首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S H Yoo 《Biochemistry》1992,31(26):6134-6140
Chromogranin A (CGA), the most abundant protein in bovine adrenal chromaffin granules, is a high-capacity, low-affinity Ca(2+)-binding protein found in most neuroendocrine cells, and binds calmodulin (CaM) in a Ca(2+)-dependent manner. The binding of chromogranin A to calmodulin was determined by measuring the intrinsic tryptophan fluorescence of chromogranin A in the presence and absence of Ca2+. Binding was specifically Ca(2+)-dependent; neither Mg2+ nor Mn2+ could substitute for Ca2+. Chelation of Ca2+ by EGTA completely eliminated the chromogranin A-calmodulin interaction. CaM binding was demonstrated by a synthetic CGA peptide representing residues 40-65. When the CGA peptide and CaM were mixed in the presence of 15 mM CaCl2, the intrinsic tryptophan fluorescence emission underwent a substantial blue-shift, shifting from 350 to 330 nm. Like the intact CGA, the peptide-CaM binding was specifically Ca(2+)-dependent, and neither Mg2+ nor Mn2+ could induce the binding. Calmodulin bound both to CGA and to the synthetic CGA peptide with a stoichiometry of one to one. The dissociation constants (Kd) determined by fluorometric titration were 13 nM for the peptide-CaM binding and 17 nM for intact CGA-CaM binding. The Kd values are comparable to those (approximately 10(-9) M) of other CaM-binding proteins and peptides, demonstrating a tight binding of CaM by CGA. The CaM-binding CGA residues 40-65 are 100% conserved among all the sequenced CGAs in contrast to 50-60% conservation found in the entire sequence, implying essential roles of this region.  相似文献   

2.
The interaction between calmodulin (CaM) and peptide M13, its target binding sequence from skeletal muscle myosin light chain kinase, involves predominantly two sets of interactions, between the N-terminal target residues and the C-domain of calmodulin, and between the C-terminal target residues and the N-domain of calmodulin (Ikura M et al., 1992, Science 256:632-638). Using short synthetic peptides based on the two halves of the target sequence, the interactions with calmodulin and its separate C-domain have been studied by fluorescence and CD spectroscopy, calcium binding, and kinetic techniques. Peptide WF10 (residues 1-10 of M13) binds to CaM with Kd approximately 1 microM; peptide FW10 (residues 9-18 of M13, with Phe-17-->Trp substitution) binds to CaM with Kd approximately 100 microM. The effect of peptide WF10 on calcium binding to calmodulin produces a biphasic saturation curve, with marked enhancement of affinity for the binding of two calcium ions to the C-domain, forming a stable half-saturated complex, Ca2-CaM-peptide, and confirming the functional importance of the interaction of this sequence with the C-domain. Stopped-flow studies show that the EGTA-induced dissociation of WF10 from Ca4-CaM proceeds by a reversible relaxation mechanism from a kinetic intermediate state, also involving half-saturation of CaM, and the same mechanism is evident for the full target peptide. Interaction of the N-terminal target residues with the C-domain is energetically the most important component, but interaction of calmodulin with the whole target sequence is necessary to induce the full cooperative interaction of the two contiguous elements of the target sequence with both N- and C-domains of calmodulin. Thus, the interaction of calmodulin with the M13 sequence can be dissected on both a structural and kinetic basis into partial reactions involving intermediates comprising distinct regions of the target sequence. We propose a general mechanism for the calcium regulation of calmodulin-dependent enzyme activation, involving an intermediate complex formed by interaction of the calmodulin C-domain and the corresponding part of the target sequence. This intermediate species can function to regulate the overall calcium sensitivity of activation and to determine the affinity of the calmodulin target interaction.  相似文献   

3.
Neoechinulin A is an indole alkaloid with several biological activities. We previously reported that this compound protects neuronal PC12 cells from cytotoxicity induced by the peroxynitrite generator 3-morpholinosydnonimine (SIN-1), but the target proteins and precise mechanism of action of neoechinulin A were unclear. Here, we employed a phage display screen to identify proteins that bind directly with neoechinulin A. Our findings identified two proteins, chromogranin B and glutaredoxin 3, as candidate target binding partners for the alkaloid. QCM analyses revealed that neoechinulin A displays high affinity for both chromogranin B and glutaredoxin 3. RNA interference-mediated depletion of chromogranin B decreased the sensitivity of PC12 cells against SIN-1. Our results suggested chromogranin B is a plausible target of neoechinulin A.  相似文献   

4.
The ciliate protozoan Paramecium tetraurelia produces secretory granules (trichocysts) which release needle-like structures composed of small, acidic proteins. Using antibodies against isolated chromogranin A (CGA) and against trichocyst proteins, we found cross-reactive proteins in chromaffin granules and trichocysts. Four independently derived sera against isolated CGA stained bands of the Mr 15,000-25,000 family of trichocyst proteins on immunoblots. A positive response was also obtained with antiserum against chemically synthesized peptides (PL26 and GE25) corresponding to defined regions of the CGA amino acid sequence. In extracts of whole Paramecium, larger proteins (Mr 53,000 and 49,000) also reacted with antibodies against CGA and the related synthetic peptides. These larger proteins may represent unprocessed precursors to the smaller proteins of mature trichocysts. Antiserum to trichocysts recognized CGA in chromaffin granule lysates. Further evidence of a Paramecium protein related to CGA was provided by hybridization of Paramecium mRNA with cloned cDNA for bovine CGA. Our results suggest striking conservation in evolution of CGA-like proteins that may play some role, as yet unknown, in secretion.  相似文献   

5.
Vasostatin-1, the natural N-terminal 1-76 chromogranin A (CGA)-derived fragment in bovine sequence, has been purified from chromaffin secretory granules and identified by sequencing and matrix-assisted laser desorption time-of-flight mass spectrometry. This peptide, which displays antibacterial activity against Gram-positive bacteria at micromolar concentrations, is also able to kill a large variety of filamentous fungi and yeast cells in the 1-10 microM range. We have found that the C-terminal moiety of vasostatin-1 is essential for the antifungal activity, and shorter active peptides have been synthesized. In addition, from the comparison with the activity displayed by related peptides (human recombinant and rat synthetic fragments), we could determine that antibacterial and antifungal activities have different structural requirements. To assess for such activities in vivo, CGA and CGA-derived fragments were identified in secretory material released from human polymorphonuclear neutrophils upon stimulation. Vasostatin-1, which is stored in a large variety of cells (endocrine, neuroendocrine, and neurons) and which is liberated from stimulated chromaffin and immune cells upon stress, may represent a new component active in innate immunity.  相似文献   

6.
One of the functions of chromogranin A (CGA), the major soluble component of secretory granules in both adrenal medullary chromaffin cells and many other endocrine cell types appears to be that of a prohormone. CGA is the precursor of several peptides including pancreastatin, a 49-residue peptide, and a 20-residue peptide, chromostatin, which have been identified as biologically active peptides. Chromostatin produces a dose-dependent inhibition (ID50 of 5 nM) of the secretagogue-evoked catecholamine secretion from chromaffin cells. Here we report that chromostatin potently inhibits L-type calcium currents recorded with the nystatin-perforated patch technique in cultured chromaffin cells. This inhibitory effect of chromostatin on calcium currents was not observed in experiments using the classical patch-clamp whole-cell approach which induces the leakage of cytoplasmic components. Using 125I-chromostatin, we show that chromostatin exhibits a fully reversible and saturable binding to the plasma membrane of cultured chromaffin cells. Analysis of binding experiments at equilibrium indicates the existence of one class of binding sites with a Bmax of 2.7 pmol/mg of chromaffin cell proteins and an apparent Kd of 6.5 nM. This high affinity is in good correlation with the half-maximal concentration (ID50 5 nM) of chromostatin inhibiting catecholamine secretion from chromaffin cells. Specificity of the chromostatin binding was further assessed by displacement experiments with unlabeled CGA-related or -unrelated peptides. We found an excellent quantitative correlation between the affinities of the various peptides determined by binding assays and their functional potency tested on catecholamine secretion: bovine chromostatin greater than human chromostatin greater than CGA much greater than rat chromostatin, pancreastatin, CAP-14, substance P, and Leu-enkephalin. Cross-linking experiments reveal that chromostatin associates specifically with an 80-kDa plasma membrane protein. These results together with the patch-clamp experiments support the idea that chromaffin cells possess specific chromostatin receptors and that activation of such receptors leads to the inhibition of L-type voltage-sensitive calcium channels through an intracellular second messenger pathway.  相似文献   

7.
N-terminal peptides of chromogranin A and B (CGA and CGB) were compared for dilator responses in isolated bovine coronary arteries (bCoA), measuring diameter changes as a function of pressure. bCoA developed and maintained myogenic tone (MYT) at approximately 20% from 50 to 150 mm Hg. In contrast to CGB(1-40), CGA(1-40) and CGA(1-76) (VS-I) both displayed significant intrinsic vasodilator effects. CGA(1-40) reduced myogenic reactivity from 70 to 150 mm Hg (p<0.05, n=6). At 75 mm Hg, CGA(1-40) showed a concentration-dependent dilatation at 0.1 nM-10 microM. The dilator effect of CGA(1-40) persisted at moderately elevated [K(+)](e) (8.4-16 mM). However, this effect was diminished by pertussis toxin (PTX) and abolished by antagonists to several subtypes of K(+) channels (tetraethylammonium, Ba(2+) and glibenclamide). These results demonstrate that the N-terminal domain of CGA has dilator effect in the myogenically active bCoA. We propose that CGA(1-40) and the naturally occurring vasostatin I are regulatory peptides of relevance for the coronary microcirculation and that a G(alphai) sub-unit and K(+) channel activation may be involved in the signal pathway.  相似文献   

8.
9.
The conformation of Ca2+/calmodulin changes from extended when free in solution to compact when bound in peptide complexes. The extent and kinetics of calmodulin compaction in association with Ca2+/calmodulin-dependent protein kinases (CaMKs), as well as target peptides, were investigated by fluorescence, resonance energy transfer and stopped-flow kinetics. Compaction of Ca2+/calmodulin labelled with resonance energy-transfer probes in association with target peptides was rapid (>350 s(-1)). With the target enzymes smooth-muscle myosin light-chain kinase, CaMKIV and CaMKII, the rates of calmodulin compaction were one-two orders of magnitude lower compared with those of the peptides and in the case of alphaCaMKII, ATP binding and Thr(286) auto-phosphorylation were required for calmodulin compaction. In the absence of nucleotides, Ca2+/calmodulin bound to alphaCaMKII in extended conformations, initially probably attached by one lobe only. Kinetic data suggest that in the activation process of Ca2+/calmodulin-dependent protein kinases, productive as well as unproductive complexes are formed. The formation of productive complexes with Ca2+/calmodulin thus may determine the rate of activation.  相似文献   

10.
The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.  相似文献   

11.
Izumi Y  Kuwamoto S  Jinbo Y  Yoshino H 《FEBS letters》2001,495(1-2):126-130
Small-angle X-ray scattering was used to investigate a complex state of apocalmodulin induced by the binding of a Ca(2+)/calmodulin-dependent protein kinase IV calmodulin target site. Upon binding of the peptide, the molecular weight for apocalmodulin increased by 8.4%, which provides direct evidence for the formation of a calmodulin/target peptide complex. Comparison of the radius of gyration and Kratky plots of the apocalmodulin/peptide complex with those of apocalmodulin indicates that the overall conformation remains unchanged but the flexibility of the central linker decreases. An analysis of residue pairs between calmodulin and the target peptides suggests that the complex formation is induced by electrostatic interactions and subsequent van der Waals interactions.  相似文献   

12.
Vasostatin-I, the natural fragment of chromogranin A-(1-76), is a neuropeptide able to kill a large variety of fungi and yeast cells in the micromolar range. We have examined the antifungal properties of synthetic vasostatin-I-related peptides. The most active shortest peptide, named chromofungin, corresponds to the sequence Arg(47)-Leu(66). Extensive (1)H NMR analysis revealed that it adopts a helical structure. The biophysical mechanism implicated in the interaction of chromofungin with fungi and yeast cells was studied, showing the penetration of this peptide with different lipid monolayers. In order to examine thoroughly the antifungal activity of chromofungin, confocal laser microscopy was used to demonstrate the ability of the rhodamine-labeled peptide to interact with the fungal cell wall, to cross the plasma membrane, and to accumulate in Aspergillus fumigatus, Alternaria brassicola, and Candida albicans. Our present data reveal that chromofungin inhibits calcineurin activity, extending a previous observation that the N-terminal region of chromogranin A interacts with calmodulin in the presence of calcium. Therefore, the destabilization of fungal wall and plasma membrane, together with the possible intracellular inhibition of calmodulin-dependent enzymes, is likely to represent the mechanism by which vasostatin-I and chromofungin exert antifungal activity.  相似文献   

13.
14.
Peptides (33-34 amino acids long) corresponding to the helix-turn-helix (EF-hand) motif of the calcium binding site I of Paramecium tetraurelia calmodulin have been synthesized. The linear sequence was unable to acquire a native-like conformation and calcium binding. However, incorporation of a well-positioned disulfide bond bridging the two putative helical regions greatly improved the ordered structure and binding properties. Analyzed by electrospray mass spectrometry, circular dichroism and time-resolved laser-induced fluorescence, such a disulfide-stabilized peptide is shown to acquire a calcium-dependent helical conformation and exhibits native-like affinity for calcium, terbium and europium ions with 30+/-1, 3.5+/-0.6 and 0.6+/-0.1 microM dissociation constants, respectively. Comparable affinities were calculated within the biological construct comprising the entire domain I of Arabidopsis taliana calmodulin. Single sequence mutation (Glu25Asp) in the binding loop of the peptide abolishes calcium affinity, but preserves lanthanide affinity, showing that metal selectivity can be modulated by specific mutations. Such disulfide-stabilized peptides represent useful models to engineer metal specificity in new calmodulin proteins, facilitating the development of new systems to monitor metal pollution in biosensors and to increase metal binding capability of bacterial and plant cells in bioremediation techniques.  相似文献   

15.
It is hypothesized that different ligand-induced conformational changes can explain the different interactions of nuclear receptors with regulatory proteins, resulting in specific biological activities. Understanding the mechanism of how ligands regulate cofactor interaction facilitates drug design. To investigate these ligand-induced conformational changes at the surface of proteins, we performed a time-resolved fluorescence resonance energy transfer assay with 52 different cofactor peptides measuring the ligand-induced cofactor recruitment to the retinoid X receptor-alpha (RXRalpha) in the presence of 11 compounds. Simultaneously we analyzed the binding modes of these compounds by molecular docking. An automated method converted the complex three-dimensional data of ligand-protein interactions into two-dimensional fingerprints, the so-called ligand-receptor interaction profiles. For a subset of compounds the conformational changes at the surface, as measured by peptide recruitment, correlate well with the calculated binding modes, suggesting that clustering of ligand-receptor interaction profiles is a very useful tool to discriminate compounds that may induce different conformations and possibly different effects in a cellular environment. In addition, we successfully combined ligand-receptor interaction profiles and peptide recruitment data to reveal structural elements that are possibly involved in the ligand-induced conformations. Interestingly, we could predict a possible binding mode of LG100754, a homodimer antagonist that showed no effect on peptide recruitment. Finally, the extensive analysis of the peptide recruitment profiles provided novel insight in the potential cellular effect of the compound; for the first time, we showed that in addition to the induction of coactivator peptide binding, all well-known RXRalpha agonists also induce binding of corepressor peptides to RXRalpha.  相似文献   

16.
To elucidate the interaction of calmodulin with calmodulin binding proteins, we studied the location of the interaction sites on calmodulin by using a chemical cross-linking reagent. Calmodulin prepared from wheat germ was cross-linked to myosin light chain kinase and troponin-I with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The cross-linked products were cleaved partially with cyanogen bromide and cross-linked sites were determined by peptide mapping analysis using SDS-urea polyacrylamide gel electrophoresis. Peptides which contain the cross-linked site were displaced from their position because of the attached fragments of myosin light chain kinase or troponin I. The peptide of calmodulin from the N-terminal to Met-73 in the cross-linked product with myosin light chain kinase had the same mobility as that of uncross-linked calmodulin on the map though the amount of the peptide was decreased in the cross-linked product. The peptide from the N-terminal to Met-110 in the cross-linked product was displaced from its position. Similar change in the mobility of the calmodulin peptides was also observed in the cross-linked products with troponin I. It was concluded, therefore, that at least one cross-linked site for myosin light chain kinase and one for troponin I were located between Met-73 and Met-110 of the wheat germ calmodulin.  相似文献   

17.
Pancreastatin (PST) is one of the chromogranin A (CGA)-derived peptides with known biological activity. It has a general inhibitory effect on secretion in many exocrine and endocrine systems including the heart atrium. Besides, a role of PST as a counter-regulatory peptide of insulin action has been proposed in the light of its effects on glucose and lipid metabolism in the liver and adipose tissue, where receptors and signaling have been described. Galpha(q/11) pathway seems to mediate PST action. Since PST has been shown to function as a typical calcium-dependent hormone, and increased plasma levels have been found in essential hypertension correlating with catecholamines, we sought to study its possible interaction and signaling in heart membranes. Here, we are characterizing specific PST binding sites and signaling in rat heart membranes. We have found that PST receptor has a K(d) of 0.5 nM and a B(max) of 34 fmol/mg of protein. The PST binding is inhibited by guanine nucleotides, suggesting the functional coupling of the receptor with GTP binding proteins (G proteins). Moreover, PST dose-dependently increases GTP binding to rat heart membranes. Finally, we have studied PST signaling-effector system by measuring phospholipase C (PLC) activity using blocking antibodies against different G proteins and PLC isoforms. We have found that PST stimulates PLCbeta(2)>PLCbeta(1)>PLCbeta(3) by activating Galpha(16) in rat heart membranes. These data suggest that PST may modulate the cardiac function.  相似文献   

18.
Shi Q  Wang X  Ren J 《Biophysical chemistry》2008,138(3):138-143
p21 is a protein with important roles in cell proliferation, cell cycle regulation and apoptosis. Several studies have demonstrated that its intracellular localization plays an important role in the functional regulation and binding of calmodulin favors its nuclear translocation. However, the detail mechanism of the interaction with p21 and calmodulin is not well understood. In this report, peptides derived from the C-terminal of p21 that cover the binding domain of calmodulin were used to investigate the association of p21 with calmodulin. We found p21(141-164) interaction with Ca(2+)-saturated dansyl-labelled calmodulin caused a significant increase in dansyl fluorescence intensity and a blue shift of the maximum emission from 510 to 475 nm. The Trp fluorescence intensities of mutated p21(141-164) peptides (F150W, Y151W and F159W) increased upon binding to Ca(2+)-saturated calmodulin and fluorescence maxima were blue shifted from 350 nm to 330 nm. The results suggested p21(141-164) is most likely buried in the hydrophobic binding tunnel of calmodulin. Both dansyl and Trp fluorescence titrations generated dissociation constants around 0.1 muM and a stoichiometry of 1:1, which was further confirmed by nondenaturing gel band shift electrophoresis. Fluorescence titrations and Trp fluorescence quenching results indicated electrostatic interaction is involved in this association. Upon binding to calmodulin, p21(141-164) remained largely unstructured and showed only about 15% alpha-helix. In contrast to other calmodulin binding peptide, the dominant force in the association of p21(141-164) with calmodulin may be electrostatic interaction. Our results would be helpful for understanding the molecular details of p21 and calmodulin interaction.  相似文献   

19.
Jas GS  Kuczera K 《Proteins》2002,48(2):257-268
In the course of aging or under conditions of oxidative stress, methionine residues of calmodulin undergo oxidation, leading to loss of biological activity of the protein. We have performed free-energy simulations of the effects of C-terminal methionine side-chain oxidation on the properties of calmodulin. The simulation results indicate that oxidation should have a destabilizing effect on all three protein functional states: calcium free, calcium loaded, and with both calcium and target peptide bound. Because the different states are destabilized by different amounts, this leads to a more complex pattern in the observable effects on protein thermal stability, calcium affinity, and binding of a target peptide. The influence of oxidation on the free energy of CaM unfolding is estimated by comparing the free-energy cost of oxidizing a Met residue in a Gly-Met-Gly peptide and in the protein. The protein thermal stability of the oxidized forms is lowered by a moderate amount 1-3 kcal/mol, in qualitative agreement with experimental results of 0.3 kcal/mol. The calculated changes in affinity for calcium and for the target peptide show opposing trends. Oxidation at position 144 is predicted to enhance peptide binding and weaken calcium binding, whereas oxidation at 145 weakens peptide binding and enhances affinity for calcium. The lower affinity of Met 145-oxidized calmodulin toward the target peptide correlates with experimentally observed lowering of calmodulin-activated Ca-ATPase activity when oxidized calmodulin from aged rat brains is used. Thus, our simulations suggest that Met 145 is the oxidation site in the C-terminal fragment of calmodulin. The microscopic mechanism behind the calculated free energy changes appears to be a greater affinity for water of the oxidized Met side-chain relative to normal Met. Structures with Met exposed to solvent had consistently lower free energies than those with buried Met sidechains.  相似文献   

20.
Using site-directed mutagenesis we have expressed in Escherichia coli three engineered calmodulins (CaM) containing deletions in the solvent-exposed region of the central helix. These are CaM delta 84, Glu-84 removed; CaM delta 83-84, Glu-83 and Glu-84 removed; and CaM delta 81-84, Ser-81 through Glu-84 removed. The abilities of these proteins to activate skeletal muscle myosin light chain kinase, plant NAD kinase, and bovine brain calcineurin activities were determined, as were their abilities to bind a synthetic peptide based on the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Similar results were obtained with all three deletion proteins. Vm values for enzymes activated by the deletion proteins are all within 10-20% of those values obtained with bacterial control calmodulin. Relative to bacterial control values, changes in Kact or Kd values associated with the deletions are all less than an order of magnitude: Kact values for NAD kinase and myosin light chain kinase are increased 5-7-fold, Kd values for binding of the synthetic peptide are increased 4-7-fold, and Kact values for calcineurin are increased only 1-3-fold. In assays of NAD kinase and myosin light chain kinase activation some differences between bovine calmodulin and bacterial control calmodulin were observed. With NAD kinase, Kact values for the bacterial control protein are increased 4-fold relative to values for bovine calmodulin, and Vm values are increased by 50%; with myosin light chain kinase, Kact values are increased 2-fold and Vm values are decreased 10-15% relative to those values obtained with bovine calmodulin. These differences between bacterial control and bovine calmodulins probably can be attributed to known differences in postranslational processing of calmodulin in bacterial and eucaryotic cells. No differences between bovine and control calmodulins were observed in assays of calcineurin activation or peptide binding. Our observations indicate that contacts with the deleted residues, Ser-81 through Glu-84, are not critical in the calmodulin-target complexes we have evaluated. Formation of these calmodulin-target complexes also does not appear to be greatly affected by the global alterations in the structure of calmodulin that are associated with the deletions. In models in which the central helix is maintained in the altered calmodulins, each deleted residue causes the two lobes of calmodulin to be twisted 100 degrees relative to one another and brought 1.5 A closer together.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号