首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Objectives: This purpose of this study was to characterize retinitis pigmentosa (RP) patients at the Southeastern Blind Rehabilitation Center (SBRC) by inheritance pattern, and compare the results with similar studies. Study Design: Records of all RP patients who were in the blind rehabilitation program at the SBRC between 1989 and 1993 were reviewed (n=50). Patients were included in the study who could be personally contacted and whose records were complete (n=43). Pedigrees were obtained through review of records and patient interviews. Results: The analysis showed 24 patients (55.8%) were simplex (no family history of RP), 8 patients (18.6%) were autosomal dominant, 4 patients (9.3%) were probable autosomal dominant, 4 patients (9.3%) were autosomal recessive, 2 patients (4.7%) were probable autosomal recessive and 1 patient (2.3%) was X-linked recessive. Conclusions: Unique trends were apparent in the distribution of inheritance patterns. Clinicians should be aware of the large number of simplex patients found in this and the majority of similar studies.  相似文献   

2.
Retinitis pigmentosa (RP) is a group of genetically heterogeneous retinal degenerations that can be autosomal dominant (ADRP), autosomal recessive (ARRP), or X-linked. Approximately 30% of ADRP patients show point mutations or small deletions in the rhodopsin gene. However, over 50% of the RP patients are simplex cases (sporadic). Screening for mutations in the rhodopsin gene of 33 patients with simplex RP by denaturing gradient gel electrophoresis (DGGE) was carried out. One patient, with D-type (diffuse) RP and consanguineous parents, showed an altered electrophoretic pattern for the 5 half of exon 1. Direct sequencing revealed a new mutation ATG to ACG in codon 44; this predicts a change of Met-44-Thr in rhodopsin. The position and amino acid substitution suggest that this mutation causes the RP phenotype. Implications for genetic counselling are discussed.  相似文献   

3.
Retinitis pigmentosa (RP) is the most common and highly heterogeneous form of hereditary retinal degeneration. This study was to identify mutations in the 60 genes that were known to be associated with RP in 157 unrelated Chinese families with RP. Genomic DNA from probands was initially analyzed by whole exome sequencing. Sanger sequencing was used to confirm potential candidate variants affecting the encoded residues in the 60 genes, including heterozygous variants from genes that are related to autosomal dominant RP, homozygous or compound heterozygous variants from genes that are related to autosomal recessive RP, and hemizygous variants from genes that are related to X-linked RP. Synonymous and intronic variants were also examined to confirm whether they could affect splicing. A total of 244 candidate variants were detected by exome sequencing. Sanger sequencing confirmed 240 variants out of the 244 candidates. Informatics and segregation analyses suggested 110 potential pathogenic mutations in 28 out of the 60 genes involving 79 of the 157 (50 %) families, including 31 (39 %, 31/79) families with heterozygous mutations in autosomal dominant genes, 37 (47 %, 37/79) families with homozygous (9) or compound heterozygous (28) mutations in autosomal recessive genes, and 11 (14 %, 11/79) families with hemizygous mutations in X-linked genes. Of the 110 identified variants, 74 (67 %) were novel. The genetic defects in approximately half of the 157 studies families were detected by exome sequencing. A comprehensive analysis of the 60 known genes not only expanded the mutation spectrum and frequency of the 60 genes in Chinese patients with RP, but also provided an overview of the molecular etiology of RP in Chinese patients. The analysis of the known genes also supplied the foundation and clues for discovering novel causative RP genes.  相似文献   

4.
Clinical and genetic heterogeneity in retinitis pigmentosa   总被引:14,自引:0,他引:14  
Summary The clinical course of defective vision and blindness has been investigated in relation to different modes of genetic transmission in a large series of 93 families with retinitis pigmentosa (RP). For autosomal dominant RP, two clinical subtypes could be distinguished according to the delay in macular involvement. In the severe form, macular involvement occurred within 10 years, while in the mild form, macular involvement occurred after 20 years. Interestingly, a significant increase of mean paternal age (38.8 years, mean controls in France = 29.1 years, P < 0.001) was found in this form of RP, a feature which is suggestive of new mutations. For autosomal recessive RP, four significantly different clinical subtypes could be recognized, according to both age of onset and the pattern of development (P < 0.001), namely cone-rod dystrophy and early-onset severe forms on the one hand (mean age of onset = 7.6 years), late-onset mild forms and senile forms on the other. Similarly, two significantly different clinical subtypes could be recognized in X-linked RP, according to both mode and age of onset, which were either myopia (mean age = 3.5±0.5 years) or night blindness (mean age = 10.6±4.1 years, P < 0.001). By contrast, no difference was noted regarding the clinical course of the disease, which was remarkably severe whatever the clinical subtype (blindness before 25 years). In addition, all obligate carriers in our series were found to have either severe myopia or pigment deposits in their peripheral retina. Finally, sporadic RP represented the majority of cases in our series (42%). There was a considerable heterogeneity in this group, and at least three clinical forms could be recognized, namely cone-rod dystrophy, early onset-severe forms and late onset moderate forms. At the beginning of the disease, the hereditary nature of the sporadic forms was very difficult to ascertain (especially between 7–10 years) and only the clinical course could possibly provide information regarding the mode of inheritance. However, the high level of consanguinity, and the high sex ratio in early onset and severe sporadic forms (including cone-rod dystrophy), was suggestive of an autosomal or X-linked recessive inheritance, while increased paternal age in late onset forms was suggestive of autosomal dominant mutations.  相似文献   

5.
Retinitis pigmentosa (RP) is the name given to a heterogeneous group of retinal degenerations mapping to at least 16 loci. The autosomal dominant form (ARP), accounting for approximately 25% of cases, can be caused by mutations in two genes, rhodopsin and peripherin/RDS, and by at least six other loci identified by linkage analysis. The RP11 locus for adRP has previously been mapped to chromosome 19q13.4 in a large English family. This linkage has been independently confirmed in a Japanese family, and we now report three additional unrelated linked U.K. families, suggesting that this is a major locus for RP. Linkage analysis in the U.K. families refines the RP11 interval to 5 cM between markers D19S180 and AFMc001yb1. All linked families exhibit incomplete penetrance; some obligate gene carriers remain asymptomatic throughout their lives, whereas symptomatic individuals experience night blindness and visual field loss in their teens and are generally registered as blind by their 30s. This "bimodal expressivity" contrasts with the variable-expressivity RP mapping to chromosome 7p (RP9) in another family, which has implications for diagnosis and counseling of RP11 families. These results may also imply that a proportion of sporadic RP, previously assumed to be recessive, might result from mutations at this locus.  相似文献   

6.
Data on the prevalence of hereditary diseases in five regions of the Kostroma province were obtained and analysed. 28 autosomal recessive, 25 autosomal dominant and 4 X-linked recessive disorders were found. Segregation analysis proved the rightness of the material subdivision, according to the type of inheritance. The load of hereditary diseases in five regions was: 0.86 +/- 0.09 X 10(3) for autosomal recessive, 0.97 +/- 0.1 X 10(3) for autosomal dominant and 0.36 +/- 0.09 X 10(3) for X-linked recessive disorders. The problems of prevalence of hereditary diseases connected with population structure is discussed.  相似文献   

7.
Medico-genetical study of populations living in Krasnodar district was carried out. The mean value of genetic load contributed by autosomal dominant diseases composed 0.92 +/- 0.06, this value being 0.56 +/- 0.04 for autosomal recessive and 0.36 +/- 0.05 for X-linked recessive disorders per one thousand. Comparative analysis of genetical load in urban and rural populations demonstrated that they had no differences in relation to genetical load contributed by autosomal recessive and X-linked recessive disorders. At the same time, significant differences were noted between the populations concerning genetic load contributed by autosomal-dominant disorders.  相似文献   

8.
Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy.  相似文献   

9.
The results of a medical genetic survey of the population of four raions (176535 individuals) of Rostov oblast (Dubovsky, Zimovnikovsky, Myasnikovsky, and Krasnosulinsky raions) are presented. The load of autosomal dominant (AD), autosomal recessive (AR), and X-linked hereditary diseases for urban and rural population was calculated, and the diversity of monogenic hereditary diseases (MHD) was reviewed. The nosological spectrum of MHD constituted 117 diseases (63 diseases with AD inheritance; 38, with AR inheritance; and 16, with X-linked inheritance). The analysis showed that the incidence of MHD among the population of Rostov oblast was 1: 336. Considerable differentiation in the prevalence rates of MHD (AD, AR, and X-linked pathologies) among certain raions was revealed.  相似文献   

10.
Retinitis pigmentosa is a genetically heterogeneous form of retinal degeneration, which has X-linked, autosomal recessive and autosomal dominant forms. The disease genes in families with autosomal dominant retinitis pigmentosa (adRP) have been linked to six loci, on 3q, 6p, 7p, 7q, 8q and 19q. In a large American family with late-onset adRP, microsatellite markers were used to test for linkage to the loci on 3q, 6p, 7p, 7q and 8q. Linkage was found to 7q using the marker D7S480. Additional microsatellite markers from 7q were then tested. In total, five markers, D7S480, D7S514, D7S633, D7S650 and D7S677, show statistically significant evidence for link-age in this family, with a maximum two-point lod score of 5.3 at 0% recombination from D7S514. These results confirm an earlier report of linkage to an adRP locus (RP10) in an unrelated family of Spanish origin and indicate that RP10 may be a significant gene for inherited retinal degeneration. In addition, we used recently reported microsatellite markers from 7q to refine the linkage map of the RP10 locus.  相似文献   

11.
The analysis of the spectrum of hereditary diseases in the population of the Krasnodar province is performed and the influence of the population dynamics factors on the spectrum is discussed. More than 130 nosological forms were discovered in the population of approx. 200,000. Among these, there are 63 autosomal dominant, 49 autosomal recessive and 17 X-linked recessive forms. Of the most frequent autosomal dominant diseases (more than 1 per 50,000) autosomal recessive and X-linked recessive disorders 13, 7 and 7 forms, respectively, were picked up. The coefficient of diversity of hereditary diseases (the number of nosological forms per 10 inhabitants) with different types of inheritance is higher in the Krasnodar population, as compared with the Kostroma population. The problem of similarity of the "nucleus" of autosomal-recessive disorders in Russian populations is discussed.  相似文献   

12.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degeneration. This group of disorders essentially leads to blindness due to mutations in different genes. The genetic basis affected by sporadic and inherited autosomal dominant, autosomal recessive or X-linked mutations is complex. In humans, RP is in most cases associated with missense mutations in the rhodopsin gene (RHO). RHO plays an important role in phototransduction pathways. So far, few studies have described associations between chromosomal alterations and RP. In this study, we present a case report of a premature, 32-week-old male baby who suffered from retinopathy, facial dysmorphisms and other disorders. His chromosomes were analyzed by conventional and high-resolution chromosomal techniques. This analysis revealed structural aberrations on chromosomes 3 and 5 with an apparently balanced chromosomal translocation with karyotype 46,XY,t(3;5)(q25;q11.2). Remarkably, the 3q breakpoint on the long arm of chromosome 3 is located close to the physical RHO chromosomal gene location. In this study, we describe presumably for the first time a possible association between a 3q;5q chromosomal alteration and RP. We conclude that the new detected chromosomal translocation may lead either to loss or inactivation of the intragenic RHO gene or its respective gene regulatory region. As a consequence, the chromosomal aberration may be responsible for retinitis pigmentosa.  相似文献   

13.
Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4(th) and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3(rd) exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.  相似文献   

14.
Emery-Dreifuss muscular dystrophy (EDMD) is a rare neuromuscular disorder characterized by early contractures, slowly progressive muscular weakness, and life-threatening heart conduction disturbances that can develop into a cardiomyopathy. There is wide intrafamilial and interfamilial clinical variability. Genetically, X-linked recessive (EMD1), autosomal dominant (EMD2), and autosomal recessive (EMD3) forms can be distinguished, which are associated with mutations in the STA, LMNA, SYNE1, SYNE2, and FHL1 genes. Only approximately 46% of unrelated EDMD patients have a mutation in the genes mentioned above, pointing to further genetic heterogeneity in EDMD.  相似文献   

15.
This paper recapitulates the advances in the field of genetic risk estimation that have occurred during the past decade and using them as a basis, presents revised estimates of genetic risks of exposure to radiation. The advances include: (i) an upward revision of the estimates of incidence for Mendelian diseases (2.4% now versus 1.25% in 1993); (ii) the introduction of a conceptual change for calculating doubling doses; (iii) the elaboration of methods to estimate the mutation component (i.e. the relative increase in disease frequency per unit relative increase in mutation rate) and the use of the estimates obtained through these methods for assessing the impact of induced mutations on the incidence of Mendelian and chronic multifactorial diseases; (iv) the introduction of an additional factor called the "potential recoverability correction factor" in the risk equation to bridge the gap between radiation-induced mutations that have been recovered in mice and the risk of radiation-inducible genetic disease in human live births and (v) the introduction of the concept that the adverse effects of radiation-induced genetic damage are likely to be manifest predominantly as multi-system developmental abnormalities in the progeny.For all classes of genetic disease (except congenital abnormalities), the estimates of risk have been obtained using a doubling dose of 1 Gy. For a population exposed to low LET, chronic/ low dose irradiation, the current estimates for the first generation progeny are the following (all estimates per million live born progeny per Gy of parental irradiation): autosomal dominant and X-linked diseases, approximately 750-1500 cases; autosomal recessive, nearly zero and chronic multifactorial diseases, approximately 250-1200 cases. For congenital abnormalities, the estimate is approximately 2000 cases and is based on mouse data on developmental abnormalities. The total risk per Gy is of the order of approximately 3000-4700 cases which represent approximately 0.4-0.6% of the baseline frequency of these diseases (738,000 per million) in the population.  相似文献   

16.
Retinitis pigmentosa (RP) is the most prevalent human retinopathy of genetic origin. Chromosomal locations for X-linked RP and autosomal dominant RP genes have recently been established. Multipoint analyses with ADRP and seven markers on the long arm of chromosome 3 demonstrate that the gene for rhodopsin, the pigment of the rod photoreceptors, cosegregates with the disease locus with a maximum lod score of approximately 19, implicating rhodopsin as a causative gene. Recent studies have indicated the presence of a point mutation at codon 23 in exon 1 of rhodopsin which results in the substitution of histidine for the highly conserved amino acid proline, suggesting that this mutation is a cause of rhodopsin-linked ADRP. This mutation is not present in the Irish pedigree in which ADRP has been mapped close to rhodopsin. Another mutation in the rhodopsin gene or in a gene closely linked to rhodopsin may be involved. Moreover, the gene in a second ADRP pedigree, with Type II late onset ADRP, does not segregate with chromosome 3q markers, indicating that nonallelic as well as perhaps allelic genetic heterogeneity exists in the autosomal dominant form of this disease.  相似文献   

17.
18.
Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and excluded all mapped autosomal loci. However, a marker from the short arm of the X chromosome, DXS989, showed 0% recombination to the disease locus, with a maximum lod (log-odds) score of 3.3. On the basis of this marker, the odds favoring X-linked dominant versus autosomal dominant inheritance are > 10(5):1. Haplotype analysis using an additional nine microsatellite markers places the disease locus in the Xp22.13-p22.11 region and excludes other X-linked disease loci causing retinal degeneration. The clinical expression of the retinal degeneration is consistent with X-linked dominant inheritance with milder, variable effects of Lyonization affecting expression in females. On the basis of these data we propose that this family has a novel form of dominant, X-linked cone-rod degeneration with the gene symbol "RP15."  相似文献   

19.
The left ventricle (LV) plays a central role in the maintenance of health of children and adults due to its role as the major pump of the heart. In cases of LV dysfunction, a significant percentage of affected individuals develop signs and symptoms of congestive heart failure (CHF), leading to the need for therapeutic intervention. Therapy for these patients include anticongestive medications and, in some, placement of devices such as aortic balloon pump or left ventricular assist device (LVAD), or cardiac transplantation. In the majority of patients the etiology is unknown, leading to the term idiopathic dilated cardiomyopathy (IDC). During the past decade, the basis of LV dysfunction has begun to unravel. In approximately 30-40% of cases, the disorder is inherited; autosomal dominant inheritance is most common (although X-linked, autosomal recessive and mitochondrial inheritance occurs). In the remaining patients, the disorder is presumed to be acquired, with inflammatory heart disease playing an important role. In the case of familial dilated cardiomyopathy (FDCM), the genetic basis is beginning to unfold. To date, two genes for X-linked FDCM (dystrophin, G4.5) have been identified and four genes for the autosomal dominant form (actin, desmin, lamin A/C, delta-sarcoglycan) have been described. In one form of inflammatory heart disease, coxsackievirus myocarditis, inflammatory mediators and dystrophin cleavage play a role in the development of LV dysfunction. In this review, we will describe the molecular genetics of LV dysfunction and provide evidence for a "final common pathway" responsible for the phenotype.  相似文献   

20.
In a sample of children with sensori-neural deafness and no evidence of a syndrome, ototoxic exposure, or autosomal dominant or X-linked family history, seen in the Division of Medical Genetics of The Montreal Children's Hospital, the probability of a sibling being similarly affected was about 1 in 6, both in French-Canadian families and the remainder of the sample. The frequency of deafness of early onset was measured in the uncles and aunts of probands, and these figures were used to derive approximate recurrence risks for the offspring of probands (about 1 in 130, ignoring the possibility of autosomal dominant mutation) and for the offspring of the probands' unaffected sibs (about 1 in 250). A rough estimate of the number of autosomal recessive loci contributing to sensori-neural deafness is derived as 13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号