首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The cytosolic free calcium concentration ([Ca2+]i) and exocytosis of chromaffin granules were measured simultaneously from single, intact bovine adrenal chromaffin cells using a novel technique involving fluorescent imaging of cocultured cells. Chromaffin cell [Ca2+]i was monitored with fura-2. To simultaneously follow catecholamine secretion, the cells were cocultured with fura-2-loaded NIH-3T3t cells, a cell line chosen because of their irresponsiveness to chromaffin cell secretagogues but their large Ca2+ response to ATP, which is coreleased with catecholamine from the chromaffin cells. In response to the depolarizing stimulus nicotine (a potent secretagogue), chromaffin cell [Ca2+]i increased rapidly. At the peak of the response, [Ca2+]i was evenly distributed throughout the cell. This elevation in [Ca2+]i was followed by a secretory response which originated from the entire surface of the cell. In response to the inositol 1,4,5-trisphosphate (InsP3)-mobilizing agonist angiotensin II (a weak secretagogue), three different responses were observed. Approximately 30% of chromaffin cells showed no rise in [Ca2+]i and did not secrete. About 45% of the cells responded with a large (greater than 200 nM), transient elevation in [Ca2+]i and no detectable secretory response. The rise in [Ca2+]i was nonuniform, such that peak [Ca2+]i was often recorded only in one pole of the cell. And finally, approximately 25% of cells responded with a similar Ca2+-transient to that described above, but also gave a secretory response. In these cases secretion was polarized, being confined to the pole of the cell in which the rise in [Ca2+]i was greatest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
D I Mundy  W J Strittmatter 《Cell》1985,40(3):645-656
Exocytosis is initiated by the receptor-mediated influx of calcium that results in fusion of the secretory vesicle with the plasma membrane. We examined the possibility that calcium-dependent exocytosis in mast cells and adrenal chromaffin cells requires metalloendoprotease activity. Metalloendoprotease inhibitors and dipeptide substrates block exocytosis in these cells with the same specificity and dose dependency as that with which they interact with metalloendoproteases. Metalloendoprotease activity is identified in these cells with fluorogenic synthetic substrates, which also blocked exocytosis. Metalloendoprotease activity is highest in the plasma membrane of chromaffin cells. The metalloendoprotease appears to be required in exocytosis at a step dependent on or after calcium entry, since exocytosis initiated by direct calcium introduction in both mast cells and chromaffin cells is blocked by metalloendoprotease inhibitors.  相似文献   

3.
The role of cAMP in the control of secretion from bovine adrenal chromaffin cells was examined using the adenylate cyclase activator, forskolin. Treatment of chromaffin cells with forskolin resulted in a rise in cAMP levels. Forskolin inhibited catecholamine release elicited by carbamylcholine or nicotine but had no effect on secretion evoked by 55 mM K+. Inhibition of carbamylcholine-stimulated release by forskolin was half-maximal at 10 microM forskolin. The inhibition by forskolin of secretion evoked by carbamylcholine was at a step distal to the rise in intracellular free calcium concentration ([Ca2+]i), since this rise was not inhibited by forskolin, which itself produced a small rise in [Ca2+]i. The results suggest that secretion evoked by carbamylcholine is due to the activation of an additional second messenger pathway acting with the rise in [Ca2+]i. This additional pathway may be the target for cAMP action.  相似文献   

4.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

5.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

6.
Temporal and spatial changes in the concentration of cytosolic free calcium ([Ca2+]i) in response to a variety of secretagogues have been examined in adrenal chromaffin cells using digital video imaging of fura-2-loaded cells. Depolarization of the cells with high K+ or challenge with nicotine resulted in a rapid and transient elevation of [Ca2+]i beneath the plasma membrane consistent with Ca2+ entry through channels. This was followed by a late phase in which [Ca2+]i rose within the cell interior. Agonists that act through mobilization of inositol phosphates produced an elevation in [Ca2+]i that was most marked in an internal region of the cell presumed to be the site of IP3-sensitive stores. When the same cells were challenged with nicotine or high K+, to trigger Ca2+ entry through voltage-dependent channels, the rise in [Ca2+]i was most prominent in the same localized region of the cells. These results suggest that Ca2+ entry through voltage-dependent channels results in release of Ca2+ from internal stores and that the bulk of the measured rise in [Ca2+]i is not close to the exocytotic sites on the plasma membrane. Analysis of the time courses of changes in [Ca2+]i in response to bradykinin, angiotensin II and muscarinic agonists showed that these agonists produced highly heterogeneous responses in the cell population. This heterogeneity was most marked with muscarinic agonists which in some cells elicited oscillatory changes in [Ca2+]i. Such heterogeneous changes in [Ca2+]i were relatively ineffective in eliciting catecholamine secretion from chromaffin cells. A single large Ca2+ transient, with a component of the rise in [Ca2+]i occurring beneath the plasma membrane, may be the most potent signal for secretion.  相似文献   

7.
The effects of temperature on ion fluxes and catecholamine secretion that are mediated by nicotinic acetylcholine receptors (nAChRs), voltage-sensitive calcium channels (VSCCs), and voltage-sensitive sodium channels (VSSCs) were investigated using bovine adrenal chromaffin cells. When the chromaffin cells were stimulated with DMPP, a nicotinic cholinergic agonist, or 50 mM K+, the intracellular calcium ([Ca2+]i) elevation reached a peak and decreased more slowly at lower temperatures. The DMPP-induced responses were more sensitive to temperature changes compared to high K+-induced ones. In the measurement of intracellular sodium concentrations ([Na+]i), it was found that nicotinic stimulation required a longer time to attain the maximal level of [Na+]i at lower temperatures. In addition, the VSSCs-mediated [Na+]i increase evoked by veratridine was also reduced as the temperature decreased. The measurement of [3H]norepinephrine (NE) secretion showed that the secretion within the first 3 min evoked by DMPP or high K+ was greatest at 37 degrees C. However, at 25 degrees C, the secretion evoked by DMPP, but not that by the 50 mM K+, was greater after 10 min of stimulation. This data suggest that temperature differentially affects the activity of nAChRs, VSCCs, and VSSCs, resulting in differential [Na+]i and [Ca2+]i elevation, and in the [3H]NE secretion by adrenal chromaffin cells.  相似文献   

8.
We have tested the hypothesis that exocytosis is a possible export route for calcium from bovine adrenal medullary cells. After prelabelling cells in primary tissue culture with 45Ca, evoked 45Ca export and catecholamine secretion show the same time course, a similar fraction of the total pool of 45Ca and catecholamine is released, and the same concentrations of carbamylcholine or KCl are required for half-maximal triggered release. Increasing the osmolarity of the extracellular medium or treating the cells with botulinum toxin type D inhibits both evoked catecholamine secretion and 45Ca export to the same extent without inhibiting 45Ca influx. Incorporation of 45Ca into chromaffin granules is very slow, however, and incorporated 45Ca is not immediately releasable. 45Ca entering the cell during short-term stimulation is not found in the releasable pool during a second period of triggered secretion. Our data suggest that chromaffin granules are the largest pool of intracellular calcium in bovine adrenal medullary cells and that most of the calcium in chromaffin granules does not rapidly exchange with cytoplasmic Ca, but can be released directly by exocytosis. Exocytosis does not appear to play a major role in exporting Ca that enters the cell during short-term stimulation.  相似文献   

9.
Annexin 7, a Ca(2+)/GTP-activated membrane fusion protein, is preferentially phosphorylated in intact chromaffin cells, and the levels of annexin 7 phosphorylation increase quantitatively in proportion to the extent of catecholamine secretion. Consistently, various protein kinase C inhibitors proportionately reduce both secretion and phosphorylation of annexin 7 in these cells. In vitro, annexin 7 is quantitatively phosphorylated by protein kinase C to a mole ratio of 2.0, and phosphorylation is extraordinarily sensitive to variables such as pH, calcium, phospholipid, phorbol ester, and annexin 7 concentration. Phosphorylation of annexin 7 by protein kinase C significantly potentiates the ability of the protein to fuse phospholipid vesicles and lowers the half-maximal concentration of calcium needed for this fusion process. Furthermore, other protein kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, and protein-tyrosine kinase pp60(c-)(src), also label annexin 7 with high efficiency but do not have this effect on membrane fusion. In the case of pp60(c-)(src), we note that this kinase, if anything, modestly suppresses the membrane fusion activity of annexin 7. These results thus lead us to hypothesize that annexin 7 may be a positive mediator for protein kinase C action in the exocytotic membrane fusion reaction in chromaffin cells.  相似文献   

10.
We have expanded the use of the Semliki Forest virus (SFV) by infecting chromaffin cells with synaptic proteins at high efficiency. Using the SFV gene expression system, up to 40% of cultured bovine chromaffin cells express the protein of interest within 12-48 h after infection. In order to learn about the basic physiological properties of infected cells, we performed membrane capacitance measurements using the whole-cell patch-clamp technique and monitored catecholamine release with amperometry. We found that chromaffin cells infected with green fluorescent protein (GFP) were comparable to control cells in intracellular calcium concentrations ([Ca2+]i), leak currents and cell sizes. In response to depolarization, calcium currents were elicited and the cells secreted catecholamine. Comparison of the calcium current amplitude and the size of the readily releasable pool of vesicles revealed a small decrease in these parameters compared to control cells. The refilling kinetics after pool depletion, however, were not altered. Overexpressed munc13-1 translocates to the plasma membrane in response to phorbol esters, an effect that is also observed in fibroblasts transfected with conventional methods. Thus, the use of the SFV gene expression system to infect chromaffin cells represents a major improvement in infection efficiency compared to other methods. It opens up new opportunities to introduce synaptic proteins into chromaffin cells and study their role in secretion.  相似文献   

11.
Pertussis toxin stimulates both basal and nicotine-evoked catecholamine secretion from intact bovine adrenal chromaffin cells, as well as Ca2(+)-evoked release from permeabilized cells. Tetanus toxin inhibits all these effects; it reduces the secretion of intact cells treated with pertussis toxin to the basal level, and decreases by about 50% Ca2(+)-evoked release from permeabilized cells whether or not previously stimulated by pertussis toxin.  相似文献   

12.
The effect of caffeine on catecholamine secretion and intracellular free Ca2+ concentration [( Ca2+]i) in bovine adrenal chromaffin cells was examined using single fura-2-loaded cells and cell populations. In cell populations caffeine elicited a large (approximately 200 nM) transient rise in [Ca2+]i that was independent of external Ca2+. This rise in [Ca2+]i triggered little secretion. Single cell measurements of [Ca2+]i showed that most cells responded with a large (greater than 200 nM) rise in [Ca2+]i, whereas a minority failed to respond. The latter, whose caffeine-sensitive store was empty, buffered a Ca2+ load induced by a depolarizing stimulus more effectively than those whose store was full. The caffeine-sensitive store in bovine chromaffin cells may be involved in Ca2+ homeostasis rather than in triggering exocytosis.  相似文献   

13.
P S Liu  L S Kao 《Cell calcium》1990,11(9):573-579
Bovine adrenal chromaffin cells were loaded with Na+ via either acetylcholine receptor-associated ion channels or voltage-sensitive Na+ channels. There were increases in [Ca2+]i, 45Ca2+ uptake and catecholamine secretion in both types of Na(+)-loaded cells relative to control cells in which Na+ loading had been prevented by hexamethonium and tetrodotoxin, respectively. These results show the presence of Na(+)-dependent Ca2+ influx activity in chromaffin cells which is probably mediated by the reverse mode of a Na+/Ca2+ exchanger.  相似文献   

14.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

15.
S Matsumoto  A Isogai  A Suzuki 《FEBS letters》1985,189(1):115-118
Catecholamine release from chromaffin cells in response to carbamylcholine and high K+ is transient. Monitoring intracellular free calcium ([Ca2+]i) using quin2 demonstrated a transient rise in [Ca2+]i in response to carbamylcholine. The termination of secretion due to carbamylcholine is probably a consequence of the return of [Ca2+]i to resting levels as the nicotinic receptors desensitise. Depolarisation with 55 mM K+ led to a long-lasting rise in [Ca2+]i which persisted after the secretory response had terminated. The maintained rise in [Ca2+]i appeared to be due to continued opening of verapamil-sensitive Ca2+ channels. These results suggest that inactivation of voltage-dependent Ca2+ channels does not account for the transient nature of the secretory response in chromaffin cells.  相似文献   

16.
By using a hemolytic plaque assay to detect release of lactoferrin and myeloperoxidase, tumor necrosis factor (TNF) was shown previously to induce secretion of these granule proteins from single adherent neutrophils. Secretion was inhibited by loading neutrophils with calcium chelators, indicating a crucial role of cytosolic free [Ca2+] in the signal transduction mechanism of TNF. In the present study, using a microfluorometer technique to follow changes in the cytosolic free [Ca2+] in single adherent neutrophils, we were not able to detect any TNF-induced [Ca2+] transients. However, these adherent cells exhibited spontaneous oscillations of their cytosolic free [Ca2+], as previously reported (Jaconi, M.E.E., Rivest, R.W., Schlegel, W., Wollheim, C.B., Pittet, D., and Lew, P.D. (1988) J. Biol. Chem. 263, 10557-10560). A close correlation was found between a reduced oscillatory activity of cytosolic free [Ca2+] and a reduced ability of TNF to induce degranulation, by reducing the extracellular [Ca2+] or loading the cells with a calcium chelator (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). In addition, when the cells were incubated at 37 degrees C for 3 h there was a parallel decline in the spontaneous oscillatory activity of cytosolic free [Ca2+] and TNF-induced secretion of lactoferrin. Control experiments showed that phorbol 12-myristate 13-acetate-induced secretion was not affected under the same conditions, indicating that the secretory process per se was not disturbed. We conclude that TNF by itself does not give rise to any changes of the cytosolic free [Ca2+] but that the spontaneous oscillatory activity of cytosolic free [Ca2+] in adherent neutrophils is necessary for TNF-induced degranulation.  相似文献   

17.
The cytosolic free Ca2+ concentration ([Ca2+]in) in single cat and bovine adrenal chromaffin cells was measured to determine whether or not there was any correlation between the [Ca2+]in and the catecholamine (CA) secretion caused by muscarinic receptor stimulation. In cat chromaffin cells, methacholine (MCh), a muscarinic agonist, raised [Ca2+]in by activating both Ca2+ influx and intracellular Ca2+ mobilization with an accompanying CA secretion. In bovine cells, MCh elevated [Ca2+]in by mobilizing intracellular Ca2+ but did not cause CA secretion. The MCh-induced rise in [Ca2+]in in cat cells was much higher than that in bovine cells, but when Ca2+ influx was blocked, the rise was reduced, with a concomitant loss of secretion, to a level comparable to that in bovine cells. Intracellular Ca2+ mobilization due to muscarinic stimulation substantially increased secretion from depolarized bovine and cat cells, where a [Ca2+]in elevated above basal values was maintained by a continuous Ca2+ influx. These results show that Ca2+ released from internal stores is not effective in triggering secretion unless Ca2+ continues to enter across the plasma membrane, a conclusion suggesting that secretion depends on [Ca2+]in in a particular region of the cell.  相似文献   

18.
Tetanus toxin, a potent neurotoxin which blocks neurotransmitter release in the CNS, also inhibits Ca2+-induced catecholamine release from digitonin-permeabilized, but not from intact bovine chromaffin cells. In searching for intracellular targets for the toxin we studied the binding of affinity-purified tetanus toxin to bovine adrenal chromaffin granules. Tetanus toxin bound in a neuraminidase-sensitive fashion to intact granules and to isolated granule membranes, as assayed biochemically and visualized by electron microscopic techniques. The binding characteristics of the toxin to chromaffin granule membranes are very similar to the binding of tetanus toxin to brain synaptosomal membranes. We suggest that the toxin-binding site is a glycoconjugate of the G1b type (a polysialoganglioside or a glycoprotein-proteoglycan) which is localized on the cytoplasmic face of the granule membrane and might directly be involved in exocytotic membrane fusion.  相似文献   

19.
Tetanus toxin (TT), a potent neurotoxin which blocks neurotransmitter release in neuronal systems, also inhibits Ca2(+)-induced catecholamine release from digitonin-permeabilized chromaffin cells. In searching for intracellular targets for the toxin we studied the binding of affinity-purified TT to bovine adrenal chromaffin granules. TT bound in a neuraminidase-sensitive fashion to intact granules and to isolated granule membranes, as assayed biochemically and visualized by electron microscopic techniques. The binding characteristics of the toxin to chromaffin granule membranes are very similar to the binding of TT to brain synaptosomal membranes. We suggest that the TT binding site is a glycoconjugate of the G1b type which is localized on the cytoplasmic face of the granule membrane and might be involved in exocytotic membrane fusion.  相似文献   

20.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号