷木蓝具有一定的抗旱性,在聚乙二醇6000(PEG)溶液模拟水分胁迫条件下,种子在25% PEG胁迫下仍能达到100%的发芽率,但水分胁迫对种子发芽有一定的延缓作用,发芽率和发芽速度降低,发芽周期和发芽准备期增长,发芽高峰期滞后.其中对于发芽能力检测的各项指标对水分胁迫的敏感性顺序为发芽指数>发芽势>发芽率.岷谷木蓝种子的发芽特征是对干旱河谷生存环境长期适应的结果.野外播种的适宜时间为4月初,并在播种前对种子进行7 h的沙摩处理. 相似文献
17.
The seeds of many plant species are dormant at maturity and dormancy loss is a prerequisite for germination. Numerous environmental and chemical treatments are known to lessen or remove seed dormancy, but the biochemical changes that occur during this change of state are poorly understood. Several lines of research have implicated nitric oxide (NO) as a participant in this process. Here, we show that dormant seeds of Arabidopsis thaliana (L.) Heynh. will germinate following treatment with the NO donor sodium nitroprusside (SNP), cyanide (CN), nitrite or nitrate. In all cases, the NO scavenger c-PTIO effectively promotes the maintenance of seed dormancy. c-PTIO does not, however, inhibit germination of fully after-ripened seeds, and c-PTIO does not interact directly with nitrite, nitrate or CN. We also show that volatile CN effectively breaks dormancy of Arabidopsis seeds, and that CN is the volatile compound in SNP that promotes dormancy loss. Our data support the hypothesis that NO is a signaling molecule that plays an important role in the loss of seed dormancy. 相似文献
18.
Seed dormancy in Avena fatua: Interacting effects of nitrate, water and seed coat injury 总被引:1,自引:0,他引:1
In experiments conducted under controlled conditions. KNO3 (50 or 100 m M ) promoted germination of a dormant strain (AN 474) of Avena fatua when either one or two holes were pierced in the lower (adaxial) surface of the caryopsis in contact with the nitrate solution. Germination was increased by increasing either the KNO3 concentration or the number of holes in the seed coat. The germination response induced by the application of water to a hole pierced in the upper surface of the caryopsis was. increased by pre-treatment of the intact caryopsis with KNO3 . Treatment with either 50 or 100 m M KNO3 caused a transient reduction in embryo water content of intact cary-opses, but increased the nitrate and amino- N content of pierced caryopses prior to germination. Supplying a 100 m M solution of KNO3 to pierced caryopses reduced the total water potential and osmotic potential of the embryo, and increased its pressure potential by the same amount as an equimolar solution of KC1; however, while both treatments promoted germination, the KNO3 induced more rapid germination than the KCI. Both treatments also increased the K+ content of the embryo, the KNO3 again having the greater effect. These results are consistent with the hypothesis, based on our previous investigations, that KNO3 promotes germination of dormant caryopses by accumulating in the embryo where it acts osmotically to increase water uptake. It is also postulated, that, in contrast to KCI, KNG3 may combine an osmotic effect on water uptake with a nutritional effect on protein synthesis. 相似文献
19.
Sodium nitroprusside, nitroglycerin, sodium azide and hydroxylamine increased guanylate cyclase activity in particulate and/or soluble preparations from various tissues. While sodium nitroprusside increased guanylate cyclase activity in most of the preparations examined, the effects of sodium azide, hydroxylamine and nitroglycerin were tissue specific. Nitroglycerin and hydroxylamine were also less potent. Neither the protein activator factor nor catalase which is required for sodium azide effects altered the stimulatory effect of sodium nitroprusside. In the presence of sodium azide, sodium nitroprusside or hydroxylamine, magnesium ion was as effective as manganese ion as a sole cation cofactor for guanylate cyclase. With soluble guanylate cyclase from rat liver and bovine tracheal smooth muscle the concentrations of sodium nitroprusside that gave half-maximal stimulation with Mn2+ were 0.1 mM and 0.01 mM, respectively. Effective concentrations were slightly less with Mg2+ as a sole cation cofactor. The ability of these agents to increase cyclic GMP levels in intact tissues is probably due to their effects on guanylate cyclase activity. While the precise mechanism of guanylate cyclase activation by these agents is not known, activation may be due to the formation of nitric oxide or another reactive material since nitric oxide also increased guanylate cyclase activity. 相似文献
20.
Orozco-Segovia A Márquez-Guzmán J Sánchez-Coronado ME Gamboa de Buen A Baskin JM Baskin CC 《Annals of botany》2007,99(4):581-592
BACKGROUND AND AIMS: There is considerable confusion in the literature concerning impermeability of seeds with 'hard' seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. METHODS: The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. KEY RESULTS: A germination valve and a water channel are formed in the hilum-micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. CONCLUSIONS: Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. 相似文献