首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured the time course and heterogeneity of responses to contractile and relaxing agonists in individual human airway smooth muscle (HASM) cells in culture. To this end, we developed a microrheometer based on magnetic twisting cytometry adapted with a novel optical detection system. Ferromagnetic beads (4.5 microm) coated with Arg-Gly-Asp peptide were bound to integrins on the cell surface. The beads were twisted in a sinusoidally varying magnetic field at 0.75 Hz. Oscillatory bead displacements were recorded using a phase-synchronized video camera. The storage modulus (cell stiffness; G'), loss modulus (friction; G"), and hysteresivity (eta; ratio of G" to G') could be determined with a time resolution of 1.3 s. Within 5 s after addition of histamine (100 microM), G' increased by 2.2-fold, G" increased by 3.0-fold, and eta increased transiently from 0.27 to 0.34. By 20 s, eta decreased to 0.25, whereas G' and G" remained above baseline. Comparable results were obtained with bradykinin (1 microM). These changes in G', G", and eta measured in cells were similar to but smaller than those reported for intact muscle strips. When we ablated baseline tone by adding the relaxing agonist dibutyryl cAMP (1 mM), G' decreased within 5 min by 3.3-fold. With relaxing and contracting agonists, G' could be manipulated through a contractile range of 7.3-fold. Cell populations exhibited a log-normal distribution of baseline stiffness (geometric SD = 2.8) and a heterogeneous response to both contractile and relaxing agonists, partly attributable to variability of baseline tone between cells. The total contractile range of the cells (from maximally relaxed to maximally stimulated), however, was independent of baseline stiffness. We conclude that HASM cells in culture exhibit a clear, although heterogeneous, response to contractile and relaxing agonists and express the essential mechanical features characteristic of the contractile response observed at the tissue level.  相似文献   

2.
3.
We investigated the effect of the cytoskeletal prestress (P) on the elastic and frictional properties of cultured human airway smooth muscle cells during oscillatory loading; P is preexisting tensile stress in the actin cytoskeleton generated by the cell contractile apparatus. We oscillated (0.1 Hz, 6 Pa peak to peak) small ferromagnetic beads bound to integrin receptors and computed the storage (elastic) modulus (G') and the loss (frictional) modulus (G") from the applied torque and the corresponding bead rotation. All measurements were done at baseline and after cells were treated with graded doses of either histamine (0.1, 1, 10 microM) or isoproterenol (0.01, 0.1, 1, 10 microM). Values for P for these concentrations were taken from a previous study (Wang et al., Am J Physiol Cell Physiol, in press). It was found that G' and G", as well as P, increased/decreased with increasing doses of histamine/isoproterenol. Both G' and G" exhibited linear dependences on P: G'(Pa) = 0.20P + 82 and G"(Pa) = 0.05P + 32. The dependence of G' on P is consistent with our previous findings and with the behavior of stress-supported structures. The dependence of G" on P is a novel finding. It could be attributed to a variety of mechanisms. Some of those mechanisms are discussed in detail. We concluded that, in addition to the central mechanisms by which stress-supported structures develop mechanical stresses, other mechanisms might need to be invoked to fully explain the observed dependence of the cell mechanical properties on the state of cell contractility.  相似文献   

4.
Diffusing wave spectroscopy has been used to measure the rheological behavior of pullulan (M(w) = 1 x 10(5)) aqueous solutions up to concentration of 40 g/dL. It was found that these solutions were mainly viscous, with the loss modulus G' higher than the elastic modulus G'. The plot of the specific viscosity eta(sp) as a function of pullulan concentration showed two critical concentrations c = 4 g/dL and c = 15 g/dL. For c < c, eta( sp) approximately c(1.25+/-0.05); for c < c < c, eta( sp) approximately c(2+/-0.05); and for c > c, eta( sp) approximately c(4.5+/-0.5). These results are in very good agreement with those reported in the literature.  相似文献   

5.
For the first time it is clearly exhibited that synovial fluid (SF) is thixotropic. Although no hysteresis loops were observed for SF, not even at high shear rates, thixotropy may be exhibited by measuring the rate of recovery after extensive shearing. The rebuilding of the structure in a small-amplitude oscillatory state following the high-shear-rate state reveals the thixotropic behaviour. Five different viscoelastic parameters for various synovial fluids (SF) were obtained using oscillatory rheometry. It was also shown that for SF in the low frequency range, corresponding to a knee joint almost at rest, the shear loss modulus G" is greater than the shear storage modulus G', since the system is allowed to dissipate energy at rest. However, with movement, G' increases and eventually becomes greater than G" at a characteristic frequency above which the system has insufficient time to dissipate energy and hence responds as an elastic body. This functional behaviour, characteristic for normal SF, broke down in the SF of rheumatoid arthritis. It was also absent in the SF of knee joints with meniscus lesions and ligament defects.  相似文献   

6.
Mo Y  Kubota K  Nishinari K 《Biorheology》2000,37(5-6):401-408
It was found that solutions of calcium hyaluronate (CaHA) (0.1 to approximately 0.5 wt%) could form a gel by mixing with solutions of sodium type gellan (0.1 to approximately 0.5 wt%), although neither polymer by itself forms a gel at low concentrations (0.1 to approximately 0.5 wt% in this experiment). The rheological properties of CaHA-gellan mixtures were investigated by dynamic and steady shear measurements. Both storage shear modulus G' and loss shear modulus G' for CaHA-gellan mixtures increased with increasing time, and tended to an equilibrium value after 1 h. After reaching steady values of G' and G", the frequency dependence of G' and G' was observed. G' was always larger than G' in the accessible frequency range from 10(-2) to 10(2) rad/s. The effects of pH and calcium ions were examined. Gel formation of the mixtures was promoted by decreasing pH and adding from 0.01 to 0.1 M calcium ions, but excessive calcium ions weakened the gel.  相似文献   

7.
F Ziemann  J Rdler    E Sackmann 《Biophysical journal》1994,66(6):2210-2216
A magnetically driven bead micro-rheometer for local quantitative measurements of the viscoelastic moduli in soft macromolecular networks such as an entangled F-actin solution is described. The viscoelastic response of paramagnetic latex beads to external magnetic forces is analyzed by optical particle tracking and fast image processing. Several modes of operation are possible, including analysis of bead motion after pulse-like or oscillatory excitations, or after application of a constant force. The frequency dependencies of the storage modulus, G'(omega), and the loss modulus, G'(omega), were measured for frequencies from 10(-1) Hz to 5 Hz. For low actin concentrations (mesh sizes epsilon > 0.1 micron) we found that both G'(omega) and G'(omega) scale with omega 1/2. This scaling law and the absolute values of G' and G' agree with conventional rheological measurements, demonstrating that the magnetic bead micro-rheometer allows quantitative measurements of the viscoelastic moduli. Local variations of the viscoelastic moduli (and thus of the network density and mesh size) can be probed in several ways: 1) by measurement of G' and G' at different sites within the network; 2) by the simultaneous analysis of several embedded beads; and 3) by evaluation of the bead trajectories over macroscopic distances. The latter mode yields absolute values and local fluctuations of the apparent viscosity eta(x) of the network.  相似文献   

8.
This study describes the formulation and characterization of binary interactive polymeric systems, designed as platforms for improved drug delivery to mucosal sites. Binary interactive systems were manufactured containing hydroxyethylcellulose (HEC; 1-5% w/w) and polycarbophil (PC; 1-5% w/w) at pH 7, and their rheological (flow and dynamic), mechanical, and mucoadhesive properties were characterized, both before and after dilution with phosphate buffered saline (designed to mimic dilution by biological fluids). Physical interactions between HEC and PC were confirmed by the observed rheological synergy. Within the binary interactive systems increasing polymer concentration increased the storage modulus (G'), loss modulus (G' '), dynamic viscosity (eta'), hardness, compressibility, consistency, and mucoadhesion yet decreased the loss tangent. This was attributed to enhanced entanglements and interactions between adjacent polymer chains. Dilution with PBS altered the above properties; however, the binary interactive systems, particularly those containing higher concentrations of HEC, still exhibited predominantly elastic properties (high G', low tan delta). In light of this, it is suggested that the rheological and mucoadhesive properties of binary interactive systems composed of HEC (5% w/w) and PC (1-3% w/w) offered particular promise as platforms for topical mucosal drug delivery systems.  相似文献   

9.
Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G(*)(omega)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1-100 Hz) and at different loading forces (0.1-0.9 nN) with atomic force microscopy. G(*)(omega) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic viscous drag. Both cell types displayed similar viscoelastic properties. The storage modulus G'(omega) increased with frequency following a power law with exponent approximately 0.2. The loss modulus G"(omega) was approximately 2/3 lower and increased similarly to G'(omega) up to approximately 10 Hz, but exhibited a steeper rise at higher frequencies. The cells showed a weak force dependence of G'(omega) and G"(omega). G(*)(omega) conformed to the power-law model with a structural damping coefficient of approximately 0.3, indicating a coupling of elastic and dissipative processes within the cell. Power-law behavior implies a continuum distribution of stress relaxation time constants. This complex dynamics is consistent with the rheology of soft glassy materials close to a glass transition, thereby suggesting that structural disorder and metastability may be fundamental features of cell architecture.  相似文献   

10.
Unique gelation behavior of cellulose in NaOH/urea aqueous solution   总被引:11,自引:0,他引:11  
Cai J  Zhang L 《Biomacromolecules》2006,7(1):183-189
A transparent cellulose solution was prepared by mixing 7 wt % NaOH with 12 wt % urea aqueous solution which was precooled to below -10 degrees C and which was able to rapidly dissolve cellulose at ambient temperature. The rheological properties and behavior of the gel-formed cellulose solution were investigated by using dynamic viscoelastic measurement. The effects of temperature, time, cellulose molecular weight, and concentrations on both the shear storage modulus (G') and the loss modulus (G") were analyzed. The cellulose solution having a viscosity-average molecular weight (M(eta)) of 11.4 x 10(4) had its sol-gel transition temperature decreased from 60.3 to 30.5 degrees C with an increase of its concentration from 3 to 5 wt %. The gelation temperature of a 4 wt % cellulose solution dropped from 59.4 to 30.5 degrees C as the M(eta) value was increased from 4.5 x 10(4) to 11.4 x 10(4). Interestingly, at either higher temperature (above 30 degrees C), or lower temperature (below -3 degrees C), or for longer gelation time, gels could form in the cellulose solutions. However, the cellulose solution remains a liquid state for a long time at the temperature range from 0 to 5 degrees C. For the first time, we revealed an irreversible gelation in the cellulose solution system. The gel having been formed did not dissolve even when cooled to the temperature of -10 degrees C, at which it was dissolved previously. Therefore, this indicates that either heating or cooling treatment could not break such stable gels. A high apparent activation energy (E(a)) of the cellulose solution below 0 degrees C was obtained and was used to explain the gel formation under the cooling process.  相似文献   

11.
A water soluble galactomannan isolated from Leucaena leucocephala seeds gave an intrinsic viscosity of 3.5dl/g and viscosity average molecular mass, M(v), of 6.98×10(5)g/mol. This was in reasonably good agreement with the value of the weight average molecular mass, M(w), of 5.44±0.20×10(5)g/mol determined by GPC-MALLS coupled to RI. The onset of polymer coil overlap occurred at c*[η] of 2.1, with slope of 3.0 above and 1.3 below the point of polymer coil overlap. The shear viscosity of the polysaccharide was temperature dependent and decreased with increasing temperature. The activation energy for viscous flow of 3.0% polysaccharide concentration obtained by Arrhenius plot of zero shear viscosity as a function of temperature was 26.4kJ/mol. Both the storage modulus (G') and loss modulus (G″) showed strong dependence on frequency indicating the presence of entangled coils. The Cox-Merz plot gave close superimposition of the complex and shear viscosities.  相似文献   

12.
Dynamic viscoelastic properties of collagen solutions with concentrations of 0.5-1.5% (w/w) were characterized by means of oscillatory rheometry at temperatures ranging from 20 to 32.5 degrees C. All collagen solutions showed a shear-thinning flow behavior. The complex viscosity exhibited an exponential increase and the loss tangent decreased with the increase of collagen concentration (C(COL)) when the C(COL)> or =0.75%. Both storage modulus (G') and loss modulus (G') increased with the increase of frequency and concentration, but decreased with the increase of temperature and behaved without regularity at 32.5 degrees C. The relaxation times decreased with the increase of temperature for 1.0% collagen solution. According to a three-zone model, dynamic modulus of collagen solutions showed terminal-zone and plateau-zone behavior when C(COL) was no more than 1.25% or the stated temperature was no more than 30 degrees C. The concentrated solution (1.5%) behaved being entirely in plateau zone. An application of the time-temperature superposition (TTS) allowed the construction of master curve and an Arrhenius-type TTS principle was used to yield the activation energy of 161.4 kJ mol(-1).  相似文献   

13.
L M Soby  A M Jamieson  J Blackwell  N Jentoft 《Biopolymers》1990,29(10-11):1359-1366
The linear viscoelastic and rheological properties of high molecular weight ovine submaxillary mucin (OSM) solution have been investigated in terms of the Newtonian steady-flow viscosity [eta(gamma)], the complex oscillatory viscosity [eta*(omega)], and the storage and loss shear moduli [G'(omega) and G"(omega)]. It was observed that tau(gamma), eta*(omega), and G'(omega) are always higher when OSM is dissolved in 0.1M NaCl than when at the same concentration in 6M GdnHCl. This is consistent with previous observations that submaxillary mucins self-associate in 0.1M NaCl to form large aggregates, which are disrupted in 6M GdnHCl. As the OSM concentration increases, the appearance of a plateau shear modulus indicates the formation of a gel network in both solvents. The results suggest gelation involves specific intermolecular interactions, perhaps due to hydrophobic forces between interdigitated oligosaccharide side chains. The viscoelastic behavior of OSM solution at high concentration is thus similar to that reported in the literature for porcine gastric mucin (PGM). However, the OSM gels are mechanically weaker, having moduli that are an order of magnitude lower than those for PGM gels of comparable concentration. The oligosaccharide side chains of OSM consist of only 1-2 sugar units compared to 10-15 for PGM, but it appears that this is sufficient to allow for intermolecular interaction and the formation of weak gels.  相似文献   

14.
Alveolar epithelial cells undergo stretching during breathing and mechanical ventilation. Stretch can modify cell viscoelastic properties, which may compromise the balance of forces in the alveolar epithelium. We studied the viscoelasticity of alveolar epithelial cells (A549) subjected to equibiaxial distention with a novel experimental approach. Cells were cultured on flexible substrates and subjected to stepwise deformations of up to 17% with a device built on an inverted microscope. Simultaneously, cell storage (G') and loss (G') moduli were measured (0.1-100 Hz) with optical magnetic twisting cytometry. G' and G' increased with strain up to 64 and 30%, respectively, resulting in a decrease in G'/G' (15%). This stretch-induced response was inhibited by disruption of the actin cytoskeleton with latrunculin A. G' increased with frequency following a power law with exponent alpha = 0.197. G' increased proportionally to G' but exhibited a more marked frequency dependence at high frequencies. Stretching (14%) caused a fall in alpha (13%). At high stretching amplitudes, actual cell strain (14.4%) was lower than the applied substrate strain (17.3%), which could indicate a partial cell detachment. These data suggest that cytoskeletal prestress modulates the elastic and frictional properties of alveolar epithelial cells in a coupled manner, according to soft glassy rheology. Stretch-induced cell stiffening could compromise the balance of forces at the cell-cell and cell-matrix adhesions.  相似文献   

15.
The purpose of this study was to examine the viscoelastic properties of topical creams containing various concentrations of microcrystalline cellulose and sodium carboxymethyl cellulose (Avicel(R) CL-611) as a stabilizer. Avicel CL-611 was used at 4 different levels (1%, 2%, 4%, and 6% dispersion) to prepare topical creams, and hydrocortisone acetate was used as a model drug. The viscoelastic properties such as loss modulus (G"), storage modulus (G'), and loss tangent (tan delta) of these creams were measured using a TA Instruments AR 1000 Rheometer and compared to a commercially available formulation. Continuous flow test to determine the yield stress and thixotropic behavior, and dynamic mechanical tests for determining the linear viscosity time sweep data, were performed. Drug release from the various formulations was studied using an Enhancer TM Cell assembly. Formulations containing 1% and 2% Avicel CL-611 had relative viscosity, yield stress, and thixotropic values that were similar to those of the commercial formulation. The elastic modulus (G') of the 1% and 2% formulation was relatively high and did not cross the loss modulus (G"), indicating that the gels were strong. In the commercial formulation, G' increased after preshearing and broke down after 600 seconds. The strain sweep tests showed that for all formulations containing Avicel CL-611, the G' was above G" with a good distance between them. The gel strength and the predominance of G' can be ranked 6% > 4% > 2%. The strain profiles for the 1% and 2% formulations were similar to those of the commercial formulation. The delta values for the 1% and 2% formulations were similar, and the formulations containing 4% Avicel CL-611 had lower delta values, indicating greater elasticity. Drug release from the commercial preparation was fastest compared to the formulations prepared using Avicel CL-611, a correlation with the viscoelastic properties. It was found that viscoelastic data, especially the strain sweep profiles of products containing Avicel CL-611 1% and 2%, correlated with the commercial formulation. Rheological tests that measure the viscosity, yield stress, thixotropic behavior, other oscillatory parameters such as G' and G" are necessary tools in predicting performance of semisolids.  相似文献   

16.
Ikeda S  Nishinari K 《Biopolymers》2001,59(2):87-102
Macroscopic and molecular structural changes during heat-induced gelation of beta-lactoglobulin, bovine serum albumin, ovalbumin, and alpha-lactalbumin aqueous dispersions were probed by the mechanical and CD spectroscopy, respectively. Aqueous solutions of the native globular proteins, except for alpha-lactalbumin, exhibited solid-like mechanical spectra-namely, the predominant storage modulus G' over the loss modulus G" in the entire frequency range examined (0.1-100 rad/s), suggesting that these protein solutions were highly structured even before gelation, possibly due to strong repulsions among protein molecules. Such solid-like structures were susceptible to nonlinearly large shear but recovered almost immediately at rest. During gelation by isothermal heating, major changes in the secondary structure of the globular proteins completed within a few minutes, while values of the modulus continued to develop for hours with maintaining values of tandelta (= G"/G') less than unity. As a result, a conventional criterion for mechanically defining the gelation point, such as a crossover between G' and G", was inapplicable to these globular protein systems. beta-Lactoglobulin gels that had passed the gelation point satisfied power laws (G' approximately G" approximately omega(n)) believed to be valid only at the gelation point, suggesting that fractal gel networks, similar to those of critical gels (i.e., gels at the gelation point), were formed.  相似文献   

17.
The microstructure, kinetics of gelation, and rheological properties have been investigated for gels of nonamidated pectin (C30), amidated pectin (G), and saponified pectin (sG) at different pH values, both with and without sucrose. The low-methoxyl (LM) pectin gels were characterized in the presence of Ca(2+) by oscillatory measurements and transmission electron microscopy (TEM). The appearance of the gel microstructure varied with the pH, the gel structure being sparse and aggregated at pH 3 but dense and somewhat entangled at pH 7. During gel formation of pectins G and C30 at pH 3 there was a rapid increase in G' initially followed by a small increase with time. At pH 7 G' increased very rapidly at first but then remained constant. The presence of sucrose influenced neither the kinetic behavior nor the microstructure of the gels but strongly increased the storage modulus. Pectins G and C30 showed large variations in G' at pH values 3, 4, 5, and 7 in the presence of sucrose, and the maximum in G' in the samples occurred at different pH values. Due to its high Ca(2+) sensitivity, pectin sG had a storage modulus that was about 50 times higher than that of its mother pectin G at pH 7.  相似文献   

18.
Magnetic twisting cytometry (MTC) (Wang N, Butler JP, and Ingber DE, Science 260: 1124-1127, 1993) is a useful technique for probing cell micromechanics. The technique is based on twisting ligand-coated magnetic microbeads bound to membrane receptors and measuring the resulting bead rotation with a magnetometer. Owing to the low signal-to-noise ratio, however, the magnetic signal must be modulated, which is accomplished by spinning the sample at approximately 10 Hz. Present demodulation approaches limit the MTC range to frequencies <0.5 Hz. We propose a novel demodulation algorithm to expand the frequency range of MTC measurements to higher frequencies. The algorithm is based on coherent demodulation in the frequency domain, and its frequency range is limited only by the dynamic response of the magnetometer. Using the new algorithm, we measured the complex modulus of elasticity (G*) of cultured human bronchial epithelial cells (BEAS-2B) from 0.03 to 16 Hz. Cells were cultured in supplemented RPMI medium, and ferromagnetic beads (approximately 5 microm) coated with an RGD peptide were bound to the cell membrane. Both the storage (G', real part of G*) and loss (G", imaginary part of G*) moduli increased with frequency as omega(alpha) (2 pi x frequency) with alpha approximately equal to 1/4. The ratio G"/G' was approximately 0.5 and varied little with frequency. Thus the cells exhibited a predominantly elastic behavior with a weak power law of frequency and a nearly constant proportion of elastic vs. frictional stresses, implying that the mechanical behavior conformed to the so-called structural damping (or constant-phase) law (Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, LaPorte JD, and Fredberg JJ, J Appl Physiol 89: 1619-1632, 2000). We conclude that frequency domain demodulation dramatically increases the frequency range that can be probed with MTC and reveals that the mechanics of these cells conforms to constant-phase behavior over a range of frequencies approaching three decades.  相似文献   

19.
The rheological properties of the stratum corneum of the pilot whale (Globicephala melas) were investigated with emphasis on their significance to the self-cleaning abilities of the skin surface smoothed by a jelly material enriched with various hydrolytic enzymes. The gel formation of the collected fluid was monitored by applying periodic-harmonic oscillating loads using a stress-controlled rheometer. In the mechanical spectrum of the gel, the plateau region of the storage modulus G' (<1200 Pa) and the loss modulus G" (>120 Pa) were independent of frequency (omega = 43.98 to 0.13 rad x s(-1), tau = 15 Pa, T = 20 degrees C), indicating high elastic performance of a covalently cross-linked viscoelastic solid. In addition, multi-angle laser light scattering experiments (MALLS) were performed to analyse the potential time-dependent changes in the weight-average molar mass of the samples. The observed increase showed that the gel formation is based on the assembly of covalently cross-linked aggregates. The viscoelastic properties and the shear resistance of the gel assure that the enzyme-containing jelly material smoothing the skin surface is not removed from the stratum corneum by shear regimes during dolphin jumping. The even skin surface is considered to be most important for the self-cleaning abilities of the dolphin skin against biofouling.  相似文献   

20.
Rheology of synovial fluid   总被引:3,自引:0,他引:3  
J Schurz  V Ribitsch 《Biorheology》1987,24(4):385-399
After a discussion of the role of synovial fluid as a joint lubricant, rheological measurements are described with both normal (healthy) synovial fluids and pathological ones. Shear stress and first normal stress difference are measured as a function of shear gradient to calculate the apparent shear viscosity eta 1 and the apparent normal viscosity psi 7 as well as an apparent shear modulus G'. It is found, that in case of diseased synoviae all rheological parameters deteriorate. Most significant changes are observed with the zero shear viscosity eta 0, the shear modulus G', and a characteristic time theta 1, which is the reciprocal of the critical shear rate Dc which determines the onset of shear thinning. The rheological deterioration of synovial fluids is explained in terms of solute structure, whereby a molecular mass of the backbone hyaluronic acid of at least 10(7) g.mol-1 is required for satisfactory function. A theory of the rheological performance of normal synovial fluid as well as its pathological deterioration is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号