首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He JL  Chen WL  Jin LF  Jin HY 《Mutation research》2000,469(2):223-231
The genotoxic effects of X-ray radiation on human lymphocytes were measured using the single cell gel electrophoresis (SCGE) assay (comet assay) and the cytokinesis-blocked micronucleus (CBMN) test; both were carried out in vitro on isolated human lymphocytes in order to compare the relationship and sensitivity of these two detecting methods. The radiation-doses were 0.00, 0.02, 0.05, 0.10, 0.25, 0.50, 1.00 and 2.00 Gy. In the comet assay, the average comet length (38.6+/-0.8 microm) of 0.05 Gy was significantly longer than that (29.4+/-1.1 microm) of 0 Gy (P<0.01), moreover, the average comet length increased with the dose of X-ray radiation. In the CBMN, both the average micronucleus rate (MN) and micronucleated cell rate (MNC) of 0.05 Gy were 11.5+/-4.5 per thousand, which showed no difference with that (7.5+/-0.5 per thousand) of 0 Gy (P>0.05). The lowest dose, which induced significant increase of average MN and MNC, was 0.25 Gy. The average MN and MNC rates increased with radiation-dose. The results showed that there was correlation between SCGE and CBMN, and the sensitivity of SCGE was significantly higher than that of CBMN.  相似文献   

2.
This study was undertaken to investigate the genotoxic interactions between the common environmental pollutants: arsenic (As), cadmium (Cd) and benzo(a)pyrene (BaP), which are known to be human carcinogens. C57BL/6J/Han mice were pre-treated with 100mg cadmium chloride (Cd(2+))/L or 50mg sodium arsenite (As(3+))/L in drinking water for 7 days and then given a single dose of 200mg BaP/kg bw by intra-peritoneal injection. A third group of mice did not receive the pre-treatment and was given BaP alone. Mice were sacrificed before or at 12, 24, 48 or 72h after BaP administration. Chromosome damage in bone-marrow cells was assessed by use of the micronucleus test. The study revealed that BaP induced a statistically significant increase in micronucleus (MN) frequency at 48h after administration. In animals exposed to Cd in drinking water no enhancement of genotoxicity was observed compared with the control group that was given tap water only. In Cd/BaP co-exposed animals, the MN frequency at respective time points did not differ from that for the animals exposed solely to BaP. A statistically higher MN frequency was found in bone marrow of animals exposed to As compared with controls that received tap water (0.92+/-0.29% versus 0.38+/-0.13%, respectively). This effect was even more pronounced after combined exposure to As and BaP. In the co-exposed animals, significantly elevated levels of MN were detected in samples examined at 12, 24 and 48h after BaP administration, compared with animals receiving BaP alone (1.14+/-0.31%, 1.26+/-0.3% and 2.02+/-0.45% versus 0.44+/-0.13%, 0.44+/-0.11% and 1.04+/-0.44%, respectively). These findings imply strong interactions between As and BaP, but not between Cd and BaP, in inducing DNA damage in polychromatic erythrocytes in mouse bone-marrow.  相似文献   

3.
In the present study, DNA damaging and mutagenic effects of chlorinated drinking water (CDW) extracts obtained from polluted raw water resources were examined in metabolically competent human Hep G2 hepatoma cells using the in vitro micronucleus assay and the single cell gel electrophoresis (SCGE, comet assay). Additionally, the in vivo induction of micronuclei (MN) was studied in polychromatic erythrocytes (PCEs) derived from bone marrow of CDW-treated Wistar rats. Furthermore, we examined the influence of CDW on the lipid peroxidation (LpO) in blood, liver, kidney and testicle of rats. The results demonstrated significant increases of micronucleated PCEs in the bone marrow of rats fed with relatively low CDW doses (33.3 ml/kg body weight per day). Similar effects, i.e. increases of MN frequencies, were found in Hep G2 hepatoma cells after CDW treatment (41 MN/1000 binucleated cells (BNCs) for 167 ml CDW) in comparison to the vehicle control (24 MN/1000 BNC). Additionally, DNA damages caused by CDW were observed in the comet assay. As a product of LpO, the levels of malondialdehyde (MDA) were significantly enhanced almost in all animals and organs tested after CDW treatment. In livers and serum of rats dose-dependent increases of MDA were observed. The data indicated that extracts from CDW obtained from polluted raw water were able to cause oxidative damages and to induce various biological effects in mammalian cells in vivo and in vitro, i.e. clastogenicity and/or aneugenicity, DNA strand breaks and/or alkali-labile damages. The consistency of the results among the various biological systems and endpoints led to the conclusion that the consumption of chlorinated drinking water obtained from polluted raw water may enhance the body burden with mutagenic and/or carcinogenic substances and therefore, means a potential genetic hazard for human health.  相似文献   

4.
In the present study, DNA damaging and mutagenic effects of chlorinated drinking water (CDW) extracts obtained from polluted raw water resources were examined in metabolically competent human Hep G2 hepatoma cells using the in vitro micronucleus assay and the single cell gel electrophoresis (SCGE, comet assay). Additionally, the in vivo induction of micronuclei (MN) was studied in polychromatic erythrocytes (PCEs) derived from bone marrow of CDW-treated Wistar rats. Furthermore, we examined the influence of CDW on the lipid peroxidation (LpO) in blood, liver, kidney and testicle of rats. The results demonstrated significant increases of micronucleated PCEs in the bone marrow of rats fed with relatively low CDW doses (33.3ml/kg body weight per day). Similar effects, i.e. increases of MN frequencies, were found in Hep G2 hepatoma cells after CDW treatment (41 MN/1000 binucleated cells (BNCs) for 167ml CDW) in comparison to the vehicle control (24 MN/1000 BNC). Additionally, DNA damages caused by CDW were observed in the comet assay. As a product of LpO, the levels of malondialdehyde (MDA) were significantly enhanced almost in all animals and organs tested after CDW treatment. In livers and serum of rats dose-dependent increases of MDA were observed. The data indicated that extracts from CDW obtained from polluted raw water were able to cause oxidative damages and to induce various biological effects in mammalian cells in vivo and in vitro, i.e. clastogenicity and/or aneugenicity, DNA strand breaks and/or alkali-labile damages. The consistency of the results among the various biological systems and endpoints led to the conclusion that the consumption of chlorinated drinking water obtained from polluted raw water may enhance the body burden with mutagenic and/or carcinogenic substances and therefore, means a potential genetic hazard for human health.  相似文献   

5.
Peripheral blood lymphocytes were tested in vitro for genotoxic effects of cadmium chloride. Whole blood samples of four healthy, non-smoking subjects were preincubated with CdCl2 in concentrations of 10(-4), 10(-3), and 5 . 10(-3) mol/L for three hours before the cells were assessed for DNA-damage using the single cell alkaline gel electrophoresis assay (comet assay) or cultivated for chromosomal aberrations (CA), sister chromatid exchanges (SCE), and the micronucleus (MN) test. The comet assay showed notable interindividual differences. The results of the cytogenetic tests showed an increase in the frequency of CA, MN, and SCE with CdCl2 in the treated cultures, yet none was able to show a correlation between concentrations of cadmium chloride and the frequency of damages. The MN slides were stained with Giemsa and with DNA fluorochrome 4', 6'-diamidino-2-phenylindole (DAPI). The frequency of MN in slides stained with DAPI was significantly higher than in those stained with Giemsa, which might be due to an underestimation of small micronuclei in Giemsa-stained slides.  相似文献   

6.
Genotoxic effects of occupational exposure to lead and cadmium   总被引:20,自引:0,他引:20  
This study was designed to assess genotoxic damage in somatic cells of workers in a Polish battery plant after high-level occupational exposure to lead (Pb) and cadmium (Cd), by use of the following techniques: the micronucleus (MN) assay, combined with in situ fluorescence hybridization (FISH) with pan-centromeric probes, analysis of sister chromatid exchanges (SCEs), and the comet assay. Blood samples from 44 workers exposed to lead, 22 exposed to cadmium, and 52 unexposed persons were used for SCE and MN analysis with 5'-bromodeoxyuridine (BrdU) or cytokinesis block, respectively. In parallel, the comet assay was performed with blood samples from the same persons for detection of DNA damage, including single-strand breaks (SSB) and alkali-labile sites (ALS). In workers exposed mostly to lead, blood Pb concentrations ranged from 282 to 655 microg/l, while the range in the controls was from 17 to 180 microg/l. Cd concentration in lead-exposed workers fell in the same range as for the controls. In workers exposed mainly to cadmium, blood Cd levels varied from 5.4 to 30.8 microg/l, with respective values for controls within the range of 0.2-5.7 microg/l. Pb concentrations were similar as for the controls. The incidence of MN in peripheral lymphocytes from workers exposed to Pb and Cd was over twice as high as in the controls (P<0.01). Using a combination of conventional scoring of MN and FISH with pan-centromeric probes, we assessed that this increase may have been due to clastogenic as well as aneugenic effects. In Cd- and Pb-exposed workers, the frequency of SCEs as well as the incidence of leukocytes with DNA fragmentation in lymphocytes were slightly, but significantly increased ( P<0.05) as compared with controls. After a 3h incubation of the cells to allow for DNA repair, a clear decrease was found in the level of DNA damage in the controls as well as in the exposed workers. No significant influence of smoking on genotoxic damage could be detected in metal-exposed cohorts. Our findings indicate that lead and cadmium induce clastogenic as well as aneugenic effects in peripheral lymphocytes, indicating a potential health risk for working populations with significant exposures to these heavy metals.  相似文献   

7.
Styrene is used in the production of plastics, resins and rubber. The highest human exposures to styrene take place by inhalation during the production of fiberglass reinforced plastics. Styrene is metabolized mainly in the liver to styrene-7,8-oxide (SO), its principal in vivo mutagenic metabolite. In this study, human peripheral white blood cells were exposed to several SO concentrations (10-200 microM) in order to evaluate its genotoxic properties by means of comet assay, sister-chromatid exchanges (SCE) and cytokinesis-blocked micronucleus (MN) test, in addition to determine its clastogenic or aneugenic properties by combining MN with fluorescence in situ hybridization (FISH) procedures. Our results show that SO induces DNA damage, SCE and MN in human leukocytes in vitro at concentrations above 50 microM, and that there is a strong relationship between DNA damage, as measured by the comet assay, and cytogenetic damage induced by SO at the doses employed. SO shows preferentially a clastogenic activity and produces a cytostatic effect at high doses, reflected by the significant decrease of the calculated proliferation indices. A good dose-effect relationship is obtained in the three tests performed at the concentration range assayed.  相似文献   

8.
The sister chromatid exchange (SCE) frequency, the cell-cycle progression analysis, and the single cell gel electrophoresis technique (SCGE, comet assay) were employed as genetic end-points to investigate the geno- and citotoxicity exerted by dicamba and one of its commercial formulation banvel (dicamba 57.71%) on Chinese hamster ovary (CHO) cells. Log-phase cells were treated with 1.0-500.0 microg/ml of the herbicides and harvested 24 h later for SCE and cell-cycle progression analyses. All concentrations assessed of both test compounds induced higher SCE frequencies over control values. SCEs increased in a non-dose-dependent manner neither for the pure compound (r=0.48; P>0.05) nor for the commercial formulation (r=0.58, P>0.05). For the 200.0 microg/ml and 500.0 microg/ml dicamba doses and the 500.0 microg/ml banvel dose, a significant delay in the cell-cycle progression was found. A regression test showed that the proliferation rate index decreased as a function of either the concentration of dicamba (r=-0.98, P<0.05) or banvel (r=-0.88, P<0.01) titrated into cultures in the 1.0-500.0 microg/ml dose-range. SCGE performed on CHO cells after a 90 min pulse-treatment of dicamba and banvel within a 50.0-500.0 microg/ml dose-range revealed a clear increase in dicamba-induced DNA damage as an enhancement of the proportion of slightly damaged and damaged cells for all concentrations used (P<0.01); concomitantly, a decrease of undamaged cells was found over control values (P<0.01). In banvel-treated cells, a similar overall result was registered. Dicamba induced a significant increase both in comet length and width over control values (P<0.01) regardless of its concentration whereas banvel induced the same effect only within 100.0-500.0 microg/ml dose range (P<0.01). As detected by three highly sensitive bioassays, the present results clearly showed the capability of dicamba and banvel to induce DNA and cellular damage on CHO cells.  相似文献   

9.
We cloned complementary DNA (cDNA) encoding metallothionein (MT) and superoxide dismutase (SOD) from the liver of olive flounder, Paralichthys olivaceus. The full-length MT cDNA consists of 183 base pairs (bp) and encodes a protein of 60 amino acids; partial SOD cDNA consists of 326 bp and encodes a protein of 109 amino acids. We investigated the dose- and time-related effects of the polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) on MT and SOD mRNA using quantitative polymerase chain reaction (QPCR). The expression levels of MT mRNA were highest at 24 h (about five times) in 10 microg/L BaP, and at 6 h (about twelve times) in 30 microg/L BaP. The expression levels of SOD mRNA were highest at 12 h (about three times) in 10 microg/L BaP, and at 6 h (about six times) in 30 microg/L BaP, and then decreased toward the end of the experiment. We also measured plasma glucose and cortisol, all of which increased with BaP exposure. These results suggest that MT and SOD play an important role in the detoxification of reactive oxygen species (ROS) caused by BaP exposure, and thus may be indicators of oxidative stress responses.  相似文献   

10.
The micronucleus (MN) test and the alkaline single cell gel or comet assay were applied to exfoliated cells of the buccal mucous in order to evaluate the genotoxic risk associated with occupational exposure of 10 storage battery renovation workers, and 10 car painters, with age matched controls, in Pelotas, RS, in southern Brazil. In the MN test, 2000 exfoliated buccal cells were analyzed for each individual, while 100 cells were examined in the comet assay. In the comet test, both comet tail length and a damage index were calculated. Highly significant effects of occupational exposure were found with both the MN test and the comet assay (P<0.001). The comet assay was found to be rapid, of simple visualization, and it is a sensitive technique for measuring and analyzing DNA damage in human cells.  相似文献   

11.
Kim HR  Kim MJ  Lee SY  Oh SM  Chung KH 《Mutation research》2011,726(2):129-135
Many classes of silver nanoparticles (Ag-NPs) have been synthesized and widely applied, but the genotoxicity of Ag-NPs and the factors leading to genotoxicity remain unknown. Therefore, the purpose of this study is to elucidate the genotoxic effects of Ag-NPs in lung and the role of oxidative stress on the genotoxic effects of Ag-NPs. For this, Ag-NPs were completely dispersed in medium by sonication and filtration. The Ag-NPs dispersed in medium were 43-260nm in size. We observed distinct uptake of Ag-NPs into BEAS-2B cells. The Ag-NPs aggregates were wrapped with an endocytic vesicle within the cytoplasm and nucleus of BEAS-2B cells. In the comet assay and micronucleus (MN) assay for BEAS-2B cells, Ag-NPs stimulated DNA breakage and MN formation in a dose-dependent manner. The genotoxic effect of Ag-NPs was partially blocked by scavengers. In particular, of the scavengers tested, superoxide dismutase most significantly blocked the genotoxic effects in both the cytokinesis-block MN assay and the comet assay. In the modified comet assay, Ag-NPs induced a significant increase in oxidative DNA damage. Furthermore, in the oxidative stress assay, Ag-NPs significantly increased the reactive oxygen radicals. These results suggest that Ag-NPs have genotoxic effects in BEAS-2B cells and that oxidative stress stimulated by Ag-NPs may be an important factor in their genotoxic effects.  相似文献   

12.
The purpose of this study was to examine the genotoxicity of quinolone antimicrobials. We investigated the genotoxic potential of eight quinolones, namely nalidixic acid (NA), pipemidic acid (PPA), oxolinic acid (OA), piromidic acid (PA), enoxacin (ENX), ofloxacin (OFLX), norfloxacin (NFLX) and ciprofloxacin (CPFX), by the in vitro alkaline single-cell gel electrophoresis (comet) assay at pH>13. WTK-1 cells (mutant p53) were treated with each of the eight quinolones at 62.5-1000 microg/mL for 2, 4 and 20 h. NFLX and CPFX significantly induced DNA damage concentration-dependently after 4 and 20 h treatment, but this damage was recoverable. On the other hand, DNA was not damaged in the cells treated with six other quinolones. In the cells treated with NFLX and CPFX for 20 h, DNA migration was compared by the comet assay at pH 10, 12.1 and >13. The comet assay both at pH 12.1 and >13 showed increased DNA migration, but there was no positive response in the comet assay at pH 10. In the in vitro micronucleus (MN) test, WTK-1 cells were treated with each of four quinolones (NA, PPA, NFLX and CPFX) at 15.63-125 microg/mL for 20 h. NFLX significantly increased MNs in the cells, but no changes were noted in the cells treated with three other quinolones. These results suggest that NFLX and CPFX induced DNA single strand breaks (SSBs), and that NFLX-induced SSBs resulted in chromosome aberrations.  相似文献   

13.
Although both arsenic trioxide (As2O3) and benzo(a)pyrene (BaP) are well-established human carcinogens, the interaction between As2O3 and BaP is synergistic or antagonistic remains controversial in terms of the existing studies. In addition, the mechanisms responsible for the combined effects are still unclear. In this study, we examined the potential interactive effects between As2O3 (1, 5, and 10 μM) and BaP (5, 10, and 20 μM) in cultured A549 cells by treating with BaP and As2O3 alone or in combination at various concentrations for 24 h. The single and combined effects of As2O3 and BaP on the cytotoxicity, DNA/chromosomal damage, and oxidative stress were examined by using tetrazolium (3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) dye colorimetric assay, colony formation assay, fluorescence probe, chemical colorimetry, comet assay as well as micronucleus test. Our results showed that As2O3 synergistically enhanced the cytotoxicity, genotoxicity, and level of oxidative stress induced by BaP at various tested concentrations. Also, our experimental results showed that intracellular glutathione (GSH) contents were increased by various doses of BaP, but single or cotreatment with As2O3 significantly decreased the GSH level in the cells at all tested concentrations. Taken together, our results suggest that As2O3 may exert its synergistic cyto- and genotoxic effects with BaP mainly via elevated intracellular reactive oxygen species and reduced GSH contents and superoxide dismutase activities, thus promoting high level of oxidative stress, which may be a pivotal mechanism underlying As2O3 cocarcinogenic action.  相似文献   

14.
The genotoxic potential of the natural neurotoxin Tetrodotoxin (TTX) was evaluated in a battery of in vitro and in vivo genotoxicity assays. These comprised a bacterial reverse-mutation assay (Ames test), an in vitro human lymphocyte chromosome-aberration assay, an in vivo mouse bone-marrow micronucleus assay and an in vivo rat-liver UDS assay. Maximum test concentrations in in vitro assays were determined by the TTX limit of solubility in the formulation vehicle (0.02% acetic acid solution). In the Ames test, TTX was tested at concentrations of up to 200 microg/plate. In the chromosome-aberration assay human lymphocytes were exposed to TTX at concentrations of up to 50 microg/ml for 3 and 20 h in the absence of S9, and for 3h in the presence of S9. For the in vivo assays, maximum tested dose levels were determined by the acute lethal toxicity of TTX after subcutaneous administration. In the mouse micronucleus assay TTX dose levels of 2, 4 and 8 microg/kg were administered to male and female animals, and bone-marrow samples taken 24 and 48 h (high-dose animals only) after administration. In the UDS assay, male rats were given TTX on two occasions with a 14-h interval at dose levels of 2.4 and 8 microg/kg, the last dose being administered 2h before liver perfusion and hepatocyte culturing. Relevant vehicle and positive control cultures and animals were included in all assays. TTX was clearly shown to lack in vitro or in vivo genotoxic activity in the assays conducted in this study. The results suggest that administration of TTX as a therapeutic analgesic agent would not pose a genotoxic risk to patients.  相似文献   

15.
Genotoxicity and cytotoxicity were evaluated in an in vitro system with a permanent cell line Epithelioma papulosum cyprini (EPC) derived from a skin tumour of carp (Cyprinus carpio L.). EPC cells were exposed to different concentrations of organic sediment extracts from the North Sea for 24h. After incubation the cells were analysed for viability and DNA strand breaks with the comet assay or single cell gel electrophoresis (SCGE). The results confirm the sensitivity of this assay. Out of 10 marine sediment samples from the North Sea, 9 showed a dose-dependent genotoxic effect. The EC(50) of sediment extracts ranged from 7 to 307 mg sediment dry weight/ml assay volume. Hepatic microsomal enzymes from dab (Limanda limanda L.) was proposed for enzymatic activation of benzo[a]pyrene (BAP) or sediment extracts, respectively. The suitability of this in vitro test system for assessing genotoxic and cytotoxic effects of marine sediment extracts on EPC cells could be demonstrated.  相似文献   

16.
Huang D  Zhang Y  Wang Y  Xie Z  Ji W 《Mutation research》2007,629(2):81-88
Single cell gel electrophoresis or comet assay, micronucleus (MN) test and global DNA methylation detection were used to assess the genotoxicity in toad Bufo raddei exposed to the petrochemical (mainly oil and phenol) polluted area in Lanzhou Region (LZR) comparing with a relatively unpolluted area in Liujiaxia Region (LJXR). The results from the present study indicated that DNA damage and MN frequency in toad from LZR were significantly higher than those from LJXR at the same sampling month, whereas the degree of global DNA methylation was lower, which implies that the petrochemical contaminants at environmental level in LZR were genotoxic to B. raddei. The degree of genotoxic damage was obviously related with the extent of pollution among the three sampling months in LZR. The significantly positive correlations between DNA damage and concentrations of oil and/or phenol existed in liver cells but erythrocytes, implying that liver is more suitable as a sentinel tissue for the assessment of genotoxic impact of low-level contamination. The results from both comet assay and global DNA methylation detection on liver cells showed that the genotoxicity varied significantly with oil and/or phenol concentrations, suggesting that these two methods are relatively sensitive and suitable for monitoring the genotoxicity of petrochemical pollutants on amphibians.  相似文献   

17.
Sesamin is a major lignan that is present in sesame seeds and oil. Sesamin is partially converted to its stereoisomer, episesamin, during the refining process of non-roasted sesame seed oil. We evaluated the genotoxicity of these substances through the following tests: a bacterial reverse mutation assay (Ames test), a chromosomal aberration test in cultured Chinese hamster lung cells (CHL/IU), a bone marrow micronucleus (MN) test in Crlj:CD1 (ICR) mice, and a comet assay using the liver of Sprague-Dawley (SD) rats. Episesamin showed negative results in the Ames test with and without S9 mix, in the in vitro chromosomal aberration test with and without S9 mix, and in the in vivo comet assay. Sesamin showed negative results in the Ames test with and without S9 mix. In the in vitro chromosomal aberration test, sesamin did not induce chromosomal aberrations in the absence of S9 mix, but induced structural abnormalities at cytotoxic concentrations in the presence of S9 mix. Oral administration of sesamin at doses up to 2.0g/kg did not cause a significant increase in either the percentage of micronucleated polychromatic erythrocytes in the in vivo bone marrow MN test or in the % DNA in the comet tails in the in vivo comet assay of liver cells. These findings indicate that sesamin does not damage DNA in vivo and that sesamin and episesamin have no genotoxic activity.  相似文献   

18.
杀虫剂啶虫脒和毒死蜱对捕食蜘蛛血细胞DNA的损伤作用   总被引:3,自引:0,他引:3  
李锐  李生才  刘佳 《生态学报》2011,31(11):3156-3162
应用蜘蛛血细胞微核试验和单细胞凝胶电泳试验研究了两种杀虫剂啶虫脒和毒死蜱对蜘蛛头胸部和腹部血细胞DNA的损伤作用。结果表明:在啶虫脒和毒死蜱各供试浓度作用下,对蜘蛛血细胞微核率有明显的影响,与对照组相比有显著性差异(p<0.05,p<0.01);且随着两种农药浓度升高,血细胞微核率显著增加,存在明显的剂量-效应关系(啶虫脒浓度与星豹蛛头胸部血细胞微核率相关系数r=0.9284,腹部为r=0.9071;毒死蜱与星豹蛛头胸部血细胞微核率相关系数r=0.9841,腹部为r=0.9793);啶虫脒和毒死蜱对星豹蛛血细胞DNA损伤有明显的剂量-效应关系(啶虫脒浓度与星豹蛛头胸部血细胞DNA损伤相关系数r=0.9838,腹部为r=0.9834;毒死蜱与星豹蛛头胸部血细胞DNA损伤相关系数r=0.9807,腹部为r=0.9659);且两种农药在同种农药同一浓度作用下,对星豹蛛腹部血细胞微核率和DNA损伤程度要明显大于头胸部。  相似文献   

19.
The aim of this investigation was to confirm the main results reported in recent studies on the induction of genotoxic effects in human fibroblasts exposed to 50 Hz intermittent (5 min field on/10 min field off) sinusoidal electromagnetic fields. For this purpose, the induction of DNA single-strand breaks was evaluated by applying the alkaline single-cell gel electrophoresis (SCGE)/comet assay. To extend the study and validate the results, in the same experimental conditions, the potential genotoxicity was also tested by exposing the cells to a 50 Hz powerline signal (50 Hz frequency plus its harmonics). The cytokinesis-block micronucleus assay was applied after 24 h intermittent exposure to both sinusoidal and powerline signals to obtain information on cell cycle kinetics. The experiments were carried out on human diploid fibroblasts (ES-1). For each experimental run, exposed and sham-exposed samples were set up; positive controls were also provided by treating cells with hydrogen peroxide or mitomycin C for the comet or micronucleus assay, respectively. No statistically significant difference was detected in exposed compared to sham-exposed samples in any of the experimental conditions tested (P > 0.05). In contrast, the positive controls showed a statistically significant increase in DNA damage in all cases, as expected. Accordingly, our findings do not confirm the results reported previously for either comet induction or an increase in micronucleus frequency.  相似文献   

20.
Genotoxicity and cytotoxicity were evaluated in an in vitro system with a permanent cell line Epithelioma papulosum cyprini (EPC) derived from a skin tumour of carp (Cyprinus carpio L.). EPC cells were exposed to different concentrations of organic sediment extracts from the North Sea for 24 h. After incubation the cells were analysed for viability and DNA strand breaks with the comet assay or single cell gel electrophoresis (SCGE). The results confirm the sensitivity of this assay. Out of 10 marine sediment samples from the North Sea, 9 showed a dose-dependent genotoxic effect. The EC50 of sediment extracts ranged from 7 to 307 mg sediment dry weight/ml assay volume. Hepatic microsomal enzymes from dab (Limanda limanda L.) was proposed for enzymatic activation of benzo[a]pyrene (BAP) or sediment extracts, respectively. The suitability of this in vitro test system for assessing genotoxic and cytotoxic effects of marine sediment extracts on EPC cells could be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号