首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydroepiandrosterone (DHEA) is a putative anti-stress agent and stress is associated with the secretion of catecholamine from the adrenal gland, but the effects of DHEA on catecholamine secretion are not fully understood. Using bovine chromaffin cells, we found that DHEA inhibited catecholamine secretion and cytosolic Ca2+ ([Ca2+]i) rise coupled with nicotinic acetylcholine receptor (nAChR) without exerting an effect on3H-nicotine binding. In the case of high K+ stimulation, DHEA effectively suppressed secretion without affecting [Ca2+]1 rise. Trifluoperazine (TFP), a calmodulin inhibitor, was capable of counteracting the inhibition of DHEA on high K+-induced secretions. In permeabilized cells, DHEA suppressed the Ca2+-induced secretion. These results suggest that DHEA (a) acts as a channel blocker that suppresses Ca2+ influx and subsequent secretions associated with nAChR, or (b) affects the intracellular secretion machinery to suppress high K+-induced secretions without affecting the high K+-induced [Ca2+]i rise.  相似文献   

2.
Standard (UICC) chrysotile B asbestos fibres caused rapid (within minutes) 5-to-8-fold stimulations of catecholamine secretion from isolated bovine adrenal chromaffin cells without affecting their viability (97%). The stimulation of catecholamine secretion by asbestos was selective to chrysotile type fibres, half-maximal stimulation by standard chrysotile B, chrysotile A, crocidolite, amosite and silica fibres being observed at 7, 73, 160, 250 and ? 500 μg per ml, respectively. The secretory effect of chrysotile B was additive to that of acetylcholine and blocked by either the divalent cations, Co2+, Ni2+ and Mg2+ or the ion chelators, EGTA and EDTA. Conversely, neither verapamil, methoxyverapamil, or removal of extracellular calcium affected the asbestos-evoked catecholamine secretion. These data indicate that the selective stimulatory effect of chrysotile type asbestos on adrenal chromaffin cells can be mediated by membrane or intracellular calcium and raise the question of the possible involvement of catecholamines in the pathogenesis of asbestos related diseases.  相似文献   

3.
The possible role of metalloendoproteinase in stimulus-secretion coupling in adrenal chromaffin cells was examined using the metalloendoproteinase inhibitors 1,10-phenanthroline and carbobenzoxy-Gly-Phe-NH2. Catecholamine release elicited by nicotine or by depolarisation with 55 mM K+ was almost completely abolished by 0.5 mM 1,10-phenanthroline. Carbobenzoxy-Gly-Phe-NH2 (2.5 mM) inhibited catecholamine release in response to nicotine but enhanced that due to 55 mM K+. The rise in intracellular free calcium, [Ca2+]i, in response to either nicotine or 55 mM was inhibited by about 50% by both inhibitors. One site of action of metalloendoproteinase inhibitors may, therefore, be at the level of the regulation of [Ca2+]i. Catecholamine release and the rise in [Ca2+]i elicited by the calcium ionophore ionomycin were not reduced by the inhibitors. These results show that metalloendoproteinase inhibitors have complex effects on chromaffin cells including effects on the regulation of [Ca2+]i but do not inhibit calcium-activated exocytosis itself.  相似文献   

4.
The effect of carbamylcholine and the calcium ionophore A23187 on catecholamine release and intracellular free calcium, [Ca2+]i, in bovine adrenal chromaffin cells was determined. At 10–4M carbamylcholine maximal release occurred with an accompanying increase i n [Ca2+]i from a basal level of 168 nM to less than 300 nM. An increase in [Ca2+]i of a similar magnitude was found following challenge with 40 nM A23187. However, in this case, no catecholamine release occurred. These results suggest that stimulation of secretion from chromaffin cells by carbamylcholine may involve additional triggers which stimulate secretion at low [Ca2+]i.  相似文献   

5.
In this study, the relationship between intracellular calcium stores and depolarization-evoked stimulation was examined in bovine chromaffin cells, using changes in membrane capacitance to monitor both exocytosis and endocytosis. Cells were voltage-clamped using the perforated whole-cell patch configuration to minimize alterations in intracellular constituents. Control cells exhibited reproducible secretory responses each time the cell was stimulated. However, the same stimulation protocol elicited progressively smaller secretory responses in cells where their intracellular calcium store was emptied by thapsigargin. Transient elevation of the intracellular calcium concentration with a brief histamine treatment enhanced subsequent secretory responses in control but not in thapsigargin-treated cells. A series of depolarizations to -20 mV, which allowed small amounts of Ca(2+) influx but which by itself did not trigger catecholamine secretion, enhanced subsequent exocytosis in both control and thapsigargin-treated cells. Caffeine-pretreated cells exhibited a rundown in the secretory response that was similar to that produced by thapsigargin. These results suggest that brief elevations of [Ca(2+)](i) could enhance subsequent secretory responses. In addition, the data suggest that intracellular calcium stores are vital for the maintenance of exocytosis during repetitive stimulation.  相似文献   

6.
We have studied the mechanism of Na+ deprivation-induced catecholamine secretion from freshly isolated bovine adrenal chromaffin cells. Na+ deprivation-induced catecholamine secretion depended on free extracellular Ca2+ concentrations and was almost parallel to 45Ca2+ influx into the cells under various experimental conditions. Furthermore, Na+ deprivation-induced 45Ca2+ influx and catecholamine secretion were actually induced by a relative Na+ concentration gradient across the plasma membrane, but not by simple omission of Na+ from the medium. These results indicate that the deprivation of Na+ from the medium changes the relative Na+ gradient across the plasma membrane and results in Ca2+ influx via a reverse mode of Na(+)-Ca(2+) exchange rather than by inducing Ca2+ entry through Ca2+ channels by eliminating the competition between extracellular Na+ and Ca2+.  相似文献   

7.
The role of calmodulin in exocytotic secretion was studied using digitonin-permeabilized bovine adrenal medullary chromaffin cells. Addition of calmodulin to the permeabilized cells increased Ca(2+)-dependent norepinephrine release in a dose-dependent manner. Unlike calmodulin, addition of caldesmon, actin or bovine serum albumin did not increase the release. Calmodulin increased the release at Ca2+ concentrations of more than 10(-6) M and its effect increased with increase in Mg2+ concentration. Th release of norepinephrine enhanced by calmodulin was inhibited by tetanus toxin, which specifically inhibits exocytotic secretion. These results indicate directly that calmodulin plays an important role in exocytotic secretion from chromaffin cells.  相似文献   

8.
The effects of temperature on ion fluxes and catecholamine secretion that are mediated by nicotinic acetylcholine receptors (nAChRs), voltage-sensitive calcium channels (VSCCs), and voltage-sensitive sodium channels (VSSCs) were investigated using bovine adrenal chromaffin cells. When the chromaffin cells were stimulated with DMPP, a nicotinic cholinergic agonist, or 50 mM K+, the intracellular calcium ([Ca2+]i) elevation reached a peak and decreased more slowly at lower temperatures. The DMPP-induced responses were more sensitive to temperature changes compared to high K+-induced ones. In the measurement of intracellular sodium concentrations ([Na+]i), it was found that nicotinic stimulation required a longer time to attain the maximal level of [Na+]i at lower temperatures. In addition, the VSSCs-mediated [Na+]i increase evoked by veratridine was also reduced as the temperature decreased. The measurement of [3H]norepinephrine (NE) secretion showed that the secretion within the first 3 min evoked by DMPP or high K+ was greatest at 37 degrees C. However, at 25 degrees C, the secretion evoked by DMPP, but not that by the 50 mM K+, was greater after 10 min of stimulation. This data suggest that temperature differentially affects the activity of nAChRs, VSCCs, and VSSCs, resulting in differential [Na+]i and [Ca2+]i elevation, and in the [3H]NE secretion by adrenal chromaffin cells.  相似文献   

9.
As part of our studies on the functional role of the cytoskeleton in exocytosis we have reported (Cheek, T.R., and Burgoyne, R.D. (1986) FEBS Lett. 207, 110-114) that a calcium-independent transient disassembly of cortical actin filaments occurs on activation of the chromaffin cell nicotinic receptor but not when the cell is exposed to 55 mM K+. In order to determine whether this actin disassembly is required, in conjunction with a rise in intracellular Ca2+, to elicit a maximum secretory response from these cells, we have examined the relationship between actin disassembly, the elevation in intracellular Ca2+, and secretion in detail. The results show that the dose dependence of nicotine-induced secretion and actin disassembly are essentially identical with maximal effects at a dose of nicotine that produced a submaximal rise in intracellular Ca2+. Intracellular cAMP, elevated by three independent means, did not inhibit 55 mM K+-induced secretion but inhibited nicotine-induced secretion. Forskolin inhibited actin disassembly while not affecting the rise in intracellular Ca2+. These results demonstrate that a close inter-relationship exists between the secretory response and actin disassembly and provide further evidence suggesting that actin disassembly could be required in addition to the rise in intracellular Ca2+ in order to elicit a maximal secretory response in chromaffin cells. In addition, the results point to a role for cAMP in the regulation of stimulus-induced actin disassembly.  相似文献   

10.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

11.
The molecular mechanism of honokiol, extracted from the bark of Magnolia obovata, was studied using bovine adrenal chromaffin cells as a model system. Honokiol inhibits catecholamine secretion induced by carbachol and DMPP and that induced by exposure to high K+ and Ba2+ but to a lesser extent. The inhibitory effects of trifluoperazine and honokiol on carbachol-, high K(+)- and Ba2(+)- induced secretion were not additive. The results suggest that honokiol interferes with the interaction between the acetylcholine receptor and its agonists and that honokiol may also affect the steps in exocytosis after intracellular calcium has been raised, possibly at the site(s) where calmodulin acts.  相似文献   

12.
The nonhydrolyzable GTP analogue guanosine 5'-(beta, gamma-imido)triphosphate (GMP-PNP) produced an ATP-dependent but Ca2+-independent stimulation of [3H]norepinephrine release from permeabilized chromaffin cells. This stimulation of secretion was 25-35% of the secretion induced by 10 microM Ca2+. A similar Ca2+-independent stimulation was produced by other non-hydrolyzable GTP analogues. No effect was seen with a variety of other nucleotides, including GTP. The GMP-PNP effect was specifically inhibited by low concentrations of guanine nucleotides. Addition of cAMP did not mimic the Ca2+-independent GMP-PNP effect, but did slightly enhance Ca2+-dependent secretion. Pretreatment with pertussis toxin had no effect on Ca2+-dependent secretion or on the GMP-PNP effect. There was no detectable diglyceride or inositol phosphate produced during GMP-PNP treatment, and addition of diglyceride and inositol trisphosphate did not induce secretion. Guanosine 5'-(beta-thio)diphosphate (GDP-beta-S), in addition to its ability to inhibit the GMP-PNP effect, partially inhibited Ca2+-dependent secretion. At 10 microM free Ca2+, the effects of GMP-PNP and Ca2+ were nonadditive. In fact, secretion in the presence of both GMP-PNP and 10 microM Ca2+ was slightly less than secretion due to Ca2+ alone. These data suggest that a guanine nucleotide-dependent process interacts in some way with one or more components of the normal Ca2+-dependent secretory pathway. However, it may not be an intrinsic part of the mechanism underlying Ca2+-dependent secretion.  相似文献   

13.
1. The effects of cholinergic drugs on catecholamine (CA) secretion from adrenal chromaffin tissue of the toad were studied.2. CA secretion was induced by ACh or nicotine, but not by muscarine.3. Hexamethonium inhibited the CA release evoked by ACh or nicotine, while d-tubocurarine only affected the nicotinic response. Atropine did not prevent the secretory response.4. Muscarine abolished the secretion induced by the agonists, this effect being prevented by atropine or gallamine, but not by pirenzepine.5. In conclusion, CA secretion in the toad is stimulated by activation of nicotinic receptors. Inhibitory muscarinic receptors are present, most likely of type M2, which may play a regulatory function.  相似文献   

14.
J A Purifoy  R W Holz 《Life sciences》1984,35(18):1851-1857
The ability of ketamine, phencyclidine and analogues to alter catecholamine secretion from cultured bovine adrenal chromaffin cells was investigated. Both ketamine and phencyclidine specifically inhibited nicotinic agonist-induced secretion at concentrations which did not alter secretion induced by elevated K+ depolarization. The inhibition of nicotinic agonist-induced secretion was not overcome by increasing concentrations of nicotinic agonist. The effects of stereoisomer pairs of phencyclidine-like drugs - dexoxadrol, levoxadrol and (+)PCMP, (-)PCMP - did not reveal stereospecificity for the inhibition, in contrast to the stereospecific behavioral effects of the drugs. The local anesthetic lidocaine (0.3 mM) also noncompetitively inhibited nicotinic agonist-induced secretion without inhibiting elevated K+-induced secretion. The data indicate that ketamine and phencyclidine at clinically relevant concentrations specifically inhibit the adrenal chromaffin cell nicotinic receptor at a site similar to or identical with the site of action of local anesthetic. Although the nicotinic receptor inhibition is probably not related to the anesthetic and behavioral effects of ketamine and phencyclidine, it is likely that the centrally mediated increase in sympathetic nervous system activity which is characteristic of these drugs is moderated by the peripheral blocking effects on catecholamine secretion from the adrenal medulla.  相似文献   

15.
Pretreatment of cultured bovine adrenal chromaffin cells with pertussis toxin facilitated nicotine-induced catecholamine release. This facilitation was correlated with the ability of the toxin to catalyze the ADP-ribosylation of an approximately 40-kDa membrane protein. The actions of the toxin were reversed by isonicotinamide, an inhibitor of ADP-ribosylation. Catecholamine release due to high K+ and muscarine was also enhanced by pertussis toxin. In all cases, 45Ca2+ uptake was unaltered in cells treated with the toxin. These results suggest that ADP-ribosylation of a 40-kDa membrane protein facilitates catecholamine release from bovine chromaffin cells without affecting 45Ca2+ uptake.  相似文献   

16.
Role of intracellular pH in secretion from adrenal medulla chromaffin cells   总被引:5,自引:0,他引:5  
The role of intracellular pH in stimulus-secretion coupling was investigated in cultured bovine adrenal medullary chromaffin cells. NH4Cl (1-25 mM) did not affect basal catecholamine or ATP release but markedly inhibited nicotine- or high K+-induced release by up to 60%. The inhibition had a rapid onset (less than 1 min) and was maximal at about 5 mM NH4Cl. The effect of NH4Cl was largely sustained over 20 min and was reversed upon NH4Cl removal. Sodium propionate did not affect secretion but partially reversed the inhibition by NH4Cl in a concentration-dependent manner. Methylamine (10 mM) produced a similar, but slower, inhibition than NH4Cl. Monensin (1-10 microM) inhibited catecholamine secretion by 30-60%, and its effect was reduced in the presence of NH4Cl. Using the fluorescent Ca2+ probe Fura-2, we found that the increase of [Ca2+]i following stimulation was not altered by concentrations of NH4Cl which inhibited secretion maximally. Measurement of cytosolic pH (pHi) with the fluorescent probe 2',7'-bis-carboxyethyl-5(6)-carboxyfluorescein (BCECF) revealed an alkalinization by NH4Cl (2.5-25 mM) of 0.1-0.23 pH units and acidification by sodium propionate (10-20 mM) of 0.2-0.25 pH units, with intermediate combined effects. Monensin (1 microM) caused a cytosolic acidification of 0.26 pH units. All pHi changes were partly recovered in 15 min. Fluorescence quenching measurements using the weakly basic fluorescent probe acridine orange indicated the accumulation of the probe into acidic compartments, presumably the chromaffin granules, which was strongly reduced by both NH4Cl and monensin. From these findings we conclude that the pH of the chromaffin granule modulates secretion by affecting some step in the secretory process unrelated to the rise in [Ca2+]i.  相似文献   

17.
1. The effects of cholinergic drugs on catecholamine (CA) secretion from adrenal chromaffin tissue of the toad were studied. 2. CA secretion was induced by ACh or nicotine, but not by muscarine. 3. Hexamethonium inhibited the CA release evoked by ACh or nicotine, while d-tubocurarine only affected the nicotinic response. Atropine did not prevent the secretory response. 4. Muscarine abolished the secretion induced by the agonists, this effect being prevented by atropine or gallamine, but not by pirenzepine. 5. In conclusion, CA secretion in the toad is stimulated by activation of nicotinic receptors. Inhibitory muscarinic receptors are present, most likely of type M2, which may play a regulatory function.  相似文献   

18.
Carbamylcholine-stimulated catecholamine release from adrenal chromaffin cells was completely inhibited by pretreatment of the cells for 10 min with 1 μM calmidazolium. Catecholamine release due to 55 mM K+ and ionophore A23187 was also inhibited by calmidazolium but less effectively than release due to carbamylcholine. Inhibition of release appeared to be due to an effect of calmidazolium on a step distal to Ca2+ entry, since the carbamylcholine-stimulated rise in the concentration of intracellular free calcium, monitored using quin-2, was unaffected by calmidazolium. The possibility was considered that calmidazolium inhibited secretion through an effect on protein kinase C rather than calmodulin. However, the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), had no demonstrable effect on catecholamine release, arguing against a significant role for protein kinase C in secretion from adrenal chromaffin cells. These results give further support to the notion that calmodulin plays a role in the secretory process in chromaffin cells.  相似文献   

19.
The significance of intracellular Na+ concentration in catecholamine secretion of cultured bovine adrenal chromaffin cells was investigated using the monovalent carboxylic ionophore monensin. This ionophore, which is known to mediate a one-for-one exchange of intracellular K+ for extracellular Na+, induces a slow, prolonged release of catecholamines which, at 6 h, amounts of 75-90% of the total catecholamines; carbachol induces a rapid pulse of catecholamine secretion of 25-35%. Although secretory granule numbers appear to be qualitatively reduced after carbachol, multiple carbachol, or Ba2+ stimulation, overall granule distribution remains similar to that in untreated cells. Monensin-stimulated catecholamine release requires extracellular Na+ but not Ca2+ whereas carbachol-stimulated catecholamine release requires extracellular Ca2+ and is partially dependent on extracellular Na+. Despite its high selectivity for monovalent ions, monensin is considerably more effective in promoting catecholamine secretion than the divalent ionophores, A23187 and ionomycin, which mediate a more direct entry of extracellular Ca2+ into the cell. We propose that the monensin-stimulated increase in intracellular Na+ levels causes an increase in the availability of intracellular Ca2+ which, in turn, stimulates exocytosis. This hypothesis is supported by the comparable stimulation of catecholamine release by ouabain which inhibits the outwardly directed Na+ pump and thus permits intracellular Na+ to accumulate. The relative magnitudes of the secretion elicited by monensin, carbachol, and the calcium ionophores, are most consistent with the hypothesis that, under normal physiological conditions, Na+ acts by decreasing the propensity of Ca2+- sequestering sites to bind the Ca2+ that enters the cell as a result of acetylcholine stimulation.  相似文献   

20.
Bovine adrenal chromaffin cells possess both nicotinic and muscarinic cholinergic receptors, but only nicotinic receptors have heretofore appeared to mediate Ca2+-dependent exocytosis. We have now found that muscarinic receptor stimulation in bovine adrenal chromaffin cells leads to enhanced inositol phospholipid metabolism as evidenced by the rapid (less than 1 min) formation of inositol trisphosphate (IP3) and inositol bisphosphate (IP2). Muscarinic receptor-mediated accumulation of IP3 and IP2 continues beyond 1 min in the presence of LiCl and is accompanied by large increases in inositol monophosphate. Muscarinic receptor stimulation was also found to enhance nicotine-induced catecholamine secretion by 1.7-fold if muscarine was added 30 s before nicotine addition. Moreover, since the muscarinic antagonist atropine reduces acetylcholine-induced secretion, we conclude that muscarinic receptor stimulation somehow primes these cells for nicotinic receptor-mediated secretion, perhaps by causing small nonstimulatory increases in cytosolic free Ca2+ mediated by IP3. Furthermore, we show that small depolarizations of these cells with 10 mM K+, which themselves do not affect basal secretion, also enhance nicotine-induced secretion. Thus, small increases in cytosolic free Ca2+ produced either by physiologic muscarinic receptor stimulation or by small experimental depolarizations with K+ may prime the chromaffin cells for nicotinic receptor-mediated secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号