首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of rats with spermidine, spermine or sym-norspermidine led to a substantial induction of spermidine/spermine N1-acetyltransferase activity in liver, kidney and lung. The increase in this enzyme, which was determined independently of other acetylases by using a specific antiserum, accounted for all of the increased acetylase activity in extracts from rats treated with these polyamines. Spermine was the most active inducer, and the greatest effect was seen in liver. Liver spermidine/spermine N1-acetyltransferase activity was increased about 300-fold within 6 h of treatment with 0.3 mmol/kg doses of spermine; activity in kidney increased 30-fold and activity in the lung 15-fold under these conditions. The increased spermidine/spermine N1-acetyltransferase activity led to a large increase in the liver putrescine content and a decline in spermidine. These changes are due to the oxidation by polyamine oxidase of the N1-acetylspermidine formed by the acetyltransferase. Our results indicated that spermidine was the preferred substrate in vivo of the acetylase/oxidase pathway for the conversion of the higher polyamines into putrescine. The induction of the spermidine/spermine N1-acetyltransferase by polyamines may provide a mechanism by which excess polyamines can be removed.  相似文献   

2.
The activities of catalase, polyamine oxidase, diamine oxidase, ornithine decarboxylase, and peroxisomal β-oxidation were assayed in homogenates from liver and small intestinal mucosa of rats which had been fed either a diet very low in polyamines or a diet containing five times the levels of dietary polyamines (putrescine, spermine, and spermidine) found in a standard rat diet. In rats fed the high polyamine diet, hepatic activities of catalase and polyamine oxidase were significantly decreased. Levels of the other activities were unchanged, except that intestinal ornithine decarboxylase was decreased. In rats treated simultaneously with clofibrate, the high polyamine diet restored activities of catalase, ornithine decarboxylase, and polyamine oxidase back to levels found in rats fed the low polyamine diet. The expected increase in activity of peroxisomal β-oxidation was observed, although this was somewhat diminished in rats fed the high polyamine diet. Intestinal diamine oxidase activity was stimulated by clofibrate, particularly in rats fed the high polyamine diet. For the duration of the experiment (20 days), levels of putrescine, spermine, and spermidine in blood remained remarkably constant irrespective of treatment, suggesting that polyamine homeostasis is essentially independent of dietary supply of polyamines. It is suggested that intestinal absorption/metabolism of polyamines is of significance in this respect. Treatment with clofibrate appeared to alter polyamine homeostasis.  相似文献   

3.
Administration of hepatotoxic doses of carbon tetrachloride to mice produced a 25-fold increase in spermidine/spermine N1-acetyltransferase activity within 6 h, but did not significantly change the activity of polyamine oxidase. The content of acetylated polyamines in the mouse liver was increased more than 100-fold from levels below the limit of detection to 0.6 μmol of N1-acetylspermidine and 0.045 μmol of N1-acetylspermine per gram of tissue. Putrescine levels also rose by 7-fold within 6 h and by 21-fold within 24 h. These results are in contrast to changes in hepatic polyamines brought about in the rat by carbon tetrachloride. Although the hepatotoxin produced a similar increase in spermidine/spermine N1-acetyltransferase in this species, the rise in acetylated polyamines was much smaller and more transient. The content of N1-acetylspermidine was increased only to 0.066 μmol/g and N1-acetylspermine was not detected. However, in the rat putrescine increased 35-fold within 6 h and 64-fold by 16 h. These differences appear to be due to the much higher polyamine oxidase activity which was 20 times greater in the rat than in the mouse liver. This oxidase converts N1-acetylspermine to spermidine and degrades N1-acetylspermidine to putrescine. Spermine content was significantly reduced in both species after exposure to carbon tetrachloride, but only part of this decline could be attributed to the increased acetylation.  相似文献   

4.
The induction of polyamine catabolism and its production of H2O2 have been implicated in the response to specific antitumor polyamine analogues. The original hypothesis was that analogue induction of the rate-limiting spermidine/spermine N1-acetyltransferase (SSAT) provided substrate for the peroxisomal acetylpolyamine oxidase (PAO), resulting in a decrease in polyamine pools through catabolism, oxidation, and excretion of acetylated polyamines and the production of toxic aldehydes and H2O2. However, the recent discovery of the inducible spermine oxidase SMO(PAOh1) suggested the possibility that the original hypothesis may be incomplete. To examine the role of the catabolic enzymes in the response of breast cancer cells to the polyamine analogue N1,N1-bis(ethyl)norspermine (BENSpm), a stable knockdown small interfering RNA strategy was used. BENSpm differentially induced SSAT and SMO(PAOh1) mRNA and activity in several breast cancer cell lines, whereas no N1-acetylpolyamine oxidase PAO mRNA or activity was detected. BENSpm treatment inhibited cell growth, decreased intracellular polyamine levels, and decreased ornithine decarboxylase activity in all cell lines examined. The stable knockdown of either SSAT or SMO(PAOh1) reduced the sensitivity of MDA-MB-231 cells to BENSpm, whereas double knockdown MDA-MB-231 cells were almost entirely resistant to the growth inhibitory effects of the analogue. Furthermore, the H2O2 produced through BENSpm-induced polyamine catabolism was found to be derived exclusively from SMO(PAOh1) activity and not through PAO activity on acetylated polyamines. These data suggested that SSAT and SMO(PAOh1) activities are the major mediators of the cellular response of breast tumor cells to BENSpm and that PAO plays little or no role in this response.  相似文献   

5.
The anti-tumor agent methylglyoxal bis(guanylhydrazone) was found to be a competitive inhibitor of spermidine/spermine N1-acetyltransferase with a Ki of about 8 microM. Treatment of rats with this drug lead to a very large increase in the total amount of spermidine/spermine N1-acetyltransferase in liver, kidney and spleen. The total increase as measured using a specific antiserum amounted to 700-fold in liver and 100-fold in kidney within 18 h of treatment with 80 mg/kg doses. At least part of this induction was due to a pronounced increase in the half-life of the acetyltransferase which increased from 15 min to more than 12 h. The very large increase in the amount of the enzyme is likely to overwhelm the direct inhibition, and a net increase in the acetylation of polyamines by this enzyme would be expected to occur after treatment with methylglyoxal bis(guanylhydrazone). The acetylated polyamines are known to be rapidly degraded by polyamine oxidase producing putrescine. Direct evidence that a substantial part of the increase in the content of putrescine in the liver of rats treated with methylglyoxal bis(guanylhydrazone) occurs via the induction of this acetylase/oxidase pathway was obtained. These results indicate that methylglyoxal bis(guanylhydrazone) affects cellular polyamine levels not only by means of its inhibitory effect on S-adenosylmethionine decarboxylase and diamine oxidase but also by the induction of spermidine/spermine N1-acetyltransferase. They also raise the possibility that the enormous increase in this enzyme which occurs with higher doses may contribute to the very severe toxicity of methylglyoxal bis(guanylhydrazone).  相似文献   

6.
Polyamine degradation was studied in the small intestine from rats fed on a polyamine-supplemented diet. Lactalbumin diet was given to Hooded-Lister rats, with or without 5 mg rat(-1) day(-1) of putrescine or spermidine for 5 days. Polyamine oxidase activity increased with putrescine and spermidine in the diet, whereas spermidine/spermine N(1)-acetyltransferase and diamine oxidase activities were unchanged. We also studied the calcium-dependent and -independent tissue transglutaminase activities, since they can modulate intestinal polyamine levels. Both types of enzymes increased in the cytosolic fraction after putrescine (about 65%) or spermidine (80-100%). Our results indicate that exogenous polyamines stimulate intestinal polyamine oxidase and tissue transglutaminase activities, probably to prevent polyamine accumulation, when other pathways of polyamine catabolism (acetylation and terminal catabolism) are not activated.  相似文献   

7.
Abstract: The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and γ-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9–12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S -Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.  相似文献   

8.
1. Activities of peroxisomal oxidases and catalase were assayed at neutral and alkaline pH in liver and kidney homogenates from male rats fed a diet with or without 2% di(2-ethylhexyl)phthalate (DEHP) for 12 days. 2. All enzyme activities were higher at alkaline than at neutral pH in both groups. 3. The effect of the DEHP-diet on the peroxisomal enzymes was different in kidney and liver. Acyl-CoA oxidase activity was raised three- and sixfold in kidney and liver homogenates, respectively. The activity of D-amino acid oxidase decrease in liver, but increased in kidney homogenates. In liver homogenates, urate oxidase activity was not affected by the DEHP diet. The catalase activity was twofold induced in liver, but not in kidney. 4. The differences suggest that the changes of peroxisomal enzyme activities by DEHP treatment are not directly related to peroxisome proliferation. 5. DEHP treatment caused a marked increase of total and peroxisomal fatty acid oxidation in rat liver homogenates. 6. In the control group the rate of peroxisomal fatty acid oxidation was higher at alkaline pH than at neutral pH. 7. This rate was equal at both pH values in the DEHP-fed group, in contrast to the acyl-CoA oxidase activity. These results indicate that after DEHP treatment other parameters than acyl-CoA oxidase activity become limiting for peroxisomal beta-oxidation.  相似文献   

9.
In this study we investigated polyamine metabolism during inhibition of two polyamine-catabolizing enzymes. This was performed by treating rats with aminoguanidine [an inhibitor of Cu-dependent amine oxidase (CuAO)], NN'-bis(buta-2,3-dienyl)butane-1,4-diamine [MDL 72527, an inhibitor of FAD-dependent polyamine oxidase (PAO)], tetrachloromethane (hepatotoxic agent) and combinations of these compounds. Emphasis was laid on the origin and possible clinical usefulness of two polyamine metabolites: acetylisoputreanine-gamma-lactam and N1N12-diacetylspermine. Acetylisoputreanine-gamma-lactam is a normal constituent of human and rat urine. Treatment of rats with aminoguanidine led to undetectable urinary levels of acetylisoputreanine-gamma-lactam, whereas MDL 72527 treatment resulted in a 12-fold increase. Under normal conditions this compound represents a minor CuAO catabolite of N1-acetylspermidine, but may become of more importance under CuAO-induced conditions. N1N12-diacetylspermine was undetectable in urine samples from non-pregnant adults and rats, but became detectable after treating rats with MDL 72527. Additional tetrachloromethane poisoning resulted in a 35-fold increase of N1N12-diacetylspermine in urine and its appearance in liver. Hence urinary excretion of N1N12-diacetylspermine during PAO inhibition may serve as a sensitive marker for cell death. This was confirmed by myeloid-leukaemia-bearing rats treated with MDL 72527, which also excreted N1N12-diacetylspermine in urine in relatively high amounts from at least day 14 until spontaneous death.  相似文献   

10.
11.
Enhanced production and accumulation of free and conjugated polyamines as well as increased activities of their biosynthetic enzymes in plants have been associated with heat stress. Perchloric acid-soluble free, as well as conjugated polyamines, and their metabolic enzymes were studied under 45°C heat stress in callus raised from heat-tolerant and -sensitive rice cultivars. The levels of free and conjugated polyamines, as well as arginine decarboxylase (EC 4.1.1.19) and polyamine oxidase (EC 1.4.34) activities were higher in tolerant than in sensitive callus under non-stressed conditions. Heat stress caused greater accumulation of free and conjugated polyamines in callus of the heat-tolerant cultivar N22 than in that of the heat-sensitive cultivar IR8. In particular, the uncommon polyamines norspermidine and norspermine were detected in cv. N22, which increased appreciably during stress, but they were not detected in callus of cv. IR8. Arginine decarboxylase and polyamine oxidase activities increased to a larger extent in N22 than in IR8 callus during stress, activities that were well correlated with the increased levels of common and uncommon polyamines. Increased levels of transglutaminase activity indicated the high titre of conjugated polyamines.  相似文献   

12.
Bis(benzyl)polyamine analogs as novel substrates for polyamine oxidase   总被引:1,自引:0,他引:1  
N,N'-Bis(benzyl)polyamine analogs were found to be substrates for highly purified polyamine oxidase. Metabolism of these analogs was apparently dependent on molecular O2 and resulted in the formation of benzaldehyde, H2O2, and a polyamine analog with free terminal amines. The debenzylation reaction was optimal between pH 9 and 10, identical to the pH optimum for polyamine oxidase activity when N1-acetylspermine was used as the substrate. On a molecular sieve column the debenzylating activity co-eluted with N1-acetylspermine oxidizing activity, at an apparent molecular mass of approximately 65 kDa. The purified enzyme also appeared to have a molecular mass of approximately 65 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Debenzylation of the bis(benzyl)polyamines was competitively inhibited by N1-acetylspermine and N1-acetylspermidine. The specific irreversible inhibitor of polyamine oxidase, N1,N4-bis(buta-2,3-dienyl)butanediamine also inhibited the debenzylation, whereas inhibitors of diamine and monoamine oxidases did not. The evolution of benzaldehyde from bis(benzyl)polyamine analogs by polyamine oxidase allowed the development of a simple rapid spectrophotometric assay for use in the measurement of polyamine oxidase activity in partially purified tissue or cell extracts. Further, metabolism of a bis(benzyl)polyamine analog by polyamine oxidase was found to be an important element in the growth inhibitory properties of the compound in a mouse model of malaria.  相似文献   

13.
Induction of palmitoyl-CoA oxidase enzymatic activity in rat liver suggests that ingestion of diesel and biodiesels can cause mild hepatic peroxisomal proliferation. Surprisingly, quantification by immunochemistry of the enzyme itself (ACOX1) revealed that palmitoyl-CoA oxidase enzymatic activity correlates with ACOX1 protein level following exposure to diesel, but not following exposure to biodiesels. Quantification of CYP4A1, another biomarker of peroxisomal proliferation, further indicates that contrary to diesel, the effects of biodiesels appear to be independent of this pathway. There are two ACOX1 protein isoforms that exhibit different enzymatic activities depending on the substrate. The results of our enzymatic assays performed on substrates presenting different carbon chain lengths (octanoyl-CoA and palmitoyl-CoA) are compatible with the hypothesis of a differential regulation of the ACOX1 isoforms by diesel and biodiesels. Further studies will be required to precisely determine the molecular mechanisms by which diesel and biodiesels induce palmitoyl-CoA oxidase activity in rat liver.  相似文献   

14.
Tumor growth is a process associated with both cell proliferation and cell death. The increase in polyamine excretion observed in cancer patients may be partly due to leakage of polyamines from proliferating cells, which all contain an elevated polyamine level. However, the increased polyamine excretion may also be due to a release of polyamines from dead or damaged cells. To determine if actively proliferating cells release polyamines, the urinary polyamine excretion was measured during a proliferative event associated with minimal cell necrosis. Rats subjected to partial hepatectomy were used as an experimental model. Their 24-hr urines were collected during 6 consecutive days following the operation. Rat liver regeneration is characterized by a proliferation wave with a maximum 24 hr after the operation. The 24-hr urinary putrescine excretion reached a maximum 2 days after the operation and then decreased. The 24-hr urinary spermidine excretion increased during the second day following operation and remained essentially unchanged during the rest of the experimental period. Although there is an apparent correlation between elevated urinary polyamine excretion and the proliferative activity, concurrent permeability changes and necrotic events may contribute to the increase in polyamine excretion.  相似文献   

15.
Summary. The levels of polyamines (putrescine, spermidine and spermine) and polyamine oxidase in plasma of patients with chronic renal failure were determined. The level of putrescine was increased but the level of spermine was decreased in the plasma of these patients. The patients also had increased plasma polyamine oxidase activity leading to increased degradation of spermine. As acrolein was a major toxic compound produced from spermine by polyamine oxidase, the levels of free and protein-conjugated acrolein in plasma were also measured. Acrolein levels were enhanced in plasma of patients with chronic renal failure. The accumulated acrolein found as protein conjugates was equivalent to 170 μM, which was about 5-fold higher than in plasma of normal subjects. It was found that acrolein is mainly produced by spermine oxidase in plasma. An increase in putrescine, spermine oxidase and acrolein in plasma was observed in all cases such as diabetic nephropathy, chronic glomerulonephritis and nephrosclerosis. After patients with chronic renal failure had undergone hemodialysis, their levels of plasma polyamines, spermine oxidase and acrolein returned towards normal. It is likely that acrolein produced from spermine accumulates in the blood due to decreased excretion into urine and may function as a uremic “toxin”.  相似文献   

16.
When spermidine, putrescine or 1,3-diaminopropane was injected (12.5 mumol/100 g body weight) into rats 1 h before thyrotropin, ornithine decarboxylase activity was increased by 75--150% over control levels. However, when greater than or equal to 75 mumol polyamine/100 g body weight was injected, thyrotropin-activated activity was inhibited by 70--95%. Multiple polyamine injections inhibited goitrogen-induced activity and gland weight increase by approx 35%. The polyamines also inhibited thyrotropin-activated rat thyroid ornithine decarboxylase in vitro in a dose-related fashion, with 50% inhibition occurring at 2--5 . 10(-4)M. The inhibition was not due to a direct effect on the enzyme. No stimulation was seen with low concentrations of polyamine. The polyamines had no effect on in vitro thyroid protein/RNA synthesis or glucose oxidation but had a biphasic effect on plasma membrane adenylate cyclase activity. A protein inhibitor to thyroid ornithine decarboxylase was generated in vivo by multiple injections of the polyamines into rats and in vitro by incubating bovine thyroid slices with 2--10 mM polyamine. The inhibitor was non-dialyzable, destroyed by boiling, and its formation was blocked in a dose-related fashion by cycloheximide. We conclude that: (1) thyroid ornithine decarboxylase is subject not only to positive control, but is also negatively regulated by its end-products, the polyamines, which induce a protein inhibitor to ornithine decarboxylase; (2) since gland growth is also inhibited under these conditions, the polyamine effect on thyroid ornithine decarboxylase may be biologically significant.  相似文献   

17.
Treatment with peroxisome proliferators induces increased numbers and alterations in the shape of peroxisomes in liver. It ultimately leads to hepatocellular carcinomas induced by the persistent production of high amounts of H2O2 as a result of a dramatical increase in acyl-CoA oxidase activity. The effects of peroxisome proliferators on other peroxisomal oxidase activities are less well documented. In the present study, the distribution patterns of the activity of SdD-amino acid oxidase, SlD-alpha-hydroxy acid oxidase, polyamine oxidase, urate oxidase and catalase activities were investigated in unfixed cryostat sections of liver, kidney and duodenum of rats treated with either clofibrate or bis(2-ethylhexyl)phthalate. The activities of xanthine oxidoreductase, which produces urate, a potent anti-oxidant, and xanthine oxidase, which produces oxygen radicals, were studied as well. The liver was the only organ that was affected by treatment. The number of peroxisomes increased considerably. SdD-Amino acid oxidase and polyamine oxidase activities were completely abolished by the treatment, whereas SlD-alpha-hydroxy acid oxidase activity decreased and urate oxidase activity increased periportally and decreased pericentrally. Total catalase activity increased because of the larger numbers of peroxisomes, but it decreased per individual peroxisome. Xanthine oxidoreductase activity decreased, whereas the percentage of xanthine oxidase remained constant. We conclude that oxidases in rat liver are affected differentially, indicating that the expression of activity of each oxidase is regulated individually. © 1998 Chapman & Hall  相似文献   

18.
Acyl-CoA oxidase, the first enzyme of the peroxisomal β-oxidation, was proved to be rate-limiting for this process in homogenates of rat liver, kidney, adrenal gland, heart and skeletal muscle. Acyl-CoA oxidase activity, based on H2O2-dependent leuko-dichlorofluorescein oxidation in tissue extract, was compared with radiochemically assayed peroxisomal β-oxidation rates. Dichlorofluorescein production was a valid measure of peroxisomal fatty acid oxidation only in liver and kidney, but not in adrenal gland, heart or skeletal muscle. Production of 14C-labeled acid-soluble products from 1-14C-labeled fatty acids in the presence of antimycin-rotenone appears to be a more accurate and sensitive estimate of peroxisomal β-oxidation than the acyl-CoA oxidase activity on base of H2O2 production. Chain-length specificity of acyl-CoA oxidase changed with the acyl-CoA concentrations used. Below 80 μM, palmitoyl-CoA showed the highest activity of the measured substrates in rat liver extract. No indications were obtained for the presence in rat liver of more forms of acyl-CoA oxidase with different chain-length specificity.  相似文献   

19.
The acetylating enzyme, spermidine/spermine N1-acetyltransferase, participates in polyamine homeostasis by regulating polyamine export and catabolism. Previously, we reported that overexpression of the enzyme in cultured tumor cells and mice activates metabolic flux through the polyamine pathway and depletes the N1-acetyltransferase coenzyme and fatty acid precursor, acetyl-CoA. Here, we investigate this possibility in spermidine/spermine N1-acetyltransferase transgenic mice in which the enzyme is systemically overexpressed and in spermidine/spermine N1-acetyltransferase knock-out mice. Tissues of the former were characterized by increased N1-acetyltransferase activity, a marked elevation in tissue and urinary acetylated polyamines, a compensatory increase in polyamine biosynthetic enzyme activity, and an increase in metabolic flux through the polyamine pathway. These polyamine effects were accompanied by a decrease in white adipose acetyl- and malonyl-CoA pools, a major (20-fold) increase in glucose and palmitate oxidation, and a distinctly lean phenotype. In SSAT-ko mice, the opposite relationship between polyamine and fat metabolism was observed. In the absence of N1-acetylation of polyamines, there was a shift in urinary and tissue polyamines indicative of a decline in metabolic flux. This was accompanied by an increase in white adipose acetyl- and malonyl-CoA pools, a decrease in adipose palmitate and glucose oxidation, and an accumulation of body fat. The latter was further exaggerated under a high fat diet, where knock-out mice gained twice as much weight as wild-type mice. A model is proposed whereby the expression status of spermidine/spermine N1-acetyltransferase alters body fat accumulation by metabolically modulating tissue acetyl- and malonyl-CoA levels, thereby influencing fatty acid biosynthesis and oxidation.  相似文献   

20.
Summary. Glucocorticoids are potent anti-inflammatory and immunosuppressive agents. As endogenous inhibitors of cytokine synthesis, glucocorticoids suppress immune activation and uncontrolled overproduction of cytokines, preventing tissue injury. Also, polyamine spermine is endogenous inhibitor of cytokine production (inhibiting IL-1, IL-6 and TNF synthesis). The idea of our work was to examine dexamethasone effects on the metabolism of polyamines, spermine, spermidine and putrescine and polyamine oxidase activity in liver and spleen during sensitization of guinea pigs. Sensitization was done by application of bovine serum albumin with addition of complete Freund’s adjuvant. Our results indicate that polyamine amounts and polyamine oxidase activity increase during immunogenesis in liver and spleen. Dexamethasone application to sensitized and unsensitized guinea pigs causes depletion of polyamines in liver and spleen. Dexamethasone decreases polyamine oxidase activity in liver and spleen of sensitized guinea pigs, increasing at the same time PAO activity in tissues of unsensitized animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号