首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site.  相似文献   

2.
Strychnine-insensitive [3H]glycine binding was detected in brain synaptic membranes treated with Triton X-100 using a filtration assay method. The binding was a time-dependent, inversely temperature-dependent, and reversible process with a relatively high affinity for the neuroactive amino acid. Scatchard analysis revealed that Triton treatment doubled both the affinity and density of the binding sites, which consisted of a single component. The binding was not only displaced by structurally-related amino acid such as D-serine and D-alanine, but also inhibited by some peptides containing glycine, including glycine methylester and N-methylglycine. These ligands invariably potentiated the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]- cyclohepten-5,10-imine ([3H]MK-801), a noncompetitive antagonist for the N-methyl-D-aspartate-sensitive subclass of the central excitatory amino acid receptors, in a concentration-dependent manner. Among various endogenous tryptophan metabolites, kynurenic acid significantly inhibited the strychnine-insensitive [3H]glycine binding. The Triton treatment did not affect the pharmacological profile of [3H]MK-801 binding sites. These results suggest that brain synaptic membranes treated with Triton X-100 are useful in evaluating the strychnine-insensitive and kynurenate-sensitive binding sites of glycine, which are functionally linked to N-methyl-D-aspartate- sensitive receptor channels.  相似文献   

3.
N-methyl-D-aspartate (NMDA) receptors are known to play an important role in learning and memory and to be involved in neuron cell death accompanying cerebral ischemia, seizures, and Alzheimer's disease. The NMDA receptor complex has been considered to consist of an L-glutamate recognition site, a strychnine-insensitive glycine modulatory site, and a voltage-dependent cation channel. In the present study, effects of age on an L-glutamate recognition site and a glycine site were examined in rat brain by quantitative in vitro autoradiography with [3H]-CPP and [3H]-glycine. Both [3H]-glycine and [3H]-CPP binding sites were most abundant in the hippocampus and cerebral cortex, and they showed a similar distribution pattern throughout the brain. [3H]-glycine binding sites were severely decreased in the telencephalic regions, including the hippocampus and cerebral cortex, in aged brain. Conversely, [3H]-CPP binding sites were well preserved in these brain areas. In the mid-brain regions and cerebellum, neither [3H]-glycine nor [3H]-CPP binding sites changed in the aged brain. Our results indicate that within the NMDA receptor complex, glycine receptors are primarily affected in the aging process.  相似文献   

4.
Membranes from rat telencephalon contain a single class of strychnine-insensitive glycine sites. That these sites are associated with N-methyl-D-aspartic acid (NMDA) receptors is indicated by the observations that [3H]glycine binding is selectively modulated by NMDA receptor ligands and, conversely, that several amino acids interacting with the glycine sites increase [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding to the phencyclidine site of the NMDA receptor. The endogenous compound kynurenate and several related quinoline and quinoxaline derivatives inhibit glycine binding with affinities that are much higher than their affinities for glutamate binding sites. In contrast to glycine, kynurenate-type compounds inhibit [3H]TCP binding and thus are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site. These results suggest the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.  相似文献   

5.
Glycine is the principal inhibitory neurotransmitter in posterior regions of the brain. In addition, glycine serves as an allosteric regulator of excitatory neurotransmission mediated by the N-methyl-D-aspartate (NMDA) acidic amino acid receptor subtype. The studies presented here characterize [3H]glycine binding to washed membranes prepared from rat spinal cord and cortex, areas enriched in glycine inhibitory and NMDA receptors, respectively, in an attempt to define the glycine recognition sites on the two classes of receptors. Specific binding for [3H]glycine was seen in both cortex and spinal cord. Saturation analyses in cortex were best fitted by a two-site model with respective equilibrium dissociation constants (KD values) of 0.24 and 5.6 microM and respective maximal binding constants (Bmax values) of 3.4 and 26.7 pmol/mg of protein. Similar analyses in spinal cord were best fitted by a one-site model with a KD of 5.8 microM and Bmax of 20.2 pmol/mg of protein. Na+ had no effect on [3H]glycine binding to cortical membranes but increased the binding to spinal cord membranes by greater than 15-fold. This Na+-dependent binding may reflect glycine binding to the recognition site of the high-affinity, Na+-dependent glycine uptake system. Several short-chain, neutral amino acids displaced [3H]glycine binding from both cortical and spinal cord membranes. The most potent displacers of [3H]glycine binding to cortical membranes were D-serine and D-alanine, followed by the L-isomers of serine and alanine and beta-alanine. In contrast, D-serine and D-alanine were similar in potency to L-serine in spinal cord membranes. Compounds active at receptors for the acidic amino acids had disparate effects on the binding of [3H]glycine. At 10 microM, NMDA resulted in a 25% increase, whereas D- and L-2-amino-5-phosphonovaleric acid at 100 microM resulted in a 30% decrease, in [3H]glycine binding to cortical membranes. Kynurenic acid was the most potent of the acidic amino acid-related compounds at displacing [3H]glycine binding. In cortical membranes, kynurenic acid displacement was resolved into a high- and a low-affinity component; the high-affinity component displaced the high-affinity component of [3H]glycine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Abstract

Binding of [3H]5,7-dichlorokynurenic acid ([3H]DCKA), a competitive antagonist of the strychnine-insensitive glycine site of the N-methyl-D-aspartate (NMDA) receptor channel complex, was characterized in synaptic plasma membranes from rat cerebral cortex. Non linear curve fitting of [3H]DCKA saturation and homologous displacement isotherms indicated the existence of two binding sites: a specific, saturable, high affinity site, with a pKD value of 7.24 (KD = 57.5 nmol/1) and a maximum binding value (Bmax) of 6.9 pmol/mg of protein and a second site, with micromolar affinity. The pharmacological profile of both binding components was determined by studying the effect on [3H]DCKA and [3H]glycine binding of a series of compounds known to interact with different excitatory and inhibitory amino acid receptors. These studies confirmed the identity of the high affinity site of [3H]DCKA binding with the strychnine-insensitive glycine site of the NMDA receptor channel complex. 3-[2-(Phenylaminocarbonyl)ethenyl]-4,6-dichloroindole-2-carboxylic acid sodium salt (GV 150526A), a new, high affinity, selective glycine site antagonist (1), was the most potent inhibitor of this component of binding (pKi = 8.24, Ki = 5.6 nmol/1). The low affinity component of [3H]DCKA binding was insensitive to the agonists glycine and D-serine and the partial agonist (±)-3-amino-1-hydroxy-2-pyrrolidone (HA 966), though recognised by glycine site antagonists. The precise nature of this second, low affinity [3H]DCKA binding site remains to be elucidated.  相似文献   

7.
Among various quinoxaline derivatives examined, only 6,7-dichloroquinoxaline-2,3-dione (DCQX) competitively displaced the strychnine-insensitive binding of [3H]glycine, without affecting the other binding sites on the N-methyl-D-aspartate (NMDA) receptor complex. This novel specific antagonist abolished the ability of L-glutamate to potentiate [3H]MK-801 binding activity in brain synaptic membranes treated with Triton X-100. Inclusion of glycine reversed this preventive action of DCQX on the potentiation induced by glutamate.  相似文献   

8.
A [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM) has been identified, having characteristics expected of a modulatory component of the N-methyl-D-aspartate receptor complex. Incubation of SPM with [3H]glycine for 10 min at 2 degrees C results in saturable, reversible binding with a KD of 0.234 microM and a Bmax of 9.18 pmol/mg. A pharmacological analysis of this binding site indicates that D-serine (Ki = 0.27 microM), D-alanine (Ki = 1.02 microM), and D-cycloserine (Ki = 2.33 microM) are potent inhibitors of binding, whereas the corresponding L isomers have significantly less activity (Ki = 25.4 microM, 15.9 microM, and greater than 100 microM, respectively). Inactive at concentrations of up to 100 microM were strychnine, L-valine, N,N-dimethylglycine, aminomethylphosphonate, and aminomethylsulfonate. The active compounds were analyzed further for their ability to stimulate [3H]1-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to Triton X-100-washed SPM. Results indicate that the affinity of the compounds for the [3H]glycine recognition site correlates with the ability of these analogues to stimulate [3H]TCP binding.  相似文献   

9.
Multiple binding sites on the N-methyl-D-aspartate (NMDA) receptor complex were examined using rat brain synaptic membranes treated with Triton X-100. Binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801), a noncompetitive NMDA antagonist, in the presence of 10 microM L-glutamate not only was inhibited by different types of antagonists, such as 6,7-dichloro-3-hydroxy-2-quinoxaline-carboxylate, 7-chlorokynurenate, and 6,7-dichloroquinoxaline-2,3-dione (DCQX), but also was abolished by non-NMDA antagonists, including 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2,3-dione. The inhibition of [3H]MK-801 binding by these compounds was invariably reversed or attenuated by addition of 10 microM glycine. Among these novel antagonists with an inhibitory potency on [3H]MK-801 binding, only DCQX abolished [3H]glycine binding without inhibiting [3H]glutamate and [3H](+-)-3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate bindings. Other antagonists examined were all effective as displacers of the latter two bindings. These results suggest that DCQX is an antagonist highly selective to the strychnine-insensitive glycine binding sites with a relatively high affinity.  相似文献   

10.
In the mammalian brain, the (NMDA) subtype of glutamate receptor is coupled to a cation channel and a strychnine-insensitive glycine receptor. The present paper demonstrates the presence of NMDA receptor-coupled strychnine-insensitive glycine receptors in embryonic chick retina. Both glycine and 1-aminocyclopropanecarboxylic acid (ACPC) exhibited similar potencies (271 ± 39 vs 247 ± 39 nM, respectively) as inhibitors of strychnine-insensitive [3H]glycine binding to retinal membranes. Moreover, glycine and ACPC enhanced [3H]MK-801 binding to sites within the NMDA-coupled cation channel in retinal membranes with potencies comparable to those reported in rat brain. While the potency of ACPC was significantly higher than glycine (EC50 54±12 vs 256±57 nM, P < 0.02) in this measure, there were no significant differences in the maximum enhancement (efficacy) of [3H]MK-801 binding by these compounds. Since glycine appears to be required for the operation of NMDA-coupled cation channels, we examined the effects of glycine and ACPC on NMDA-induced acute excitotoxicity in the 14-day embryonic chick retina. Histological evaluation of retina revealed that either ACPC (10–100 μM) or glycine (200 μM) attenuated NMDA- induced (200 μM) retinal damage, and a combination of these agents produced an enhanced protection against acute NMDA toxicity. ACPC (100 μM), but not MK-801 (1 μM) also afforded a modest protection against kainate-induced (25 μM) retinal damage. These findings demonstrate that while strychnine-insensitive glycine receptors are present in embryonic chick retina, occupation of these sites does not augment the cytotoxic actions of NMDA. Moreover, the ability of ACPC and glycine to attenuate NMDA-induced cytotoxicity does not appear to be mediated through occupation of these sites.  相似文献   

11.
Neurochemical interactions of tiletamine, a potent phencyclidine (PCP) receptor ligand, with the N-methyl-D-aspartate (NMDA)-coupled and -uncoupled PCP recognition sites were examined. Tiletamine potently displaced the binding of [3H]1-(2-thienyl)cyclohexylpiperidine with an IC50 of 79 nM without affecting sigma-, glycine, glutamate, kainate, quisqualate, or dopamine (DA) receptors. Like other PCP ligands acting via the NMDA-coupled PCP recognition sites, tiletamine decreased basal, harmaline-, and D-serine-mediated increases in cyclic cGMP levels and induced stereotypy and ataxia. Tiletamine was nearly five times more potent than PCP at inhibiting the binding of 3-hydroxy[3H]PCP to its high-affinity NMDA-uncoupled PCP recognition sites. However, following parenteral administration, dizocilpine maleate (MK-801), ketamine, PCP, dexoxadrol, and 1-(2-thienyl)cyclohexylpiperidine HCl, but not tiletamine, increased rat pyriform cortical DA metabolism and/or release, a response modulated by the NMDA-uncoupled PCP recognition sites. Pretreatment with tiletamine did not attenuate the MK-801-induced increases in rat pyriform cortical DA metabolism, a result suggesting that tiletamine is not a partial agonist of the NMDA-uncoupled PCP recognition sites in this region. However, following intracerebroventricular administration (100-500 micrograms/rat), tiletamine increased pyriform cortical DA metabolism with a bell-shaped dose-response curve. These data indicate a differential interaction of tiletamine with the NMDA-coupled and -uncoupled PCP recognition sites. The paradoxical effects of tiletamine suggest that tiletamine might activate receptor(s) or neuronal pathways of unknown pharmacology.  相似文献   

12.
The N-methyl-D-aspartate (NMDA) receptor is thought to contain several distinct binding sites that can regulate channel opening. In the present experiments, the effects of ligands for these sites have been examined on [3H]MK-801 binding to a soluble receptor preparation, which had been passed down a gel filtration column to reduce the levels of endogenous small-molecular-weight substances. Glycine site agonists, partial agonists, and antagonists gave effects similar to those observed in membranes [EC50 values (in microM): glycine, 0.31; D-serine, 0.20; D-cycloserine, 1.46; (+)-HA-966, 4.06; and 7-chlorokynurenic acid, 1.81]. Spermine and spermidine enhanced [3H]MK-801 binding to the soluble receptor preparation (EC50, 4.3 and 20.1 microM, respectively), whereas putrescine and cadaverine gave small degrees of inhibitions. When spermine and spermidine were tested under conditions where [3H]MK-801 binding approached equilibrium, their ability to enhance [3H]MK-801 binding was much reduced, a result suggesting that the polyamines increase the rate to equilibrium. Putrescine antagonised the effects of spermine. Ifenprodil reduced [3H]MK-801 binding under both equilibrium and nonequilibrium conditions, although the high-affinity component of inhibition described in membranes was not observed. Ifenprodil antagonised spermine effects in an apparently noncompetitive manner. Desipramine was able to give total inhibition of specific [3H]MK-801 binding under nonequilibrium conditions with an IC50 of 4 microM, and this value was unaltered when [3H]MK-801 binding was allowed to reach equilibrium. These results suggest that the sites mediating the effects of glycine and its analogues, polyamines and desipramine are integral components of the NMDA receptor protein.  相似文献   

13.
This study examined (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate [( 3H]MK801) binding to the N-methyl-D-aspartate (NMDA) receptor in membranes prepared from six regions of rat brain. Highest levels of binding were found in hippocampus and cortex, whereas much lower densities were found in brainstem and cerebellum. NMDA receptors in cerebellum exhibited a significantly lower affinity for [3H]MK801 than cortical NMDA receptors. To determine whether forebrain and hindbrain NMDA receptors were distinct, the actions of glutamate, NMDA, ibotenate, quinolinate, glycine, and spermine were investigated. These agents increased [3H]MK801 binding in all brain regions examined. However, agonists were uniformly less efficacious in hindbrain compared to forebrain regions. NMDA mimetics and spermine were less potent in cerebellum compared to cortex whereas glycine was equipotent. Antagonists that act at the various modulatory sites on the NMDA receptor were also examined. DL-Amino-phosphonopentanoic acid and 7-chlorokynurenate were approximately equipotent in cortex and cerebellum. However, antagonists that are believed to act inside the NMDA-operated ion channel, including Mg2+ and phencyclidine, were approximately threefold less potent in cerebellum. The diminished regulation of [3H]MK801 binding by glutamate and glycine in the cerebellum was associated with a smaller effect of these agonists on the dissociation of [3H]MK801 from its binding site. The levels of glutamate, aspartate, glycine, serine, and glutamine in the membrane preparations were determined. However, variations in the levels of endogenous amino acids were not sufficient to account for the regional differences in [3H]MK801 binding. These results do not support the hypothesis that a distinct NMDA receptor exists in hindbrian regions of the rat CNS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: Binding of [3H]glutamate, [3H]glycine, and the glutamate antagonist [3H]CGS-19755 to NMDA-type glutamate receptors was examined in homogenates of rat forebrain and cerebellum. Most glutamate agonists had a higher affinity at the [3H]glutamate binding site of cerebellar NMDA receptors as compared with forebrain, whereas all the glutamate antagonists examined showed the reverse relationship. The [3H]glycine binding site of forebrain and cerebellar NMDA receptors showed a similar pharmacology in both brain regions. In the cerebellum, however, [3H]glycine bound to a second site with a 10-fold lower affinity and with a pharmacology that resembled that of the glycine/strychnine chloride channel. [3H]Glutamate binding was not affected by glycine agonists or antagonists, nor was [3H]glycine binding affected by glutamate agonists in either forebrain or cerebellum. Both CGS-19755 and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, glutamate antagonists, reduced [3H]glycine binding in cerebellum, whereas only CGS-19755 was effective in forebrain. Glycine agonists and antagonists modulated [3H]CGS-19755 binding in forebrain and cerebellum to different extents in the two brain regions. From these studies we conclude that the cerebellar NMDA receptor has a different pattern of modulation at glutamate and glycine sites and that glycine may play a more important role in the control of NMDA function in the cerebellum as compared with forebrain.  相似文献   

15.
Polyclonal antibodies have been raised in rabbits against the glycine receptor antagonist strychnine, coupled through a 2-amino substituent to the antigenic protein key-hole limpet haemocyanin. Strychnine binding of the predominantly immunoglobulin G (IgG) class of antibodies was measured by incubation with [3H]strychnine, followed by adsorption of IgG onto Staphylococcus aureus cells and filtration through glass-fibre filters under vacuum. Only strychnine and structurally related alkaloids or derivatives were able to inhibit [3H]strychnine binding to the IgG. A significant rank correlation was found between the potencies of these compounds to inhibit [3H]strychnine binding to the antibodies and to the glycine receptor in mouse spinal cord membranes. In contrast, preincubation of strychnine antibodies with a variety of ligands at other neurotransmitter, drug, or hormone receptors in the CNS (at 10(-4) M) failed to inhibit binding significantly. The failure of glycine to inhibit strychnine antibody binding is consistent with previous suggestions that the recognition sites for this amino acid on the CNS receptor may be conformationally distinct from those for the antagonist alkaloid. Strychnine antibodies may now help in the identification and purification of possible endogenous ligands at this alkaloid binding site in the CNS.  相似文献   

16.
We have identified a monoclonal antibody, B6B21, that significantly elevates long-term potentiation when applied to CA1 pyramidal cell apical dendrites in rat hippocampal slices and characterized its binding to N-methyl-D-aspartate-receptor complexes using extensively washed hippocampal membranes. Five micrograms of affinity-purified B6B21 per 100 micrograms of membranes gave a two- to threefold elevation in N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) binding. When [3H]TCP binding was stimulated by the combined addition of maximal concentrations of glutamate, glycine, and magnesium, B6B21 no longer stimulated [3H]TCP binding. Like glycine, B6B21 enhanced the effect of N-methyl-D-aspartate and glutamate in stimulating [3H]TCP binding. Moreover, B6B21 reversed 7-chlorokynurenic acid inhibition of [3H]TCP binding, but it had no effect on the inhibition of [3H]TCP binding by D-(-)-2-amino-5-phosphonovaleric acid. B6B21 increased the rate of association and dissociation of [3H]TCP, but had no effect on equilibrium binding. Glutamate, but not glycine, however, increased B6B21-enhancement of [3H]TCP association and dissociation. B6B21 binding at strychnine-insensitive glycine sites was confirmed by direct measurement of [3H]glycine binding. These results suggest that B6B21 binds directly to N-methyl-D-aspartate receptors and displays properties similar to glycine.  相似文献   

17.
Abstract: The N-methyl-d -aspartate (NMDA) receptor possesses two distinct amino acid recognition sites, one for glutamate and one for glycine, which appear to be allosterically linked. Using rat cortex/hippocampus P2 membranes we have investigated the effect of glutamate recognition site ligands on [3H]glycine (agonist) and (±)4-trans-2-car-boxy-5,7-dichloro-4-[3H]phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline ([3H]l -689,560; antagonist) binding to the glycine site and the effect of glycine recognition site ligands on l -[3H]glutamate (agonist), dl -3-(2-carboxypiperazin-4-yl)-[3H]propyl-1 -phosphonate ([3H]-CPP; “C-7” antagonist), and cis-4-phosphonomethyl-2-[3H]piperidine carboxylate ([3H]CGS-19755; “C-5” antagonist) binding to the glutamate site. “C-7” glutamate site antagonists partially inhibited [3H]l -689,560 binding but had no effect on [3H]glycine binding, whereas “C-5” antagonists partially inhibited the binding of both radioligands. Glycine, d -serine, and d -cycloserine partially inhibited [3H]CGS-19755 binding but had little effect on l -[3H]-glutamate or [3H]CPP binding, whereas the partial agonists (+)-3-amino-1-hydroxypyrrolid-2-one [(+)-HA-966], 3R-(+)cis-4-methyl-HA-966 (l -687,414), and 1-amino-1-carboxycyclobutane all enhanced [3H]CPP binding but had no effect on [3H]CGS-19755 binding, and (+)-HA-966 and l -687,414 inhibited l -[3H]glutamate binding. The association and dissociation rates of [3H]l -689,560 binding were decreased by CPP and d -2-amino-5-phosphonopentanoic acid (“C-5”). Saturation analysis of [3H]l -689,560 binding carried out at equilibrium showed that CPP had little effect on the affinity or number of [3H]l -689,560 binding sites. These results indicate that complex interactions occur between the glutamate and glycine recognition sites on the NMDA receptor. In addition, mechanisms other than allosterism may underlie some effects, and the possibility of a steric interaction between CPP and [3H]l -689,560 is discussed.  相似文献   

18.
The ontogenetic development of [3H]-spiroperidol binding sites was measured in the optic tectum, cerebellum, forebrain base, and forebrain roof of 1-, 4-, and 16-day-old chicks. In the chick optic tectum and cerebellum both the density and the total number of [3H]-spiroperidol binding sites increased from 4- to 16-days-posthatch, but no significant differences were found in either brain area across the initial four posthatch days. In the forebrain base, [3H]-spiroperidol receptor density and total binding increased significantly between 1- and 4-days-posthatch, but at 16-days-posthatch there was a slight decrease in receptor density. Binding sites in the forebrain roof were minimal at all ages. As expected, saturation experiments yielded curvilinear plots indicating the presence of high- and low-affinity binding sites. The high-affinity sites probably reflect dopamine D-2 receptors; whereas, the low-affinity sites may reflect other receptor types, possibly serotonin S-2. These results suggest that large doses of haloperidol, which are normally used in chick behavioral research, may produce behavioral effects by antagonizing multiple receptors.  相似文献   

19.
The novel N-methyl-D-aspartate receptor channel ligand (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5, 10-imine maleate ([3H]MK-801) has been utilized to label this receptor in human brain tissue. Characteristics of [3H]MK-801 binding to well-washed membranes from 17 control subjects and 16 patients with Alzheimer's disease were determined in frontal, parietal, and temporal cerebral cortex and cerebellar cortex. In control tissue the pharmacological specificity of the binding of this substance is entirely consistent with the profile previously reported for rat brain. Binding could be stimulated by the addition of glutamic acid to the incubation medium; addition of glycine produced further enhancement which was not prevented by strychnine. The specificity of the effects of these and other amino acids on the binding was the same as in the rat. In Alzheimer's disease significantly less binding was observed in the frontal cortex under glutamate- and glycine-stimulated conditions. This appears to be associated with a reduced affinity of the site whereas the pharmacological specificity of the site remained unchanged. The effect did not appear to be due to differences in mode of death between Alzheimer's disease and control subjects and is unlikely to be related to factors for which the groups were matched. In contrast, binding was not altered in the absence of added amino acids and presence of glutamate alone. These results imply that in the cerebral cortex the agonist site and a site in the cation channel of the receptor are not selectively altered, but that their coupling to a strychnine-insensitive glycine recognition site is impaired.  相似文献   

20.
Abstract: We have previously demonstrated that chronic administration of antidepressants results in a reduction in the potency of glycine to displace 5,7-[3H]dichlorokynurenic acid (5,7-[3H]-DCKA) from the strychnine-insensitive glycine recognition site of the NMDA receptor complex. We now report that exposure of rats to the forced swim test results in a 56% increase in the potency of glycine to displace 5,7-[3H]DCKA from frontal cortical homogenates. These data are consistent with the hypothesis that the forced swim test, a preclinical screen sensitive to acute administration of antidepressant drugs and NMDA receptor antagonists, also results in adaptation of the NMDA receptor complex. Moreover, these data lend further support to the hypothesis that glutamatergic pathways are involved in the neurobiological response to stress and, potentially, in the pathophysiology of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号