首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analog of sheep insulin which differs from the parent molecule in that the C-terminal amino acid residue of the A chain, asparagine, is replaced by arginine, has been synthesized and isolated in highly purified form. The [Arg21] A chain of sheep insulin was synthesized by the fragment condensation approach and isolated as the S-sulfonated derivative. Conversion of the latter into the sulfhydryl form and interaction with the S-sulfonated B chain of bovine (sheep) insulin yielded [Arg21-A] sheep insulin, which was purified by chromatography on a carboxymethylcellulose column with an exponential sodium chloride gradient. The [Arg21-A] sheep insulin shows potencies of 10.5--12.5 IU/mg when assayed by the mouse convulsion method and 8.6 IU/mg by the radioimmunoassay method (cf. 23--25 IU/mg for the natural hormone). It has been suggested that in the insulin molecule the A21 asparagine participates in salt bridge- and hydrogen bond-forming interactions which are critical in the biological activity of the hormone. Although the [Arg21-A] analog still retains these interactions, it is only ca. 50% as active as the natural hormone. It is speculated that other factors than the above mentioned interactions come into play, which involve the side chain of the A21 amino acid residue and affect the biological activity of the hormone.  相似文献   

2.
Gonadotropin-releasing hormone (GnRH) receptors were solubilized from rat pituitary membrane preparations in an active form by using the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid). The solubilized receptor exhibits high affinity, saturability, and specificity. The soluble supernatant retained 100% of the original binding activity when stored at 4 or -20 degrees C in the presence of 10% glycerol. The receptors were resolved into two components on the basis of chromatography on wheat germ agglutinin-agarose. Homogeneous receptor preparation was obtained by two cycles of affinity chromatography on immobilized avidin column coupled to [biotinyl-D-Lys6]GnRH. The overall recovery of the purified receptor was 4-10% of the initial activity in the CHAPS extract, and the calculated purification -fold was approximately 10,000 to 15,000. Analysis of iodinated purified GnRH receptors by autoradiography indicated the presence of two bands, Mr = 59,000 and 57,000. This was confirmed by photoaffinity labeling of the partially purified receptors and suggests that both components can specifically bind the hormone.  相似文献   

3.
酵母3-脱氧葡糖醛酮代谢酶的分离纯化及部分性质   总被引:1,自引:0,他引:1  
3-脱氧葡糖醛酮 ( 3- deoxyglucosone)是美拉德反应的主要中间产物 ,对生物体具有毒性作用 .用硫酸铵分部沉淀、DEAE- cellulose52、Hydroxyapatite、DEAE- Sepharose CL- 6B柱层析从酿酒酵母 YBr-M( S.cerevisiae YBr-M)抽提液中分离纯化了 3-脱氧葡糖醛酮代谢酶 (以 NADPH为辅酶 ) .该酶是单一的分子 ,分子量为 44k D,反应最适 p H为 7.0 ,p H6.0~ 8.0之间酶活性相对稳定 ,以 3-脱氧葡糖醛酮为底物的米氏常数 Km 为 2 .2 5mmol/ L.在 35℃以下保温 30 min酶活不变 ,50℃保温 30 min后酶活损失 50 % .该酶对二羰基化合物的活性较高 ,对单羰基化合物则较低 ,其催化作用受碘乙酸、N-乙基顺丁烯二酰亚胺的抑制 ,而被β-巯基乙醇、二硫苏糖醇激活 ,催化作用必须以 NADPH为专一辅酶 ,当用 NADH代替 NADPH时 ,活力只有 5.3% .  相似文献   

4.
从猪胰脏的酸醇提取液中纯化了一个新的活性多肽——胰岛素拮抗肽,它在整体和细胞水平上对胰岛素都有明显的拮抗作用。猪胰脏的酸醇提取液经CM-52、BioGel P-6、DEAE-52及RP-HPLC纯化后,可得到纯的胰岛素拮抗肽。它能剂量相关地抑制胰岛素在离体大鼠脂肪细胞中的促脂合成活性,抑制50%胰岛素活性时所需的胰岛素拮抗肽为2.0×10~(-10)mol/L与被拮抗的胰岛素剂量在同一水平上。该肽含有较多的碱性氨基酸,分子量的3 000,其N-末端是封闭的。胰岛素拮抗肽的上述理化特征及其对胰岛素的拮抗活性均不同于目前已知的胰脏活性多肽。它对脂肪细胞中胰岛素的拮抗作用可能具有重要的生理意义。  相似文献   

5.
Although previous studies from this and other laboratories have extensively characterized insulin degrading activity in animal tissues, little information has been available on insulin responsive human tissues. The present study describes the insulin degrading activity in skeletal muscle from normal human subjects. Fractionation of a sucrose homogenate of skeletal muscle demonstrated that 97% of the total neutral insulin degrading activity was in the 100 000 × g supernatant with no detectable glutathione-insulin transhydrogenase activity. The 100 000×g pellet contained 85% of the total acid protease activity and all the glutathione-insulin transhydrogenase activity. The soluble insulin degrading activity was purified 1400-fold by ammonium sulfate fractionation, molecular exclusion, ion-exchange and affinity chromatography. Enzymatic activity was determined by measuring an increase in trichloroacetic acid-soluble products of the 125I-labeled hormone substrates. The purified enzyme showed marked proteolytic specificity for insulin with a Km of 1.63·10?7 M (±0.32) and was competitively inhibited by proinsulin and glucagon with Ki values of 2.1 · 10?6 M and 4.0 · 10?6 M, respectively. This insulin protease exhibited a pH optimum between 7 and 8, a molecular weight of 120 000 and was capable of degrading glucagon. Inhibition studies demonstrated that a sulfhydryl group is essential for activity. Molecular exclusion chromatography of [125I]insulin degraded products revealed a time-dependent increase in degradation products with molecular weights intermediate between intact insulin and iodotyrosine. These studies demonstrate that the major enzymatic system responsible for insulin degrading activity is a soluble cysteine protease capable of rapidly metabolizing insulin under physiologic conditions.  相似文献   

6.
A substrate for the insulin receptor kinase in 3T3-L1 adipocytes has previously been identified as the adipocyte lipid-binding protein (ALBP, also known as aP2 or p15). We have characterized the effect of tyrosyl phosphorylation on ALBP structure and ligand-binding properties. Phosphorylated ALBP (phospho-ALBP) was isolated by a combination of gel filtration, anion exchange chromatography, and immunoaffinity chromatography on anti-phosphotyrosine agarose. Circular dichroic spectroscopy indicated that the phosphoprotein was similar in structure to native ALBP. Phospho-ALBP exhibited a slight decrease in calculated alpha-helical content which was compensated for by an increase in beta-sheet structure. The wavelength yielding maximum tryptophan fluorescence was unaltered by phosphorylation (334 +/- 1 nm). However, the concentration of guanidine HCl yielding 50% denaturation was 1.43 M for ALBP and 0.92 M for phospho-ALBP. The delta Goapp was 3.87 and 3.25 kcal mol-1 for ALBP and phospho-ALBP, respectively, suggesting that phosphorylation destabilized the protein. To assess the binding characteristics of the phosphoprotein, a long-chain fatty acid affinity column was synthesized to which native ALBP specifically bound. In contrast, phospho-ALBP showed little or no affinity for the column. Furthermore, phosphorylation virtually abolished binding of the fluorescent fatty acid analogue 12-(9-anthroyloxy)oleic acid. Fatty acid binding activity was recovered (approximately 60%) upon dephosphorylation with protein tyrosine phosphatase. The structural studies, coupled with the crystal structure of the apoprotein, indicate that the dramatic reduction in binding affinity is likely a result of steric hindrance in the binding cavity or of electrostatic interactions of the phosphoryl group with the fatty acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Insulin of the Black Sea rockfish Scorpaena porcus was isolated, purified, and the primary sequence has been determined. The hormone amino acid sequence has been established: the A chain—GIVEQCCNRPCNIFDLQNYCN, and the B chain—AAGPQHLCGSHLVDALYLVCGDRGFFYNPK. The rockfish insulin, in comparison with the human one, has 14 amino acid substitutions; an additional alanine is present at the N-terminal of the B-chain, whereas the 30th amino acid at the C-terminal is absent. In in vitro experiment, the 50% inhibition of the pork 125I-insulin binding to the rat liver plasma membrane was 4 nM, i.e., 50% of the standard pork insulin affinity (2 nM) to the insulin receptors. The pork rockfish insulin biological activity as determined in the mouse convulsion test in vivo was 18 ± 2.2 ME/mg or 75% of the pork hormone activity. It is suggested that the relatively low rockfish insulin biological activity is due to the presence of A8 asparagine position in the hormone structure  相似文献   

8.
Insulin hexamethyl ester was digested by trypsin. The resulting desoctapeptide-(B23 - 30)-insulin pentamethyl ester was purified. This compound was digested by carboxypeptidase B to remove the arginine residue B22 at the end of the B chain. Then the N-terminal amino groups of the remaining desnonapeptide-(B22 - 30)-insulin pentamethyl ester were protected with the Boc residue. The free carboxyl group of the glutamic acid residue B21 of this product was coupled to the following synthetic tetrapeptide esters: Arg-Gly-Phe-Phe-OMe, Lys(Boc)-Gly-Phe-Phe-OMe, Orn(Boc)-Gly-Phe-Phe-OMe, Cit-Gly-Phe-Phe-OMe, Ala-Gly-Phe-Phe-OMe and Gly-Gly-Phe-Phe-OMe. The syntheses of these peptide esters are described. After removal of all protecting groups, despentapeptide-insulin (B22-Arg) and analogues of this product with variation in position B22 could be obtained. They were purified by column chromatography. The biological activities of these components were determined by the mouse fall test. In the case of despentapeptide insulin (C-terminus Arg-Gly-Phe-Phe), the activity rose to the expected value of 34%. The insulin variants with amino acid residues other than arginine in position B22 had much lower activities: with lysine 13%, with ornithine 12%, with citrulline 9%, with alanine 8% and with glycine 6%. Desnonapeptide-insulin by itself posses an activity of 3%. These results demonstrate once more the essential nature of arginine residue B22 for insulin activity.  相似文献   

9.
A high-molecular-weight (250 000) bile salt hydrolase (cholylglycine hydrolase, EC 3.5.-.-) was isolated and purified 128-fold from the "spheroplast lysate" fraction prepared from Bacteroids fragilis subsp. fragilis ATCC 25285. The intact enzyme had a molecular weight of approx. 250 000 as determined by gel infiltration chromatography. One major protein band, corresponding to a molecular weight of 32 500, was observed on 7% sodium dodecyl sulfate polyacrylamide gel electrophoresis of pooled fractions from DEAE-cellulose column chromatography (128-fold purified). The pH optimum for the 64-fold purified enzyme isolated from Bio-Gel A 1.5 M chromatography was 4.2 and bile salt hydrolase activity measured in intact cell suspensions had a pH optimum of 4.5. Substrate specificity studies indicated that taurine and glycine conjugates of cholic acid, chenodeoxycholic acid and deoxycholic acid were readily hydrolyzed; however, lithocholic acid conjugates were not hydrolyzed. Substrate saturation kinetics were biphasic with an intermediate plateau (0.2--0.3 mM) and a complete loss of enzymatic activity was observed at high concentration for certain substrates. The presence or absence of 7-alpha-hydroxysteroid dehydrogenase was absolutely correlated with that of bile salt hydrolase activity in six to ten strains and subspecies of B. fragilis.  相似文献   

10.
An intracellular α-glucosidase with high transglycosylation activity was purified from a mutant strain of Aspergillus niger M-1 by sequential chromatography using a DEAE-cellulose 52 column, a DEAE-Sepharose CL-6B column, and a Sephadex G-100 column. The molecular mass of the purified enzyme was determined to be 116?kD with no subunits and a pI of 5.23. Maximal α-glucosidase activity occurred at pH 6.0 and 50°C. The N-terminal amino acid sequences were identified as N-SVPGTEYVV-. The presence of Ca(2+) enhanced the enzyme activity by 20%, while the α-glucosidase activity was strongly inhibited by p-chloromercuribenzoate, N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride, monochloroacetic acid, and 2-mercaptoethanol. In addition, Ag(+), n-bromosuccinimide, and acetylacetone inhibited enzyme activity by 70%, 50%, and 22%, respectively. K(m) values of 4.32?m?mol?L(-1) and V(max) of 3.10?×?10(-2)?mol?L(-1) min(-1) were found for methyl-α-D-glucopyranoside (α-MG). Maltose was identified as the preferred substrate. The high-performance liquid chromatography (HPLC) analysis indicated that the oligosaccharide products contained 10.54% of isomaltose, 8.08% of panose, and 9.29% of isomaltotriose, and the amount of glucose, maltose, maltotriose, and maltotetrose was dropped from 22.21% to 15.80% using the purified enzyme in the solution of 25% maltose and 3% glucose. This intracellular α-glucosidase has potential applications in the synthesis of sugar derivatives and the investigation of associated mechanisms.  相似文献   

11.
In this study, we purified insulin-like substance (ILS) in the human pancreatic juice by the combined use of affinity chromatography and radioimmunoassay (RIA). The amino acid sequence of ILS in the N-terminal region is the same as that of human insulin. The influence of the enzymes present in the pancreatic juice on the RIA procedure, was examined. Trypsin, chymotrypsin and amylase showed steep influences on radioactivity. The addition of enzyme inhibitors could not reduce pseudo-activity, but the elimination of enzymes in the pancreatic juice by ultrafiltration with the Mole-Cut (Millipore, Japan) resulted in a lowering of the pseudo-insulin activity. Affinity chromatography on Sepharose 4B coupled with anti-porcine insulin was used to capture ILS. ILS was eluted by 1 M acetic acid from the affinity column monitoring pH and the insulin activity by RIA. The amino acid sequences of two components of ILS in amino terminal region were Phe-Val and Gly-Ile-Val. This indicates that ILS obtained from human pancreatic juice was the insulin derived from endocrine secretion of pancreas.  相似文献   

12.
Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two α-1,4-endopolygalacturonic acid lyases (EC 4·2·2·2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 × 10−9 molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.  相似文献   

13.
A procedure was established for isolation of a low molecular weight polypeptide with insulin-stimulating activity in apparent homogeneity from a tryptic digest of bovine serum albumin on a semipreparative scale. Purification of this insulin-stimulating peptide (ISP) was monitored by an adipose-explant assay in which stimulation of fatty acid synthesis from glucose by insulin was measured. The polypeptide was purified by a combination of DEAE-cellulose column chromatography, gel filtration on Bio-Gel P-10, hydrophobic chromatography on a semipreparative C18 reversed-phase HPLC column, and ion exchange chromatography on an SP-5PW HPLC column. The primary structure of ISP was deduced. ISP is a two-chain polypeptide consisting of 71 amino acid residues, and corresponds essentially to residues 115-143 and 144-184 (185) of bovine serum albumin connected to each other by a disulfide bridge. But comparison of the sequence of ISP with that of the relevant regions of bovine serum albumin determined by Brown indicated the presence of one tyrosine insertion between residues 155 and 156 of albumin. Therefore, the molecular weight of ISP was calculated to be 8,496.  相似文献   

14.
Experiments were conducted to examine a possible mechanism of activation of rat liver microsomal glycerol-3-phosphate acyltransferase (GPAT) by insulin. Fractions of Mr 1100 were prepared from hind-limb muscles of rats, which had been given intravenous injections of insulin or saline, by a procedure which involved acidification (pH 3.8) and heating (100 degrees C), followed by chromatography on Sephadex G-25 in 50 mM formic acid. These fractions were shown to modify the activity of microsomal GPAT from the livers of fed rats which had not been treated with insulin. The difference in GPAT activity between microsomes supplemented with the Mr 1100 material and those treated with an equal volume of 50 mM formic acid from before the void volume of the column was determined. Relative to the formic acid control, the Mr 1100 material from saline-treated rats decreased GPAT activity, whereas Mr 1100 material from insulin-treated rats increased GPAT activity and the difference of 0.64 nmol/min/mg microsomal protein was significant (P less than 0.01). Fractions of approximately 3000 Da were found to behave in a similar manner and caused a significant (P less than 0.01) increase in GPAT activity of 0.46 nmol/min/mg microsomal protein. These substances, which stimulate GPAT activity, may be related to the putative insulin mediator substance.  相似文献   

15.
Rat liver glucocorticoid receptor was purified in the presence of molybdate by a three-step procedure comprising protamine sulfate precipitation, affinity chromatography on a dexamethasone matrix and high-performance size-exclusion chromatography (HPSEC) on a TSK G 3000 SW column. The [3H]triamcinolone-acetonide-receptor complex was obtained in 20% yield with an overall 11 800-fold purification. The dissociation rate constant of this complex was 1.6 X 10(-4) min-1. The purified receptor sedimented at 8.3 S in high-salt and 9.4 S in low-salt sucrose gradients containing molybdate. A 7.0-nm Stokes radius was determined by HPSEC on a TSK G 4000 column in high-salt buffer. The calculated Mr was 278000. Dodecyl sulfate/polyacrylamide gel electrophoresis revealed an almost homogeneous 90 000-Mr band. Three minor bands with Mr of 78 000, 72 000 and 48 000 were also inconstantly seen. An apparent pI = 5.1 was observed for the [3H]steroid complex by isoelectric focusing in agarose gel. Furthermore high-performance ion-exchange chromatography of the purified complex on a DEAE 545 LKB column (DEAE HPLC) yielded a sharp peak eluted at a 315 mM potassium ion concentration. This peak was shown to contain almost all the 90 000-Mr protein. Moreover the purified receptor complex appeared to be transformable to a DNA-binding state after molybdate removal followed by warming 30 min at 25 degrees C in presence of 0.2% bovine serum albumin: 50-78% transformation yield could be demonstrated by DNA-cellulose chromatography. Partial transformation could also be obtained at 0 degrees C in the absence of any added protein and was followed by DEAE HPLC. The transformed complex was eluted by 180 mM potassium.  相似文献   

16.
Bovine glomerular basement membrane was extracted with 6 M guanidinium chloride and the soluble material fractionated on a Bio-Gel A-1.5m column in 1% Na dodecyl-SO4. A single component was obtained by reduction of a selected column fraction with 2-mercaptoethanol followed by chromatography on an analytical Bio-Gel A-1.5m column and shown to be homogenous by electrophoresis and ultracentrifugation. It consists of 90% protein and 8.6% carbohydrate by weight. The amino acid composition is characterized by the presence of low amounts of hydroxyproline and hydroxylysine, and substantial amounts of aspartic acid, glutamic acid, half-cystine, and glycine. It contains all the monosaccharide constituents present in the whole basement membrane indicating the presence of both heteropolysaccharide and disaccharide units; the presence of the latter unit was demonstrated unequivocally by ion exchange chromatography. The component contains 1 heteropolysaccharide unit and 4 dissaccharide units/molecule of Mr equals 70,000. The molecular weight of component VII was determined by several methods. Molecular weight values of 68,000 +/- 3,000 and 72,000 +/- 2,000 were determined in 6 M guanidinium chloride by the methods of sedimentation equilibrium and gel filtration chromatography, respectively, and values of 136,000 +/- 3,100 and 140,000 +/- 2,000 were determined in 1% Na dodecyl-SO4 by the methods of polyacrylamide gel electrophoresis and gel filtration chromatography, respectively. Circular dichroism spectra indicate that component VII assumes a random coil conformation in 6 M guanidinium chloride and a more disordered conformation in 1% Na dodecyl-SO4 than standard proteins used in calibration of polyacrylamide gels and gel filtration column. These results indicate that the minimal molecular weight of component VII is about 70,000 and that the anomalous behavior in Na dodecyl-SO4 is due in part to its conformation.  相似文献   

17.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

18.
Membrane preparations from striatum of pig brain contain endopeptidase activity towards iodoinsulin B-chain. Only 50% of the hydrolysis of insulin B-chain is inhibitable by phosphoramidon, and DEAE-cellulose chromatography can resolve the phosphoramidon-sensitive and -insensitive activities. The former activity (now designated 'endopeptidase-24.11') is responsible for hydrolysis of [D-Ala2,Leu5]enkephalin and is identical with an enzyme in brain that has previously been referred to as 'enkephalinase'. Pig striatal endopeptidase-24.11 has now been purified to homogeneity in a single step by immunoadsorbent chromatography using a monoclonal antibody. The overall purification was 23 000-fold, with a yield of 30%. The brain enzyme appears to be identical with kidney endopeptidase-24.11 in amino acid composition as well as by immunological and kinetic criteria. However, it differs slightly in apparent subunit size (Mr = 87 000), attributable to differences in glycosylation.  相似文献   

19.
2-Deoxy-D-glucoside-2-sulphamate sulphohydrolase was extracted from human liver and purified 40 000-fold by a simple four column procedure. The purification was followed using a specific substrate isolated from an acid hydrolysate of heparin, O-(alpha-2-sulphamino-2-deoxy-D-glucopyranosyl)-(1 leads to 3)-L-[6,3H]idonic acid. Only one form of the enzyme was seen on either ion exchange chromatography or isoelectric focussing, with a pI of 6.8. The apparent Mr of the holoenzyme as determined by gel filtration was 190 000 +/- 20 000. Two other larger Mr protein peaks observed on gel filtration appear to be an inactive dimer of the 190 000 dalton peak and a larger aggregate near the exclusion limit of the column. On polyacrylamide disc gel electrophoresis in sodium dodecyl sulphate, with or without prior reduction, each protein peak from the gel filtration column electrophoresed as a single major band with an apparent Mr corresponding to 55 000 +/- 6000.  相似文献   

20.
A quantitative high-performance liquid chromatographic method for the analysis of monosialogangliosides as their perbenzoyl derivatives has been devised. Samples containing as little as 3 nmol were converted to their perbenzoyl derivatives by reaction with 0.1 ml of 10% benzoyl chloride in pyridine at 60 degrees C for 1 hr. The products were purified by silicic acid chromatography and analyzed by high-performance liquid chromatography (HPLC). The HPLC analysis was performed with a 50 cm X 2.1 mm LiChrosphere SI 4000 column and a linear gradient of 7-23% dioxane in hexane in 18 min. Detection was at 230 nm. The detector response was found to be proportional to the amount of monosialoganglioside analyzed. As little as 50 pmol of injected material could be conveniently quantitated. The overall yield from derivatization and chromatography, as determined with radiolabeled GM1, was found to be 86%. To take advantage of the high sensitivity of the HPLC, a small-scale isolation method for gangliosides was devised. This method coupled with HPLC isotope dilution analysis was used to analyze the GM3 content of 1 ml of human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号