首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modelling phosphorus fluxes in the hypertrophic Loosdrecht Lakes   总被引:2,自引:0,他引:2  
A dynamic, deterministic model is presented to simulate the phosphorus cycle and plankton growth in the shallow, hypertrophic Loosdrecht Lakes (The Netherlands) before and after restoration measures. Besides inorganic phosphorus (SRP) in both the surface water and the interstitial water, the model comprises three algal groups, zooplankton, fish, detritus, zoobenthos and upper sediment (all modelled both in carbon and in phosphorus). Within the model system, the phosphorus cycle is completely closed. Carbon and phosphorus are described independently, so that the dynamics of the P/C ratios can be modelled. Sediment processes are described in a simplified form.Simulated values are largely within the range of observed ones. The detrital fraction of the seston (=phytoplankton+detritus) varies from 50–60% in summer to about 90% in winter. SRP in the surface water is very low during most of the year. Sensitivity for external phosphorus input is larger for algal and detrital P than for algal and detrital C and chlorophyll-a. So the P/C ratio of the seston decreases following restoration measures, as is observed in the lakes, while the much higher P/C ratios of zooplankton and fish remain constant. Phosphorus mobilisation from the sediment decreases with decreasing external input. Adaptation of the model system to the reduced loading takes place within about two years.Sources of uncertainty in the model include the limited knowledge on selective grazing as well as on mortality and mineralisation processes.  相似文献   

2.
A reduction in external phosphorus loading since 1984 to Loosdrecht lakes system by the dephosphorization of the inlet water, yielded only minor effects in Lake Loosdrecht. This reduction measure turned out to have decreased the loading only by a factor of two. A conceptual model was constructed based on laboratory measurements to describe phosphorus flow in the lake ecosystem for the summer of 1987. The role of zooplankton and fish was more important in phosphorus recycling than diffusion at the sediment-water interface. The input and output of phosphorus of the lake were at equilibrium and therefore, further reduction in external loading was needed for recovery. The results of the conceptual model agreed well with the output of the mathematical model PCLOOS. Additional measures such as dredging, flushing, chemomanipulation, or biomanipulation would be ineffective at the present level of external loading. Only a significant further reduction in external input will restore Lake Loosdrecht's water quality over a long period of time.  相似文献   

3.
Marion  Loïc  Clergeau  Philippe  Brient  Luc  Bertru  Georges 《Hydrobiologia》1994,279(1):133-147
The largest natural lake in France, Grand-Lieu, has suffered eutrophication. The objective of the study was to estimate the annual input of nutrients (N, P) resulting from avian excrement, deposited by birds feeding out of the lake and returning to its waters for breeding or roosting, as compared to the input by the rivers that enter in the lake. Two years are compared: 1981–82 and 1990–91. About 1600–2000 breeding herons and cormorants, 20 000–33 000 wintering ducks, gulls and cormorants and 1–2.4 million starlings deposited about 5800 kg total N in 1981–82 and 7640 kg in 1990–91. Respectively, 2000 and 2530 kg total P were deposited over the same time periods. These represent 0.7% and 0.4% of the total N input of the lake and 2.4 and 6.6% of the total P input in 1981–82 and 1990–91. Starlings account for 74% of the N and mallards most of the rest. P input by starlings (36% in 1981–82, 41% in 1990–91), and by mallards and herons (35% and 27% in 1981–82 and 22% and 24% in 1990–91 respectively) plays an appreciable role among birds. During the plant growing period (April–September), the contribution by birds can increase to 37% of total P input of the lake. Piscivorous bird colonies concentrate Phosphorus 42 times more within the colony than outside the colony. Overall, the role birds play in total N and P input is relatively small due to very high inputs from human sewage and agriculture run off. The monthly mean concentration of the water of the two rivers reaches currently 10 mg l–1 of N (to 23 mg during peak floods) and 394 mg m–3 of P (to 468 mg during peak floods). Earlier, for example in the 1960's, water in Brittany only contained 0.1 to 1.1 mg 1–1 of N and 1 to 5 mg m–3 of P during the maximum flow period. At this time, birds could probably have represented annually up to 37% of the N input and up to 95% of the P input to the lake.  相似文献   

4.
The ecosystem response model described in this paper combines an ecosystem model and a three-dimensional circulation model of Lake Ladoga developed earlier by the authors. The ecosystem model describes the process of Lake Ladoga eutrophication, and its biological submodel describes changes in the phyto- and zooplankton. In the earlier model version, lake circulation was determined using a two-dimensional hydrodynamical model which was not completely adequate. The present model allows calculation of the distributions of phyto- and zooplankton and mineral phosphorus and nitrogen. One of its main advantages is that reliable computations of the ecosystem dynamics over an extended period of time are possible. The response of the ecosystem to different levels of phosphorus pollution loading and to weather conditions is studied.  相似文献   

5.
This paper demonstrates how mathematical modeling can contribute to improve understanding of lake behavior. Since the 60's Lake Bourget, one of the largest in France, had been suffering from eutrophication which was checked in 1980 by the diversion of the main sewers entering the lake. A research program was implemented between 1987 and 1990, including an on-site sampling campaign conducted concurrently with thermal and biogeochemical modeling of lake behavior. The model helped provide a better understanding of the ecosystem, displaying some processes hitherto misunderstood: (1) Winter overturn does not reach the bottom of the water column when the weather is mild. This leads to a incomplete reoxygenation of the hypolimnion and to redox conditions inducing the release of orthophosphate from the sediment, (2) Grazing by herbivorous zooplankton is getting more important in the control of spring algal growth as eutrophication of the lake regresses, (3) Settling of particulate phosphorus seems a complex and very important process in Lake Bourget, showing high sedimentation rates for particulate mineral phosphorus.  相似文献   

6.
The potential importance of the six major emergent and floating-leaved macrophyte species in recycling of sediment phosphorus in the Loosdrecht lakes was studied. Representative plant samples were collected at the time of maximum biomass, and analysed for biomass and carbon, nitrogen and phosphorus contents. Species cover was determined by aerial photography.Total cover in the seven lakes studied ranged between 2 and 26 percent. For the four main species, biomass per unit area increased with lake trophic status. Consistent differences in C, N and P contents per unit biomass were not observed. Although cover values were small, significant amounts of C, N and P were contained in the macrophytes when compared with maximum sestonic content.Potential P loads from macrophyte decay were calculated. In Lake Loosdrecht, the P load represented 15 percent of current external P inputs. The potential importance of macrophyte decay to P recycling in the other lakes is greater.Decay of macrophyte species at the end of the growing season appears to affect autumnal nutrient and chlorophyll a levels in the water column of some lakes. The re-establishment of submerged species following lake restoration may increase the importance of this pathway in the lakes.  相似文献   

7.
The influence of calcite precipitation on the phosphorus cycle in stratified hardwater lake was studied before and during experiments with a new restoration technique. Surveys of the chemical composition of water column and monitoring of settling particles of Lake Luzin (North–East) showed that calcite precipitation occurs each year over 2–3 periods during spring and summer. The change of the phosphorus content influenced the calcite precipitation intensity. The sedimentation fluxes of phorphorus and the calcite precipitation were closely associated. Based on the hypothesis that calcite precipitation acts as an improvement to the trophic state by enhancing the internal phosphorus sink, this new technology for lake restoration was developed. The hypolimnetic Ca(OH)2 addition during summer stratification in 1996–1997 induced the calcite precipitation in the deep water layer of Basin Carwitz of Lake Schmaler Luzin. The treatment also supported the natural calcite precipitation in the epilimnion. The annual total phosphorus content decreased from 0.46 tons in 1995 to 0.35 tons in 1997. The annual SRP content decreased from 0.02 tons in 1996 to 0.01 tons in 1997 after beginning the artificial calcite precipitation in 1996. The decrease of the annual Chl-a concentration in 1998 on 38% compared with that in 1996 pointed out the lake recovering. According to the one box model, the artificial calcite precipitation affected the P cycle in the lake by suppressing the P release from the sediments.  相似文献   

8.
Despite the fact that more than 100 million women worldwide use birth control pills and that half of the world's population is concerned, the menstrual cycle has so far received comparatively little attention in the field of mathematical modeling. The term menstrual cycle comprises the processes of the control system in the female body that, under healthy circumstances, lead to ovulation at regular intervals, thus making reproduction possible. If this is not the case or ovulation is not desired, the question arises how this control system can be influenced, for example, by hormonal treatments. In order to be able to cover a vast range of external manipulations, the mathematical model must comprise the main components where the processes belonging to the menstrual cycle occur, as well as their interrelations. A system of differential equations serves as the mathematical model, describing the dynamics of hormones, enzymes, receptors, and follicular phases. Since the processes take place in different parts of the body and influence each other with a certain delay, passing over to delay differential equations is deemed a reasonable step. The pulsatile release of the gonadotropin-releasing hormone (GnRH) is controlled by a complex neural network. We choose to model the pulse time points of this GnRH pulse generator by a stochastic process. Focus in this paper is on the model development. This rather elaborate mathematical model is the basis for a detailed analysis and could be helpful for possible drug design.  相似文献   

9.
Sediment phosphorus (P) release accelerates lake eutrophication, while retention capacity and release potential of different P fractions, calcium-bound P (CaCO3~P) in particular, still remains unclear. Fractionation and sorption behaviors of phosphorus were studied in sediment of a Chinese shallow lake (Lake Wabu) and two inflowing rivers from December 2011 to December 2012. Abundance of P releasing bacteria was analyzed, and their main species were isolated using a culture-dependent method and identified by their 16S rDNA sequences. CaCO3~P release abilities of these bacteria were also tested. In sediments of both the lake and rivers studied, the rank order of the different P extracts was CaCO3~P > iron-bound P > acid-soluble organic P > hot NaOH-extractable organic P. At the same time, CaCO3~P content and equilibrium P concentration (EPC0) values in river sediments were significantly higher than those in the lake. Additionally, EPC0 changes non-monotonically with increasing CaCO3~P content, forming a V-shaped curve, with the lowest EPC0 at an intermediate CaCO3~P content (around 180 mg kg?1). Below this threshold, CaCO3~P was a component strengthening P retention; moreover, CaCO3~P became an active species responsible for P release. Noticeably, between the two parts divided by this threshold, the differences in abundance of inorganic phosphorus solubilizing bacteria (IPB) and organic phosphorus mineralizing bacteria (OPB) were insignificant and the dominant IPB species clustered together. By contrast, OPB was distinguished from each other, whose dominant species isolated from the part with higher CaCO3~P content, namely Novosphingobium sp., exhibited a stronger ability to solubilize CaCO3~P. Shortly, with lower content, CaCO3~P tends to stabilize P in sediment; while with higher content or under eutrophic condition, it shifted into P source, with some OPB species becoming the main factors to drive its release.  相似文献   

10.
Hosper  S. H.  Jagtman  E. 《Hydrobiologia》1990,200(1):523-534

Eutrophication control is one of the major issues in the environmental policy in The Netherlands. As a result of international action programmes the average phosphorus loading of freshwater systems should decrease by 50% between 1985 and 1995. However, in many cases the restoration of water quality requires additional measures. Recovery is hampered by the structure and functioning of the present food-chain.

The feeding behaviour of the dominant fish species in Dutch lakes, bream and roach, tend to impose a homeostasis on the system, resisting restoration of water quality. In shallow lakes, biomanipulation, including drastic reduction of fish-stocks, may induce a shift from a stable ‘turbid-water state’ to a stable ‘clear-water state’.

To assess the possibilities of biomanipulation for the restoration of a particular lake, three questions are relevant: (1) is a drastic reduction of fish-stocks feasible?, (2) will a shift occur from ‘turbid to clear’ after the fish reduction? and (3) will the new situation of clear water be stable? This paper focuses attention on the last two questions. The increase in water clarity, following fish reduction, largely depends on the increase in the density of the Daphnia-population and the contribution of benthivorous fish to the resuspension of sediments. A ‘turbid to clear’ shift may be expected if the total biomass of planktivorous and benthivorous fish is reduced to levels<50 kg ha?1. The stability of the achieved clear-water state largely depends on the development of submerged macrophytes in the lake and on the level of nutrient loading. It is tentatively concluded that a stable clear-water state may be expected at initial total-P concentrations<0.10 mg l?1.

Because the water managers in The Netherlands have no fishing rights, they have to.co-operate with anglers and commercial fishermen to apply biomanipulation as a tool for water management.

  相似文献   

11.
A Phosphorus Budget for the Lake Mendota Watershed   总被引:6,自引:0,他引:6  
A phosphorus (P) budget was calculated for the agriculture-dominated Lake Mendota watershed located in Dane and Columbia Counties, Wisconsin, USA. P inputs included fertilizer for agricultural crops and lawns, dietary supplements for dairy cattle, and natural inputs such as dry and wet deposition. Outputs included agricultural crops, livestock and livestock products, and hydrologic export to Lake Mendota. The total P input to the watershed (1,307,000 kg year 1) and total output (732,000 kg year 1) are large relative to the average of 34,000 kg P washing into the lake each year, indicating that the P flux that eutrophies Lake Mendota is a veryminor component of the total watershed P budget. Using the formula inputs outputs = change in storage, we found that 575,000 kg P accumulated in the watershed in 1995. This estimate was corroborated by long-term soil P concentration data, which showed an average annual increase in soil P of over 450,000 kg year 1. Future management programs designed to reduce P inputs to Lake Mendota will be compelled to cope with the large amount of P being stored in the watershed. Received 31 August 1998; accepted 21 October 1998.  相似文献   

12.
Building on the work of Martinov et al. (2000), a mathematical model is developed for the methionine cycle. A large amount of information is available about the enzymes that catalyse individual reaction steps in the cycle, from methionine to S-adenosylmethionine to S-adenosylhomocysteine to homocysteine, and the removal of mass from the cycle by the conversion of homocysteine to cystathionine. Nevertheless, the behavior of the cycle is very complicated since many substrates alter the activities of the enzymes in the reactions that produce them, and some can also alter the activities of other enzymes in the cycle. The model consists of four differential equations, based on known reaction kinetics, that can be solved to give the time course of the concentrations of the four main substrates in the cycle under various circumstances. We show that the behavior of the model in response to genetic abnormalities and dietary deficiencies is similar to the changes seen in a wide variety of experimental studies. We conduct computational "experiments" that give understanding of the regulatory behavior of the methionine cycle under normal conditions and the behavior in the presence of genetic variation and dietary deficiencies.  相似文献   

13.
The model SMOES integrates the results of the ecological research program conducted in the Oosterschelde estuary before and during the construction of a storm surge barrier. Its aim is to provide a quantitative summary of the research findings and to provide a tool for analysis and prediction of the ecosystem in response to human manipulations. This chapter describes model background and formulations. An uncertainty analysis is used to analyze the effect of uncertainties in model parameters on model outcome. The results of the sensitivity analysis are classified by distinguishing groups of model parameters with a qualitatively different effect on model results. Within these groups, a quantitative ranking of the parameters is possible. It appears that the most sensitive parameters represent processes that are relatively little studied in the Oosterschelde, which may provide guidelines for further research.  相似文献   

14.
Based on experiments of periphyte response to different trophic levels and their impact on macrophyte production, it was found that the periphyte biomass increased with the nutrient concentrations. Increased trophic level and periphyte biomass resulted in decreased macrophyte photosynthesis. It was suggested that the periphytes could cause resilience and hysteresis in the system shifts between macrophyte and phytoplankton domination. Other factors, such as fish farming, storm induced waves and mechanical destruction, and high water levels could be the perturbations during the system shifts, but these are not the key factors. Instead, the nutrient loading and periphyte abundance could determine the shift in lake ecosystem between macrophyte and phytoplankton domination. This finding could theoretically elucidate the mechanism of ecosystem shifts between macrophyte and phytoplankton domination.  相似文献   

15.
A bench-scale anaerobic–anoxic–oxic (A2O) bioreactor with steady denitrifying phosphorus removal performance was tested to determine the influence of influent C/N ratio (SCOD/TN) and C/P ratio (SCOD/TP) on biological nutrient removal for treating synthetic brewage wastewater; meanwhile, the spatial profiles of DO, pH and ORP sensors in such systems were investigated. The results showed that influent C/N ratio had significant effect on the TN, TP removal efficiencies and the ratio of anoxic to aerobic P uptake amount. The maximal TN and TP removal efficiencies could be achieved when influent C/N ratio was kept at about 7.1 and 5, respectively. Besides, the ratio of anoxic to aerobic P uptake amount was found to be linearly dependent on the influent C/N ratio with coefficient R 2 of 0.685 when total recirculation ratio was constant at 3.5. Influent C/P ratio had an important effect on the TP removal efficiency, while it hardly affected TN removal efficiency. In addition, the TP removal efficiency reached the maximum for influent C/P ratio of 42. On the other hand, it was also found that the typical profiles of DO, pH and ORP sensors could be observed, and they have similar trends at the different influent C/N ratio and C/P ratio. It was suggested that the operational state could be well known according to the changes of simple on-line sensors.  相似文献   

16.
R. D. Gulati 《Hydrobiologia》1990,191(1):173-188
A five-year zooplankton study (1982–86) on three shallow and highly eutrophic lakes in the Loosdrecht area (The Netherlands) did not reveal any significant changes following the considerable reduction in external P-loading (from about 1.0 g to 0.3 g P m–2 year–1) since mid-1984.The recent annual fluctuations in the rotifer and crustacean densities are within the range of those found before the restoration measure became operative. A decrease in the average size of the crustaceans and an absence of large-bodied forms reflects an increased fish predation rather than a change in the quality or quantity of their sestonic food ( < 150 µm) which continues to be dominated by filamentous cyanobacteria and Prochlorothrix hollandica, a prochlorophyte discovered in these lakes recently.  相似文献   

17.
Effect of silicon on the growth and phosphorus uptake of rice   总被引:19,自引:1,他引:19  
A pot experiment was conducted to measure the effect of silicon on phosphorus uptake and on the growth of rice at different P levels. Rice (Oryza sativa L. cv. Akebono) was cultured in Kimura B nutrient solution without and with silicon (1.66 mM Si) and with three phosphorus levels (0.014 mM P, low; 0.21 mM, medium; and 0.70 mM, high).Shoot dry weight with Si (+Si) in solution increased with increasing P level, while shoot weight without Si (–Si) was maximum at 0.21 mM P, suggesting that +Si raised the optimum P level for rice. +Si increased shoot weight more when P was low or high than when P was medium.The concentration and amount of inorganic P in shoots increased with increasing P level. +Si did not significantly decrease P uptake by rice at 0.014 mM P, however, uptake at 0.21 and 0.70 mM P was 27 and 30 percent less than uptake with –Si, respectively. In –Si with 0.21 and 0.70 mM P, inorganic P in shoots was more than double the concentration in shoots grown in +Si solutions.The Si concentration in shoots decreased slightly with increasing P level, although Si uptake was not significantly affected by P. +Si decreased the uptake of Fe and Mn by an average of 20 and 50 percent, respectively, thus P/Mn and P/Fe ratios increased in the shoot when P was low.From the results above, the beneficial effect of Si on the growth of rice was clearly shown when P was low or high. This effect may have resulted from decreased Mn and Fe uptake, and thus increased P availability within P deficient plants, or from reduced P uptake when P was high.  相似文献   

18.
We are studying present conditions and consequences of material movement from land to water in the Lake Titicaca basin, and how fluxes are affected by human activities. The principal objective of this research is to describe and explain the variability in the Andean Altiplano of (a) water, nutrient and sediment fluxes from land and (b) composition, nutrient limitation and other important features of nearshore lake communities, and compare the effects of different agricultural practices (especially traditional and modern) on these factors. We are focusing on a comparison of the impacts of two forms of agriculture in this region: ancient raised fields currently under rehabilitation, and flat pastures and fields, which are more common. Results of the first year of study indicate there is substantial variability in nitrogen and phosphorus dynamics in relation to ecotone complexity (simple vs. intermediate vs. complex). Raised field sites have the beneficial effect of reducing high available nutrient concentrations (nitrate and soluble reactive phosphorus) and sediment load (measured as turbidity) as the water passes through them enroute to the lake. Aquatic vegetation (algae and macrophytes) reflect well ambient total nitrogen and phosphorus concentrations. Experimental nutrient limitation bioassays indicate that nitrogen is the most important limiting nutrient, though there is important spatial variability within the landscape, and phosphorus as well as nitrogen can be limiting.  相似文献   

19.
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1 d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures.  相似文献   

20.
Mobility of phosphorus fractions in the sediments of Lake Balaton   总被引:5,自引:0,他引:5  
Sediment phosporus was studied by a combination of the fractionation procedure of Hieltjes & Lijklema and the isotopic dilution technique in a mesotrophic (Tihany) and a hypertrophic (Keszthely) basin of Lake Balaton.In the calcareous sediments the largest part of phosphorus was bound to calcium. Iron-bound and residual P showed higher concentrations at Keszthely than at Tihany. There was little loosely adsorbed P at both locations. Vertical differences in P fractions of the sediments were more pronounced at Keszthely than at Tihany. Exchangeability of the fractions decreased in the following sequence: iron-bound > loosely adsorbed > calcium-bound > residual. Phosphorus, particularly in the calcium-bound fraction, was more mobile at Keszthely, and its exchangeability decreased rapidly downwards at both stations. Four times more potentially mobile phosphorus has been accumulated by the upper sediment layer at Keszthely than at Tihany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号