首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potentiation of the exercise pressor reflex by muscle ischemia   总被引:3,自引:0,他引:3  
The reflex responses to static contraction are augmented by ischemia. The metabolic "error signals" that are responsible for these observed responses are unknown. Therefore this study was designed to test the hypothesis that static contraction-induced pressor responses, which are enhanced during muscle ischemia, are the result of alterations in muscle oxygenation, acid-base balance, and K+. Thus, in 36 cats, the pressor response, active muscle blood flow, and muscle venous pH, PCO2, PO2, lactate, and K+ were compared during light and intense static contractions with and without arterial occlusion. During light contraction (15-16% of maximal), active muscle blood flow increased without and decreased with arterial occlusion (+35 +/- 12 vs. -60 +/- 11%). Arterial occlusion augmented these pressor responses by 132 +/- 25%. Without arterial occlusion, changes (P less than 0.05) were seen in PO2, O2 content, PCO2, and K+. Lactate and pH were unchanged. With arterial occlusion, changes in muscle PCO2 were augmented and significant changes were seen in pH and lactate. During intense static contraction (67-69% of maximal), muscle blood flow decreased without arterial occlusion (-39 +/- 9%) and decreased further during occlusion (-81 +/- 6%). Arterial occlusion augmented the pressor responses by 39 +/- 12%. All metabolic variables increased during contraction without arterial occlusion, but occlusion failed to augment any of these changes. These data suggest that light static ischemic contractions cause increases in muscle PCO2 and lactate and decreases in pH that may signal compensatory reflex-induced changes in arterial blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Acute ischemia has been reported to impair sympathetic outflow distal to the ischemic area in various organs, whereas relatively little is known about this phenomenon in skeletal muscle. We examined how acute ischemia affects norepinephrine (NE) release at skeletal muscle sympathetic nerve endings. We implanted a dialysis probe into the adductor muscle in anesthetized rabbits and measured dialysate NE levels as an index of skeletal muscle interstitial NE levels. Regional ischemia was introduced by microsphere injection and ligation of the common iliac artery. The time courses of dialysate NE levels were examined during prolonged ischemia. Ischemia induced a decrease in the dialysate NE level (from 19+/-4 to 2.0+/-0 pg/ml, mean+/-S.E.), and then a progressive increase in the dialysate NE level. The increment in the dialysate NE level was examined with local administration of desipramine (DMI, a membrane NE transport inhibitor), omega-conotoxin GVIA (CTX, an N-type Ca(2+) channel blocker), or TMB-8 (an intracellular Ca(2+) antagonist). At 4h ischemia, the increment in the dialysate NE level (vehicle group, 143+/-30 pg/ml) was suppressed by TMB-8 (25+/-5 pg/ml) but not by DMI (128+/-10 pg/ml) or CTX (122+/-18 pg/ml). At 6h ischemia, the increment in the dialysate NE level was not suppressed by the pretreatment. Ischemia induced biphasic responses in the skeletal muscle. Initial reduction of NE release may be mediated by an impairment of axonal conduction and/or NE release function, while in the later phase, the skeletal muscle ischemia-induced NE release was partly attributable to exocytosis via intracellular Ca(2+) overload rather than opening of calcium channels or carrier mediated outward transport of NE.  相似文献   

3.
The purpose of this study was to estimate muscle interstitial norepinephrine (NE) levels during exercise and to determine whether nitric oxide (NO) modulates NE release in the skeletal muscle in humans. We measured interstitial dialysate concentrations of NE with two microdialysis probes inserted into the forearm. Probes were perfused with saline and the NO synthesis inhibitor N(G)-monomethyl-L-arginine (L-NMMA), respectively. Dialysate samples were collected during two sequential 20-min intense dynamic handgrip periods, preceded by 40-min baseline periods. On a different day, forearm ischemia was performed instead of the first exercise period. Exercise increased dialysate NE from 172 +/- 42 to 270 +/- 45 pg/ml (83% increase, P < 0.02, n = 6). Probes perfused with L-NMMA had a 136 +/- 39% greater dialysate NE compared with probes perfused with saline (225 +/- 25 vs. 125 +/- 25 pg/ml, P < 0.001, n = 9). The exercise-induced increase in NE (125 +/- 52%) was attenuated if preceded by exercise (34 +/- 34%) or ischemia (40 +/- 36%; P = 0.06, n = 6), suggesting a neural preconditioning effect. This attenuation was not observed in probes perfused with L-NMMA. We propose that NO modulates NE release in skeletal muscle, that ischemic exercise increases muscle interstitial NE, and that this increase can be attenuated by a preconditioning effect mediated in part by NO.  相似文献   

4.
Static contraction of hind-limb muscles is well known to increase reflexly cardiovascular function. Recently, blockade of cyclooxygenase activity has been reported to attenuate the reflex pressor response to contraction, a finding which suggests that working skeletal muscle releases arachidonic acid metabolites. Therefore, we measured the effects of static contraction and ischemia on arachidonic acid levels in the gastrocnemius muscles of barbiturate-anesthetized cats treated with indomethacin. Unesterified arachidonic acid levels were measured by high-pressure liquid chromatography. We found that static contraction of freely perfused gastrocnemius muscles increased arachidonic acid levels from 4.4 +/- 1.0 to 10.3 +/- 2.2 nmol/g wet wt (n = 12; P less than 0.005). Likewise, static contraction of gastrocnemius muscles made ischemic for 2 min before the onset of the contraction period increased arachidonic acid levels from 12.6 +/- 2.3 to 21.0 +/- 2.0 nmol/g wet wt (n = 12; P less than 0.01). Lastly, 2 min of ischemia with the gastrocnemius muscles at rest increased arachidonic acid levels from 5.9 +/- 1.1 to 10.5 +/- 3.0 nmol/g wet wt (n = 18; P less than 0.02). We conclude that both static contraction and ischemia increase arachidonic acid levels in working hindlimb muscle.  相似文献   

5.
The purpose of this study was to test the hypothesis that increasing muscle contraction frequency, which alters the duty cycle and metabolic rate, would increase the contribution of the contractile phase to mean venous blood flow in isolated skeletal muscle during rhythmic contractions. Canine gastrocnemius muscle (n = 5) was isolated, and 3-min stimulation periods of isometric, tetanic contractions were elicited sequentially at rates of 0.25, 0.33, and 0.5 contractions/s. The O2 uptake, tension-time integral, and mean venous blood flow increased significantly (P < 0.05) with each contraction frequency. Venous blood flow during both the contractile (106 +/- 6, 139 +/- 8, and 145 +/- 8 ml x 100 g-1 x min-1) and noncontractile phases (64 +/- 3, 78 +/- 4, and 91 +/- 5 ml x 100 g-1 x min-1) increased with contraction frequency. Although developed force and duration of the contractile phase were never significantly different for a single contraction during the three contraction frequencies, the amount of blood expelled from the muscle during an individual contraction increased significantly with contraction frequency (0.24 +/- 0.03, 0.32 +/- 0.02, and 0.36 +/- 0.03 ml x N-1 x min-1, respectively). This increased blood expulsion per contraction, coupled with the decreased time in the noncontractile phase as contraction frequency increased, resulted in the contractile phase contribution to mean venous blood flow becoming significantly greater (21 +/- 4, 30 +/- 4, and 38 +/- 6%) as contraction frequency increased. These results demonstrate that the percent contribution of the muscle contractile phase to mean venous blood flow becomes significantly greater as contraction frequency (and thereby duty cycle and metabolic rate) increases and that this is in part due to increased blood expulsion per contraction.  相似文献   

6.
The purpose of the present study was to use the microdialysis technique to determine skeletal muscle interstitial glucose and lactate concentrations during dynamic incremental exercise in humans. Microdialysis probes were inserted into the vastus lateralis muscle, and subjects performed knee extensor exercise at workloads of 10, 20, 30, 40, and 50 W. The in vivo probe recoveries determined at rest by the internal reference method for glucose and lactate were 28.7 +/- 2.5 and 32.0 +/- 2.7%, respectively. As exercise intensity increased, probe recovery also increased, and at the highest workload probe recovery for glucose (61.0 +/- 3.9%) and lactate (66. 3 +/- 3.6%) had more than doubled. At rest the interstitial glucose concentration (3.5 +/- 0.2 mM) was lower than both the arterial (5.6 +/- 0.2 mM) and venous (5.3 +/- 0.3 mM) plasma water glucose levels. The interstitial glucose levels remained lower (P < 0.05) than the arterial and venous plasma water glucose concentrations during exercise at all intensities and at 10, 20, 30, and 50 W, respectively. At rest the interstitial lactate concentration (2.5 +/- 0.2 mM) was higher (P < 0.05) than both the arterial (0.9 +/- 0. 2 mM) and venous (1.1 +/- 0.2 mM) plasma water lactate levels. This relationship was maintained (P < 0.05) during exercise at workloads of 10, 20, and 30 W. These data suggest that interstitial glucose delivery at rest is flow limited and that during exercise changes in the interstitial concentrations of glucose and lactate mirror the changes observed in the venous plasma water compartments. Furthermore, skeletal muscle contraction results in an increase in the diffusion coefficient of glucose and lactate within the interstitial space as reflected by an elevation in probe recovery during exercise.  相似文献   

7.
Ischemic preconditioning is known to protect the myocardium from ischemia-reperfusion injury. We examined the transmural release of bradykinin during myocardial ischemia and the influence of ischemic preconditioning on bradykinin release during subsequent myocardial ischemia. Myocardial ischemia was induced by occlusion of the left anterior descending coronary artery in anesthetized cats. Cardiac microdialysis was performed by implantation and perfusion of dialysis probes in the epicardium and endocardium. In eight animals, bradykinin release was greater in the endocardium than in the epicardium (14.4 +/- 2.8 vs. 7.3 +/- 1.7 ng/ml, P < 0.05) during 30 min of ischemia. In seven animals subjected to preconditioning, myocardial bradykinin release was potentiated significantly from 2.4 +/- 0.6 ng/ml during the control period to 23.1 +/- 2.5 ng/ml during 30 min of myocardial ischemia compared with the non-preconditioning group (from 2.7 +/- 0.6 to 13.4 +/- 1.9 ng/ml, P < 0.05, n = 6). Thus this study provides further evidence that transmural gradients of bradykinin are produced during ischemia. The results also suggest that ischemic preconditioning enhances bradykinin release in the myocardial interstitial fluid during subsequent ischemia, which is likely one of the mechanisms of cardioprotection of ischemic preconditioning.  相似文献   

8.
To reveal a potential modulating effect of vasoactive pharmacological agents on the prostanoid production of the venous wall, prostacyclin and thromboxane release from venous tissue slices was studied. Aortic and caval vein samples from 20 rats as well as from 21 cats were studied. Prostacyclin and thromboxane productions were determined by radioimmunoassay as 6-keto-PGF1 alpha and TxB2 released into the incubation medium. Venous tissue produced significantly less prostacyclin per unit weight than arterial tissue in rats (30.7 +/- 4.6 vs. 52.1 +/- 8.2 pg/mg/min), while in cats an opposite situation was found (16.6 +/- 3.2 vs. 7.06 +/- 1.9 pg/mg/min). Thromboxane production of venous tissue was consequently higher than corresponding values for aortic tissue (3.72 +/- 0.46 vs. 1.54 +/- 0.14 in rats and 3.4 +/- 0.6 vs. 1.33 +/- 0.19 in cats, all values in pg/mg/min). Norepinephrine and dopamine significantly increased both the prostacyclin and the thromboxane release from venous tissue, while isoproterenol had no effect. Vasopressin significantly increased thromboxane release and decreased the ratio of prostacyclin vs. thromboxane production (from 10.4 +/- 1.6 to 7.5 +/- 1.6, in acetylsalicylic acid pretreated cats). Angiotensin and thrombin had no significant effects. Bradykinin (0.5 microgram/ml) significantly augmented prostacyclin release from venous tissue (14.4 +/- 2.6 from 10.9 +/- 2.4 pg/mg/min) and decreased thromboxane release (0.65 +/- 0.18 from 1.35 +/- 0.22 pg/mg/min). Methionine-enkephalin (5 micrograms/ml) significantly reduced the thromboxane release from venous tissue slices. The presented material demonstrates that several vasoactive agents modulate the vasoactive prostanoid release of the venous wall. In some cases, the prostacyclin and the thromboxane productions are influenced separately, which in turn will have its impact on smooth muscle activity and thrombocyte aggregation.  相似文献   

9.
We examined the cardiovascular response to bradykinin stimulation of skeletal muscle afferents and the effect of prostaglandins on this response. Intra-arterial injection of 1 microgram bradykinin into the gracilis muscle of cats reflexly increased mean arterial pressure by 16 +/- 2 mmHg, left ventricular end-diastolic pressure by 1.6 +/- 0.6 mmHg, maximal dP/dt by 785 +/- 136 mmHg/s, heart rate by 11 +/- 2 beats/min, and mean aortic flow by 22 +/- 3 ml/min. The hemodynamic responses were abolished following denervation of the gracilis muscle. The increases in mean arterial pressure and maximal dP/dt were reduced by 68 and 45%, respectively, following inhibition of prostaglandin synthesis with indomethacin (2-8 mg/kg iv). Treatment with prostaglandin E2 (PGE2, 15-25 micrograms ia) restored the initial increase in mean arterial pressure, but not dP/dt, caused by bradykinin stimulation. Injection of PGE2 (15-30 micrograms ia) into the gracilis, without prior treatment with indomethacin, augmented the bradykinin-induced increases in mean arterial pressure and dP/dt. We conclude that small doses of bradykinin injected into skeletal muscle are capable of reflexly activating the cardiovascular system and that prostaglandins are necessary for the full manifestation of the corresponding hemodynamic response. The pattern of hemodynamic adjustment following bradykinin injection into skeletal muscle is very similar to that induced by static exercise. Therefore, it is possible that intense exercise provides a stimulus for this bradykinin-induced reflex in vivo.  相似文献   

10.
The study investigated the effect of training on lactate and H+ release from human skeletal muscle during one-legged knee-extensor exercise. Six subjects were tested after 7-8 wk of training (fifteen 1-min bouts at approximately 150% of thigh maximal O2 uptake per day). Blood samples, blood flow, and muscle biopsies were obtained during and after a 30-W exercise bout and an incremental test to exhaustion of both trained (T) and untrained (UT) legs. Blood flow was 16% higher in the T than in the UT leg. In the 30-W test, venous lactate and lactate release were lower in the T compared with the UT leg. In the incremental test, time to fatigue was 10.6 +/- 0.7 and 8.2 +/- 0.7 min, respectively, in the T and UT legs (P < 0.05). At exhaustion, venous blood lactate was 10.7 +/- 0.4 and 8.0 +/- 0.9 mmol/l in T and UT legs (P < 0.05), respectively, and lactate release was 19.4 +/- 3.6 and 10.6 +/- 2.0 mmol/min (P < 0.05). H+ release at exhaustion was higher in the T than in the UT leg. Muscle lactate content was 59.0 +/- 15.1 and 96.5 +/- 14.5 mmol/kg dry wt in the T and UT legs, and muscle pH was 6.82 +/- 0.05 and 6.69 +/- 0.04 in the T and UT legs (P = 0.06). The membrane contents of the monocarboxylate transporters MCT1 and MCT4 and the Na+/H+ exchanger were 115 +/- 5 (P < 0.05), 111 +/- 11, and 116 +/- 6% (P < 0.05), respectively, in the T compared with the UT leg. The reason for the training-induced increase in peak lactate and H+ release during exercise is a combination of an increased density of the lactate and H+ transporting systems, an improved blood flow and blood flow distribution, and an increased systemic lactate and H+ clearance.  相似文献   

11.
We have tested the hypothesis that intrathecal injections of opioid peptides attenuate the reflex pressor and ventilatory responses to static contraction of the triceps surae muscles of chloralose-anesthetized cats. We found that before intrathecal injections of [D-Ala2]Met-enkephalinamide (100 micrograms in 0.2 ml), static contraction increased mean arterial pressure and ventilation by 32 +/- 5 (SE) mmHg and 227 +/- 61 (SE) ml/min, whereas after injection of this opioid peptide, static contraction increased mean arterial pressure and ventilation by only 15 +/- 5 mmHg and 37 +/- 33 ml/min, respectively. The attenuation of both the pressor and ventilatory responses to static contraction by [D-Ala2]Met-enkephalinamide were statistically significant (P less than 0.05). Moreover, the attenuation was probably not caused by an opioid-induced withdrawal of sympathetic outflow because [D-Ala2]Met-enkephalinamide had no effect on the pressor and ventilatory responses evoked by high-intensity electrical stimulation of the central cut end of the sciatic nerve. In addition, intrathecal injection of peptides that were highly selective agonists for either the opioid mu- or delta-receptor attenuated the reflex responses to static contraction. Naloxone (1,000 micrograms), injected intrathecally, prevented the attenuation of the reflex responses to contraction by opioid peptides. We speculate that the opioid-induced attenuation of the reflex pressor and ventilatory responses to static contraction may have been due to suppression of substance P release from group III and IV muscle afferents.  相似文献   

12.
Muscle glycogen levels in the perfused rat hemicorpus preparation were reduced two-thirds by electrical stimulation plus exposure to epinephrine (10(-7) M) for 30 min. During the contraction period muscle lactate concentrations increased from a control level of 3.6 +/- 0.6 to a final value of 24.1 +/- 1.6 mumol/g muscle. To determine whether the lactate that had accumulated in muscle during contraction could be used to resynthesize glycogen, glycogen levels were determined after 1-3 h of recovery from the contraction period during which time the perfusion medium (flow-through system) contained low (1.3 mmol/l) or high (10.5 or 18 mmol/l) lactate concentrations but no glucose. With the low perfusate lactate concentration, muscle lactate levels declined to 7.2 +/- 0.8 mumol/g muscle by 3 h after the contraction period and muscle glycogen levels did not increase (1.28 +/- 0.07 at 3 h vs. 1.35 +/- 0.09 mg glucosyl U/g at end of exercise). Lactate disappearance from muscle was accounted for entirely by output into the venous effluent. With the high perfusate lactate concentrations, muscle lactate levels remained high (13.7 +/- 1.7 and 19.3 +/- 2.0 mumol/g) and glycogen levels increased by 1.11 and 0.86 mg glucosyl U/g, respectively, after 1 h of recovery from exercise. No more glycogen was synthesized when the recovery period was extended. Therefore, it appears that limited resynthesis of glycogen from lactate can occur after the contraction period but only when arterial lactate concentrations are high; otherwise the lactate that builds up in muscle during contraction will diffuse into the bloodstream.  相似文献   

13.
Noradrenaline spillover from skeletal muscle vascular areas increases during exercise but the underlying mechanisms are not well understood. Muscle contraction itself causes changes in many factors that could affect noradrenaline spillover. For instance, it has been reported that bradykinin is synthesized in skeletal muscle areas during contraction. Because the B2 bradykinin receptor facilitates noradrenaline spillover, it may be involved in the increase associated with contraction. In this experiment, we studied the effect of bradykinin on noradrenaline spillover in the in situ canine gracilis muscle, using the specific B2 antagonist HOE 140. The drug did not modify noradrenaline spillover at rest, but did cause a significant decrease during muscle contraction, from 558 to 181 pg min(-1). As reported previously in the literature, fractional extraction of noradrenaline decreased during muscle contraction. This effect was independent of HOE 140 treatment. In light of our results, it seems that bradykinin formation during muscle contraction may play an important part in the observed increase in noradrenaline spillover but does not affect fractional extraction.  相似文献   

14.
Although skeletal muscle sympathetic nerve activity plays an important role in the regulation of vascular tone and glucose metabolism, relatively little is known about regional norepinephrine (NE) kinetics in the skeletal muscle. With use of the dialysis technique, we implanted dialysis probes in the adductor muscle of anesthetized rabbits and examined whether dialysate NE and its metabolites were influenced by local administration of pharmacological agents through the dialysis probes. Dialysate dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured as two major metabolites of NE. The skeletal muscle dialysate NE, DHPG and MHPG were 11.7+/-1.2, 38.1+/-3.2, and 266.1+/-28.7 pg/ml, respectively. Basal dialysate NE levels were suppressed by tetrodotoxin (Na(+) channel blocker, 10 microM) (5.1+/-0.6 pg/ml), and augmented by desipramine (NE uptake blocker, 100 microM) (25.8+/-3.2 pg/ml). Basal dialysate DHPG levels were suppressed by pargyline (monoamine oxidase blocker, 1mM) (24.3+/-4.6 pg/ml) and augmented by reserpine (vesicle NE transport blocker, 10 microM) (75.8+/-2.7 pg/ml). Basal dialysate MHPG levels were not affected by pargyline, reserpine, or desipramine. Addition of tyramine (sympathomimetic amine, 600 microM), KCl (100 mM), and ouabain (Na(+)-K(+) ATPase blocker, 100 microM) caused brisk increases in dialysate NE levels (200.9+/-14.2, 90.6+/-25.7, 285.3+/-46.8 pg/ml, respectively). Furthermore, increases in basal dialysate NE levels were correlated with locally administered desipramine (10, 100 microM). Thus, dialysate NE and its metabolite were affected by local administration of pharmacological agents that modified sympathetic nerve endings function in the skeletal muscle. Skeletal muscle microdialysis with local administration of a pharmacological agent provides information about NE release, uptake, vesicle uptake and degradation at skeletal muscle sympathetic nerve endings.  相似文献   

15.
The effects of endurance training (running 40 m/min grade for 60 min, 5 days/wk for 8 wk) on skeletal muscle lactate removal was studied in rats by utilizing the isolated hindlimb perfusion technique. Hindlimbs were perfused (single-pass) with Krebs-Henseleit bicarbonate buffer, fresh bovine erythrocytes (hematocrit approximately 30%), 10 mM lactate, and [U-14C]lactate (30,000 dpm/ml). Arterial and venous blood samples were collected every 10 min for the duration of the experiment to assess lactate uptake. During perfusions, no significant differences in skeletal muscle lactate uptake were observed between trained (7.31 +/- 0.20 micromol/min) and control hindlimbs (6.98 +/- 0.43 micromol/min). In support, no significant differences were observed for [14C]lactate uptake in trained (22,776 +/- 370 dpm/min) compared with control hindlimbs (21,924 +/- 1,373 dpm/min). Concomitant with these observations, no significant differences were observed between groups for oxygen consumption (4.93 +/- 0.18 vs. 4.92 +/- 0.13 micromol/min), net skeletal muscle glycogen synthesis (7.1 +/- 0.4 vs. 6.5 +/- 0.3 micromol x 40 min(-1) x g(-1)), or 14CO2 production (2,203 +/- 185 vs. 2,098 +/- 155 dpm/min), trained and control, respectively. These findings indicate that endurance training does not affect lactate uptake or alter the metabolic fate of lactate in quiescent skeletal muscle.  相似文献   

16.
The skeletal muscle pump is thought to be at least partially responsible for the immediate muscle hyperemia seen with exercise. We hypothesized that increases in venous pressure within the muscle would enhance the effectiveness of the muscle pump and yield greater postcontraction hyperemia. In nine anesthetized beagle dogs, arterial inflow and venous outflow of a single hindlimb were measured with ultrasonic transit-time flow probes in response to 1-s tetanic contractions evoked by electrical stimulation of the sciatic nerve. Venous pressure in the hindlimb was manipulated by tilting the upright dogs to a 30 degrees angle in the head-up or head-down positions. The volume of venous blood expelled during contractions was 2.2 +/- 0.2, 1.6 +/- 0.2, and 1.4 +/- 0.2 ml with the head-up, horizontal, and head-down positions, respectively. Although altering hindlimb venous pressure influenced venous expulsion during contraction, the increase in arterial inflow was similar regardless of position. Moreover, the volume of blood expelled was a small fraction of the cumulative arterial volume after the contraction. These results suggest that the muscle pump is not a major contributor to the hyperemic response to skeletal muscle contraction.  相似文献   

17.
Experiments were performed to assess the possible neurally mediated constriction in active skeletal muscle during isometric hand-grip contractions. Forearm blood flow was measured by venous occlusion plethysmography on 5 volunteers who exerted a series of repeated contractions of 4 s duration every 12 s at 60% of their maximum strength of fatigue. The blood flows increased initially, but then remained constant at 20-24 ml X min(-1) X 100 ml(-1) throughout the exercise even though mean arterial blood pressure reached 21-23 kPa (160-170 mm Hg). When the same exercise was performed after arterial infusion of phentolamine, forearm blood flow increased steadily to near maximal levels of 38.7 +/- 1.4 ml X min(-1) X 100 ml(-1). Venous catecholamines, principally norepinephrine, increased throughout exercise, reaching peak values of 983 +/- 258 pg X ml(-1) at fatigue. Of the vasoactive substances measured, the concentration of K+ and osmolarity in venous plasma also increased initially and reached a steady-state during the exercise but ATP increased steadily throughout the exercise. These data indicate a continually increasing alpha-adrenergic constriction to the vascular beds in active muscles in the human forearm during isometric exercise, that is only partially counteracted by vasoactive metabolites.  相似文献   

18.
We assessed the hypothesis that the epinephrine surge present during sepsis accelerates aerobic glycolysis and lactate production by increasing activity of skeletal muscle Na(+)-K(+)-ATPase. Healthy volunteers received an intravenous bolus of endotoxin or placebo in a randomized order on two different days. Endotoxemia induced a response resembling sepsis. Endotoxemia increased plasma epinephrine to a maximum at t = 2 h of 0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/l (P < 0.05, n = 6-7). Endotoxemia reduced plasma K(+) reaching a nadir at t = 5 h of 3.3 +/- 0.1 vs. 3.8 +/- 0.1 mmol/l (P < 0.01, n = 6-7), followed by an increase to placebo level at t = 7-8 h. During the declining plasma K(+), a relative accumulation of K(+) was seen reaching a maximum at t = 6 h of 8.7 +/- 3.8 mmol/leg (P < 0.05). Plasma lactate increased to a maximum at t = 1 h of 2.5 +/- 0.5 vs. 0.9 +/- 0.1 mmol/l (P < 0.05, n = 8) in association with increased release of lactate from the legs. These changes were not associated with hypoperfusion or hypoxia. During the first 24 h after endotoxin infusion, renal K(+) excretion was 27 +/- 7 mmol, i.e., 58% higher than after placebo. Combination of the well-known stimulatory effect of catecholamines on skeletal muscle Na(+)-K(+)-ATPase activity, with the present confirmation of an expected Na(+)-K(+)- ATPase-induced decline in plasma K(+), suggests that the increased lactate release was due to increased Na(+)-K(+)-ATPase activity, supporting our hypothesis. Thus increased lactate levels in acutely and severely ill patients should not be managed only from the point of view that it reflects hypoxia.  相似文献   

19.
Catecholamine release is known to be regulated by feedforward and feedback mechanisms. Norepinephrine (NE) and epinephrine (Epi) concentrations rise in response to stresses, such as exercise, that challenge blood glucose homeostasis. The purpose of this study was to assess the hypothesis that the lactate anion is involved in feedback control of catecholamine concentration. Six healthy active men (26 +/- 2 yr, 82 +/- 2 kg, 50.7 +/- 2.1 ml.kg(-1).min(-1)) were studied on five occasions after an overnight fast. Plasma concentrations of NE and Epi were determined during 90 min of rest and 90 min of exercise at 55% of peak O2 consumption (VO2 peak) two times with exogenous lactate infusion (lactate clamp, LC) and two times without LC (CON). The blood lactate profile ( approximately 4 mM) of a preliminary trial at 65% VO2 peak (65%) was matched during the subsequent LC trials. In resting men, plasma NE concentration was not different between trials, but during exercise all conditions were different with 65% > CON > LC (65%: 2,115 +/- 166 pg/ml, CON: 1,573 +/- 153 pg/ml, LC: 930 +/- 174 pg/ml, P < 0.05). Plasma Epi concentrations at rest were different between conditions, with LC less than 65% and CON (65%: 68 +/- 9 pg/ml, CON: 59 +/- 7 pg/ml, LC: 38 +/- 10 pg/ml, P < 0.05). During exercise, Epi concentration showed the same trend (65%: 262 +/- 37 pg/ml, CON: 190 +/- 34 pg/ml, LC: 113.2 +/- 23 pg/ml, P < 0.05). In conclusion, lactate attenuates the catecholamine response during moderate-intensity exercise, likely by feedback inhibition.  相似文献   

20.
Increased renal pelvic pressure or bradykinin increases afferent renal nerve activity (ARNA) via PGE(2)-induced release of substance P. Protein kinase C (PKC) activation increases ARNA, and PKC inhibition blocks the ARNA response to bradykinin. We now examined whether bradykinin mediates the ARNA response to increased renal pelvic pressure by activating PKC. In anesthetized rats, the ARNA responses to increased renal pelvic pressure were blocked by renal pelvic perfusion with the bradykinin B(2)-receptor antagonist HOE 140 and the PKC inhibitor calphostin C by 76 +/- 8% (P < 0.02) and 81 +/- 5% (P < 0.01), respectively. Renal pelvic perfusion with 4beta-phorbol 12,13-dibutyrate (PDBu) to activate PKC increased ARNA 27 +/- 4% and renal pelvic release of PGE(2) from 500 +/- 59 to 1, 113 +/- 183 pg/min and substance P from 10 +/- 2 to 30 +/- 2 pg/min (all P < 0.01). Indomethacin abolished the increases in substance P release and ARNA. The PDBu-mediated increase in ARNA was also abolished by the substance P-receptor antagonist RP 67580. We conclude that bradykinin contributes to the activation of renal pelvic mechanosensitive neurons by activating PKC. PKC increases ARNA via a PGE(2)-induced release of substance P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号