首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热量匮乏是高山树线的主要成因, 在全球变暖趋势下对高山树线及其建群种的生态学过程及特征的研究具有重要意义。该文以青藏高原东缘的折多山和剪子弯山两处高山树线(海拔分别为4 265 m和4 425 m)作为研究对象, 通过设置垂直样带, 同时结合区域温度、降水的长时间序列分析, 探究两处树线的时空动态过程, 并明确了建群种冷杉(Abies spp.)的生态学特征。结果表明: 1)折多山和剪子弯山区域的气温在过去58年均存在显著的上升趋势(分别上升了0.72和0.91 ℃), 而折多山和剪子弯山区域降水均存在微弱的降低趋势。2)折多山的峨眉冷杉(A. fabri)龄级结构呈反J形, 剪子弯山的鳞皮冷杉(A. squamata)龄级结构呈双峰形, 二者种群结构均相对稳定。3)在小尺度上, 种子扩散限制使得两处树线的冷杉聚集分布。在大尺度上, 折多山峨眉冷杉亦呈聚集分布, 而剪子弯山鳞皮冷杉受生长环境以及种内或种间关系的影响呈随机分布。4)两处样地建群树种的树高和基径均随海拔升高而降低, 位于树线交错带上部的冷杉均呈现树高生长大于径向生长的异速生长关系, 而位于样地中、下部位的冷杉大部分呈等速生长关系。5)相比10年前, 折多山和剪子弯山的树线及树种线位置均无明显变化, 剪子弯山鳞皮冷杉种群的树木密度亦无明显变化, 而折多山的树木个体数提高了约25%; 相比20年前, 折多山和剪子弯山的树种线分别上移了50和30 m, 树线位置分别升高了75和40 m, 树木个体数亦明显增加, 分别提高了约220%和100%。树线及其建群种在较大时空尺度上主要受热量的控制, 而在较小时空尺度上受温度及生长环境共同作用的影响。  相似文献   

2.
《植物生态学报》2018,42(11):1082
热量匮乏是高山树线的主要成因, 在全球变暖趋势下对高山树线及其建群种的生态学过程及特征的研究具有重要意义。该文以青藏高原东缘的折多山和剪子弯山两处高山树线(海拔分别为4 265 m和4 425 m)作为研究对象, 通过设置垂直样带, 同时结合区域温度、降水的长时间序列分析, 探究两处树线的时空动态过程, 并明确了建群种冷杉(Abies spp.)的生态学特征。结果表明: 1)折多山和剪子弯山区域的气温在过去58年均存在显著的上升趋势(分别上升了0.72和0.91 ℃), 而折多山和剪子弯山区域降水均存在微弱的降低趋势。2)折多山的峨眉冷杉(A. fabri)龄级结构呈反J形, 剪子弯山的鳞皮冷杉(A. squamata)龄级结构呈双峰形, 二者种群结构均相对稳定。3)在小尺度上, 种子扩散限制使得两处树线的冷杉聚集分布。在大尺度上, 折多山峨眉冷杉亦呈聚集分布, 而剪子弯山鳞皮冷杉受生长环境以及种内或种间关系的影响呈随机分布。4)两处样地建群树种的树高和基径均随海拔升高而降低, 位于树线交错带上部的冷杉均呈现树高生长大于径向生长的异速生长关系, 而位于样地中、下部位的冷杉大部分呈等速生长关系。5)相比10年前, 折多山和剪子弯山的树线及树种线位置均无明显变化, 剪子弯山鳞皮冷杉种群的树木密度亦无明显变化, 而折多山的树木个体数提高了约25%; 相比20年前, 折多山和剪子弯山的树种线分别上移了50和30 m, 树线位置分别升高了75和40 m, 树木个体数亦明显增加, 分别提高了约220%和100%。树线及其建群种在较大时空尺度上主要受热量的控制, 而在较小时空尺度上受温度及生长环境共同作用的影响。  相似文献   

3.
Abstract. Growth of coniferous trees at alpine treeline locations has traditionally been viewed as primarily temperature dependent. In this study, we use a physiologically mechanistic process model, ATE-BGC (Alpine Treeline Ecotone - BioGeochemical Cycles), to study the effects of a suite of environmental variables on the carbon balance of krummholz growth forms of subalpine Abies lasiocarpa under environmental conditions representative of treeline locations in Glacier National Park, Montana, USA. We perform a sensitivity analysis of ATE-BGC to determine the relative effects of temperature, insolation, snow, rain, soil depth, leaf area index, winter injury and elevation on krummholz carbon balance. Our results indicate that ATE-BGC carbon balance estimates are most highly influenced by temperature and winter injury. Leaf area index, soil depth, rainfall, insolation and snowfall follow temperature and winter injury in their effect on carbon balance. Due to the sensitivity of the model to moisture related variables, we propose that local irregularities in the location of the alpine treeline ecotone are the result of localized xeric conditions.  相似文献   

4.
Northern and high‐latitude alpine treelines are generally thought to be limited by available warmth. Most studies of tree‐growth–climate interaction at treeline as well as climate reconstructions using dendrochronology report positive growth response of treeline trees to warmer temperatures. However, population‐wide responses of treeline trees to climate remain largely unexamined. We systematically sampled 1558 white spruce at 13 treeline sites in the Brooks Range and Alaska Range. Our findings of both positive and negative growth responses to climate warming at treeline challenge the widespread assumption that arctic treeline trees grow better with warming climate. High mean temperatures in July decreased the growth of 40% of white spruce at treeline areas in Alaska, whereas warm springs enhance growth of additional 36% of trees and 24% show no significant correlation with climate. Even though these opposing growth responses are present in all sampled sites, their relative proportion varies between sites and there is no overall clear relationship between growth response and landscape position within a site. Growth increases and decreases appear in our sample above specific temperature index values (temperature thresholds), which occurred more frequently in the late 20th century. Contrary to previous findings, temperature explained more variability in radial growth after 1950. Without accounting for these opposite responses and temperature thresholds, climate reconstructions based on ring width will miscalibrate past climate, and biogeochemical and dynamic vegetation models will overestimate carbon uptake and treeline advance under future warming scenarios.  相似文献   

5.
ABSTRACT

Background: Topoclimate can influence tree establishment within treeline ecotones. Yet much less is known about how regional topography, such as the Continental Divide, Rocky Mountains, mediates the role of climate in governing treeline dynamics.

Aims: To utilise the Continental Divide to test whether contrasts in growing-season moisture regimes to the west (summer-dry) and east (summer-wet) impact the spatio-temporal patterns of tree establishment and rates of treeline advance in the Northern Rocky Mountains.

Methods: We sampled trees at sites on north- and south-facing slopes, west and east of the Continental Divide. We used dendroecological techniques to reconstruct patterns of tree establishment. Age-structure data were quantitatively compared with climate to evaluate possible mechanistic linkages.

Results: Across all sites, 96% of trees established after 1950. There was a treeline advance (range = 39–140 m) accompanied by increases in tree density. Significantly more trees established during wet springs on both sides of the Divide.

Conclusions: Overall, snow duration in spring and autumn temperatures appear to influence patterns of tree recruitment at the treeline. Continued warming will likely amplify the role of autumn climate in regulating tree establishment throughout treeline ecotones in the Northern Rocky Mountains, particularly west of the Divide where summer-dry conditions persist.  相似文献   

6.
马锐骜  吴辉  王志瑞  戴冠华  于大炮  姜勇  李慧 《生态学报》2021,41(24):9847-9856
林线过渡带是指从郁闭森林上限到树种分布上限之间的区域,过渡带内生物多样性丰富,生态系统结构、功能和生态过程在很小的海拔梯度内发生剧烈变化,因此对全球气候变化和人类活动极为敏感。树岛是在林线过渡带内出现的斑块状或条带形不连续分布的树木集群,树岛内生存的树木通常能达到与较低海拔郁闭森林同样的高度和胸径,因此揭示树岛这一特殊生境的生态特征及其形成机制,对于预测未来气候变化下林线动态具有重要意义。以长白山岳桦林线过渡带一大型树岛作为研究对象,测定了土壤理化性质和土壤酶活性,采用宏基因组测序技术分析了微生物群落结构组成和功能基因丰度,通过与同海拔的开阔区生境进行对比,揭示了树岛这一特殊生境的土壤微生物群落结构特征和潜在生态功能,从土壤养分和土壤微生物学角度,阐明树岛形成的可能驱动机制。结果表明,树岛土壤的含水量、总碳、总氮和微生物生物量显著高于同海拔开阔区(P<0.05),与微生物r-策略相关的生理生化和遗传学指标,包括纤维素酶活性、放线菌相对丰度、与转录、防御、控制细胞周期相关的基因丰度、小分子碳降解基因丰度,均高于开阔区(P<0.05)。相反的,与微生物K-策略相关的指标,包括酸杆菌相对丰度、大分子碳降解基因相对丰度低于开阔区。揭示了树岛土壤微生物学特征,并从土壤微生物组学角度探讨了树岛形成的潜在机制,认为树岛内土壤养分增加并导致微生物群落r-策略倾向,这种变化反过来也可能促进树岛进一步扩大,进而影响林线动态。  相似文献   

7.
Forests around the world are undergoing rapid changes due to changing climate and increasing physiological stress, but forest response to climate at the ecosystem scale can be highly variable due to the mixed responses of different trees across heterogeneous landscapes. To determine the response of ecosystems in the Rocky Mountains to climate stress, we investigated the response of subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii), two widely distributed subalpine forest species of Rocky Mountains, to climate warming across a region characterized by gradients of elevation, aspect and soil type. We investigated the growth trend of individual trees through time, determined the climate variables most important for driving growth and quantified the interactions between climate and topography that influence long-term growth trends and potential ecological changes across the study region. Growth trends of these two species are similar through the first part of the century, but diverge during the last several decades. Since 1975, subalpine fir growth decreased through time, while Engelmann spruce growth increased. We find that aspect and warm summer temperatures are the most important factors determining growth in subalpine fir, and subalpine fir growth declines are greatest on east- and south-facing aspects. In contrast, Engelmann spruce growth is uniformly unresponsive to climate. In addition to highlighting the importance of species-level differences in growth response to climate, our results also identify interactions between climate and local physiography as controls on long-term growth trends and suggest that the local landscape physiography can mediate climate-related stress in forested ecosystems. This work advances our understanding of how forest stress is mitigated by landscape factors at the ecosystem scale, and how interactions of species, landscape and climate will control future ecosystem composition and forest growth dynamics.  相似文献   

8.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

9.
Development of black spruce growth forms at treeline   总被引:1,自引:0,他引:1  
Pereg  Daria  Payette  Serge 《Plant Ecology》1998,138(2):137-147
Most treeline populations in northeastern Canada are monospecific stands of black spruce (Picea mariana [Mill.] B.S.P.), a hardy, cold-tolerant species able to withstand harsh climatic conditions under different growth forms. In the forest tundra, black spruce thrives in protected areas and exhibits a normal arborescent growth form, but in exposed sites, upright stems are damaged above the snowpack by snow abrasion and wind. In this study, the development of damaged growth forms was examined in a moderately exposed habitat. Five developmental stages were identified and described using detailed stem analysis of 13 spruce trees. Four different types of damaged growth forms were identified according to variations in supra-nival (above snow) stem height and number. At the site scale, the age structure of supra-nival shoots, based on a larger sample of 256 stems, was unimodal, suggesting a synchronous development of the spruce stand in which 46% of the shoots were initiated during the 1960s and 1970s. Subfossil trunks on the ground were all depressed trees, indicating that the former vegetation was a krummholz, not a forest. This indicates the recent development of the small-tree stand above the snowpack, probably triggered by recent milder conditions associated with snowier winters in the last decades.  相似文献   

10.
The fundamental niche of many species is shifting with climate change, especially in sub‐arctic ecosystems with pronounced recent warming. Ongoing warming in sub‐arctic regions should lessen environmental constraints on tree growth and reproduction, leading to increased success of trees colonising tundra. Nevertheless, variable responses of treeline ecotones have been documented in association with warming temperatures. One explanation for time lags between increasingly favourable environmental conditions and treeline ecotone movement is reproductive limitations caused by low seed availability. Our objective was to assess the reproductive constraints of the dominant tree species at the treeline ecotone in the circumpolar north. We sampled reproductive structures of trees (cones and catkins) and stand attributes across circumarctic treeline ecotones. We used generalized linear mixed models to estimate the sensitivity of seed production and the availability of viable seed to regional climate, stand structure, and species‐specific characteristics. Both seed production and viability of available seed were strongly driven by specific, sequential seasonal climatic conditions, but in different ways. Seed production was greatest when growing seasons with more growing degree days coincided with years with high precipitation. Two consecutive years with more growing degree days and low precipitation resulted in low seed production. Seasonal climate effects on the viability of available seed depended on the physical characteristics of the reproductive structures. Large‐coned and ‐seeded species take more time to develop mature embryos and were therefore more sensitive to increases in growing degree days in the year of flowering and embryo development. Our findings suggest that both moisture stress and abbreviated growing seasons can have a notable negative influence on the production and viability of available seed at treeline. Our synthesis revealed that constraints on predispersal reproduction within the treeline ecotone might create a considerable time lag for range expansion of tree populations into tundra ecosystems.  相似文献   

11.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1,950 m a.s.l.), treeline (2,110 m a.s.l.) and within the krummholz belt (2,180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined. At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5°C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth. The rate of xylem cell production determined in two weekly intervals during June through August 2006–2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline. Results of this study revealed that spatial and temporal (i.e., year-to-year) variability in timing and dynamic of wood formation of P. cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.  相似文献   

12.
长白山北坡林线岳桦种群空间分布格局   总被引:5,自引:3,他引:2  
许多自然林线具有的趋同特征之一即乔木树种高生长受限,常演化为矮曲状或类似于灌木的形态(即树种的灌木型)占据高山植被带,因此研究林线树种乔木型与灌木型的结构、功能差异有助于进一步理解林线形成的原因。种群分布格局作为种群相对位置定量化描述的基本特征,可以表征物种对环境适应性选择的结果,反应生态过程的综合作用。利用点格局方法,研究长白山北坡林线岳桦种群各生活史阶段、两种生活型的分布格局,结果表明,长白山北坡林线岳桦树高生长受到限制,1.5—3.0m是一个关键的树高生长阶段;相比于老树、中树,幼苗和灌木型岳桦更为均匀,对空间的异质性选择更弱;林线岳桦发育过程中,存在一个生活型分离的重要阶段。此外,相对于老树,灌木型分布更为均匀,表明低矮、多枝这种相对紧凑的生活型更适宜在过渡带生存,乔木型岳桦和灌木型岳桦可能代表着不同的生存策略。  相似文献   

13.
Climatic change may alter vegetation composition and structure, but the response to climatic change can be expected to be spatially heterogeneous. Tree populations in the alpine forest–tundra ecotone, for example, may find only certain locations to be favourable for regeneration and growth. If monitoring and detection of vegetation responses to climatic change is to be most successful, the monitoring system must be tuned to the locations where a response is most likely. We used the grass geographical information system ( gis ) to map population parameters indicating potential change throughout the forest–tundra ecotone (FTE) of Rocky Mountain National Park (RMNP). Seedling density in patch forest and krummholz openings, as well as annual krummholz height growth, were measured in the field. These parameters were then modelled over the heterogeneity of the FTE environment, using principle components regression analysis. The grass gis was used to extrapolate the resulting predictive equations to the entire RMNP FTE. Potential FTE responses to climate change were evaluated in the context of species-specific differences in how tree seedling density and krummholz height growth are associated with the present environment. For example, climate change leading towards moister conditions, causing currently xeric environments to become more mesic, might increase the spatial extent of existing tree invasion into patch forest openings. This would increase the potential for widespread conversion of patch forest to closed forest. Present population parameters extrapolated spatially may provide a useful guide to where future change is likely.  相似文献   

14.
Aim Climate variability may be an important mediating agent of ecosystem dynamics in cold, arid regions such as the central Tianshan Mountains, north‐western China. Tree‐ring chronologies and the age structure of a Schrenk spruce (Picea schrenkiana) forest were developed to examine treeline dynamics in recent decades in relation to climatic variability. Of particular interest was whether tree‐ring growth and population recruitment patterns responded similarly to climate warming. Location The study was conducted in eight stands that ranged from 2500 m to 2750 m a.s.l. near the treeline in the Tianchi Nature Reserve (43°45′?43°59′ N, 88°00′?88°20′ E) in the central Xinjiang Uygur Autonomous Region, northwestern China. Methods Tree‐ring cores were collected and used to develop tree‐ring chronologies. The age of sampled trees was determined from basal cores sampled as close as possible to the ground. Population age structure and recruitment information were obtained using an age–d.b.h. (diameter at breast height) regression from the sampled cores and the d.b.h. measured on all trees in the plots. Ring‐width chronologies and tree age structure were both used to investigate the relationship between treeline dynamics and climate change. Results Comparisons with the climatic records showed that both the radial growth of trees and tree recruitment were influenced positively by temperature and precipitation in the cold high treeline zone, but the patterns of their responses differed. The annual variation in tree rings could be explained largely by the average monthly minimum temperatures during February and August of the current year and by the monthly precipitation of the previous August and January, which had a significant and positive effect on tree radial growth. P. schrenkiana recruitment was influenced mainly by consecutive years of high minimum summer temperatures and high precipitation during spring. Over the last several decades, the treeline did not show an obvious upward shift and new recruitment was rare. Some trees had established at the treeline at least 200 years ago. Recruitment increased until the early 20th century (1910s) but then decreased with poor recruitment over the past several decades (1950–2000). Main conclusions There were strong associations between climatic change and ring‐width patterns, and with recruitments in Schrenk spruce. Average minimum temperatures in February and August, and total precipitation in the previous August and January, had a positive effect on tree‐ring width, and several consecutive years of high minimum summer temperature and spring precipitation was a main factor favouring the establishment of P. schrenkiana following germination within the treeline ecotone. Both dendroclimatology and recruitment analysis were useful and compatible to understand and reconstruct treeline dynamics in the central Tianshan Mountains.  相似文献   

15.
 与传统方法相比, 利用树木年轮学方法研究树线过渡区树木生长温度敏感性高低的问题更注重比较树木个体间的生长情况, 从各个树轮序列间的生长一致性程度和树轮序列对气候因素(气温、降水)的响应一致性程度可探讨树线过渡区树木生长的温度敏感性。为了认识高山树线过渡区内树木生长的温度敏感性问题, 选择西藏昌都地区八宿县的一条川西云杉树线过渡区为研究对象, 比较了过渡区内树木个体间的生长一致性, 分析了树木生长与气候因素的相关性及其在个体间的异同。结果显示: 树线过渡区内树轮生长在个体间的一致性较低, 树轮生长与气温的关系在树木个体间的一致性也较低, 而树轮生长与当年4-9月降水的关系相对较强。西藏八宿树线过渡区属于干旱区, 相对于气温而言, 降水对树木生长的影响更大。此外, 小生境的异质性及干扰事件的发生也有可能降低树木对温度的敏感性。在全球变暖及极端气候事件增加的背景下, 树木生长的温度敏感性被高估可能会导致对树线过渡区位置及树线过渡区内群落生产力等的预测产生偏差, 这一问题应该在区域生态模拟研究和相关林业经营与管理上得到重视。  相似文献   

16.
Aims We investigated the treeline dynamics of two environmentally contrasting areas in the Nepalese Himalaya to address the following questions: (i) Does the timing of establishment of the current treeline differ between the two study areas, and can area-specific treeline developments be identified? (ii) Do recruitment patterns and height growth indicate recent climate-driven treeline advance, following the general prediction for the central Himalayan region, in the two study areas?Methods A dry-climate treeline dominated by Pinus wallichiana and a mesic-climate treeline with Abies spectabilis were selected for study. In each area, we sampled the size and age structure of the study species along three elevational transects (20-m wide) from the forest line to the tree species line crossing the treeline. We also sampled treeline trees from within and outside transects to reconstruct past treeline establishment dynamics.Important findings Despite differences in moisture regimes, tree species and recent climate trends, our two study areas showed very similar treeline dynamics over the past six decades. In both areas, the recruitment of treeline trees indicates stationary treelines over the past six decades with the current treelines being dominated by trees that were established around 1990. The mesic area has experienced an overall climatic warming trend, and the stationary Abies treeline is hypothesized to be regulated by non-climatic factors, notably grazing. The dry area has not experienced warming but increased climatic variability and some very cool summers in the recent decades may explain the stationary to weakly receding Pinus treeline, which appears more climatically controlled with decreased recruitment over the past decades and decreased growth towards higher elevations. In both areas, there is a potential for treeline advance, depending on future land use and climate change. Our results highlight the importance of conducting treeline ecotone analyses for several sites or areas, and considering both climatic and non-climatic drivers of the treeline dynamics within each of these areas, for understanding regional treeline dynamics.  相似文献   

17.
Analyses of subfossil tree remains in peats and raw humus soils account for the immigration and spread of Picea abies (Norway spruce) into Sweden and the evolution of the alpine tree-limit ecotone. Picea abies is recorded for the first time about 11 000 BP, on an early emerging nunatak in the southern Swedish Scandes. Prior to c. 8 000 BP, Picea was strictly bound to high elevations in the west. Farther to the east in North-Central Sweden, Picea emerged in the subfossil record mainly after c. 6 000 BP. Later on, growth of local founder populations and landscape-scale expansion may have been forced chiefly by a successively less seasonal climate (the Milankovitch model of orbital forcing), promoting increased net soil moisture and possibly a deeper and more persistent snow cover. Already at the Weichselian/Holocene transition, an elevational tree-limit ecotone was established and arborescent Picea grew at least 400 m higher than the modern tree-limit. Until about 8 000 BP, the species-limit descended, whereafter it stabilized up to the present day. Lack of significant species-limit retraction after c. 8 000 BP may seem paradoxical in perspective of independently inferred climate cooling in response to reduced insolation and land uplift. This could be a consequence of substantial phenotypic plasticity and increased snow accumulation, mitigating the long-term cooling. Thus, the elevational species-limit (krummholz) of Picea abies is out of equilibrium with the modern thermal climate. The striking incongruence between the results exposed here and earlier palynological interpretations of the same biogeographical process will have implications for the use of pollen data for range-limit reconstructions within historical biogeography, and urges for re-evaluation of certain aspects of the Fennoscandian forest history.  相似文献   

18.
Arctic treeline positions are of fundamental importance to the function of high latitude landscapes, as regulators of surface energy exchange and carbon cycling. Most studies aimed at explaining current and predicting future treeline positions have examined growth trends in mature treeline trees, but treeline advance requires seed production, germination, seedling establishment, and recruitment of new trees beyond the treeline and these processes may not be well correlated with growth of mature trees. Tussock tundra is a widespread, microtopographically complex vegetation type, covering vast areas of northern Alaska and Siberia. We examined a site where the white spruce (Picea glauca) treeline has recently advanced into tussock tundra and asked if white spruce seedlings (~36-cm tall) occurred in tussocks, inter-tussocks, and frost boils disproportionate to the abundance of these habitats in the treeline ecotone. We found that seedlings disproportionately occurred in tussocks and frost boils. Seedlings found in tussocks and frost boils also showed greater branch growth than those in inter-tussocks. Tussocks and frost boils had higher soil temperatures than inter-tussocks. Tussocks had higher N, P, and K availability, whereas frost boils had greater secondary and micronutrient availability. The disproportionate occurrence of seedlings in tussocks and frost boils can likely be explained by the combination of warmer soils and greater nutrient availability. It is also possible that low competition for primary nutrients contributes to the success of seedlings in frost boils. Results of the study highlight the importance of biotic and abiotic facilitation as mediators of treeline advance in a changing Arctic.  相似文献   

19.
Treeline advance has occurred throughout the twentieth century in mountainous regions around the world; however, local variation and temporal lags in responses to climate warming indicate that the upper limits of some treelines are not necessarily in climatic equilibrium. These observations suggest that factors other than climate are constraining tree establishment beyond existing treelines. Using a seed addition experiment, we tested the effects of seed availability, predation and microsite limitation on the establishment of two subalpine tree species (Picea engelmannii and Abies lasiocarpa) across four treelines in the Canadian Rocky Mountains. The effect of vegetation removal on seedling growth was also determined, and microclimate conditions were monitored. Establishment limitations observed in the field were placed in context with the effects of soil properties observed in a parallel experiment. The seed addition experiment revealed reduced establishment with increasing elevation, suggesting that although establishment within the treeline ecotone is at least partially seed limited, other constraints are more important beyond the current treeline. The effects of herbivory and microsite availability significantly reduced seedling establishment but were less influential beyond the treeline. Microclimate monitoring revealed that establishment was negatively related to growing season temperatures and positively related to the duration of winter snow cover, counter to the conventional expectation that establishment is limited by low temperatures. Overall, it appears that seedling establishment beyond treeline is predominantly constrained by a combination of high soil surface temperatures during the growing season, reduced winter snowpack and unfavourable soil properties. Our study supports the assertion that seedling establishment in alpine treeline ecotones is simultaneously limited by various climatic and nonclimatic drivers. Together, these factors may limit future treeline advance in the Canadian Rocky Mountains and should be considered when assessing the potential for treeline advance in alpine systems elsewhere  相似文献   

20.

Background and aims

Vegetation can have direct and indirect effects on soil nutrients. To test the effects of trees on soils, we examined the patterns of soil nutrients and nutrient ratios at two spatial scales: at sites spanning the alpine tundra/subalpine forest ecotone (ecotone scale), and beneath and beyond individual tree canopies within the transitional krummholz zone (tree scale).

Methods

Soils were collected and analyzed for total carbon (C), nitrogen (N), and phosphorus (P) as well as available N and P on Niwot Ridge in the Colorado Rocky Mountains.

Results

Total C, N, and P were higher in the krummholz zone than the forest or tundra. Available P was also greatest in the krummholz zone while available N increased from the forest to the tundra. Throughout the krummholz zone, total soil nutrients and available P were higher downwind compared to upwind of trees.

Conclusions

The krummholz zone in general, and downwind of krummholz trees in particular, are zones of nutrient accumulation. This pattern indicates that the indirect effects of trees on soils are more important than the direct effects. The higher N:P ratios in the tundra suggest nutrient dynamics differ from the lower elevation sites. We propose that evaluating soil N and P simultaneously in soils may provide a robust assay of ecosystem nutrient limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号