首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vertebrates, the engrailed genes are expressed at early neurula stage in a narrow stripe encompassing the midbrain-hindbrain boundary (MHB), a region from which a peculiar structure, the isthmus, is formed. Knock-out experiments in mice demonstrated that these genes are essential for the development of this structure and of its derivatives. In contrast, little is known about the effect of an overexpression of engrailed genes in vertebrate development. Here we report the isolation of Ol-eng2, a medaka fish (Oryzias latipes) engrailed gene. We have monitored the effects of its widespread expression following mRNA injections in 1- and 2-cell medaka and Xenopus embryos. We found that the ectopic expression of Ol-eng2 predominantly results in an altered development of the anterior brain, including an inhibition of optic vesicle formation. No change in the patterns of mesencephalic and telencephalic markers were observed. In contrast, expressions of markers of the diencephalon were strongly repressed in injected embryos. Furthermore, the endogenous Ol-eng2, Pax2, Wnt1 and Fgf8, which are essential components of the MHB genetic cascade, were ectopically expressed in this region. Therefore, we propose that Ol-eng2 induces de novo formation of an isthmus-like structure, which correlates with the development of ectopic midbrain structures, including optic tectum. A competence of the diencephalon to change to a midbrain fate has been demonstrated in isthmic graft experiments. Our data demonstrate that this change can be mimicked by ectopic engrailed expression alone.  相似文献   

2.
3.
The layered cortex of the cerebellum is folded along the anterior-posterior axis into lobules separated by fissures, allowing the large number of cells needed for advanced cerebellar functions to be packed into a small volume. During development, the cerebellum begins as a smooth ovoid structure with two progenitor zones, the ventricular zone and upper rhombic lip, which give rise to distinct cell types in the mature cerebellum. Initially, the cerebellar primordium is divided into five cardinal lobes, which are subsequently further subdivided by fissures. The cellular processes and genes that regulate the formation of a normal pattern of fissures are poorly understood. The engrailed genes (En1 and En2) are expressed in all cerebellar cell types and are critical for regulating formation of specific fissures. However, the cerebellar cell types that En1 and En2 act in to control growth and/or patterning of fissures has not been determined. We conditionally eliminated En2 or En1 and En2 either in both progenitor zones and their descendents or in the two complementary sets of cells derived from each progenitor zone. En2 was found to be required only transiently in the progenitor zones and their immediate descendents to regulate formation of three fissures and for general growth of the cerebellum. In contrast, En1 and En2 have overlapping functions in the cells derived from each progenitor zone in regulating formation of additional fissures and for extensive cerebellar growth. Furthermore, En1/2 function in ventricular zone-derived cells plays a more significant role in determining the timing of initiation and positioning of fissures, whereas in upper rhombic lip-derived cells the genes are more important in regulating cerebellar growth. Our studies reveal the complex manner in which the En genes control cerebellar growth and foliation in distinct cell types.  相似文献   

4.
The organizer at the midbrain-hindbrain boundary (MHB organizer) has been proposed to induce and polarize the midbrain during development. We investigate the requirement for the MHB organizer in acerebellar mutants, which lack a MHB and cerebellum, but retain a tectum, and are mutant for fgf8, a candidate inducer and polarizer. We examine the retinotectal projection in the mutants to assay polarity in the tectum. In mutant tecta, retinal ganglion cell (RGC) axons form overlapping termination fields, especially in the ventral tectum, and along both the anterior-posterior and dorsal-ventral axis of the tectum, consistent with a MHB requirement in generating midbrain polarity. However, polarity is not completely lost in the mutant tecta, in spite of the absence of the MHB. Moreover, graded expression of the ephrin family ligand Ephrin-A5b is eliminated, whereas Ephrin-A2 and Ephrin-A5a expression is leveled in acerebellar mutant tecta, showing that ephrins are differentially affected by the absence of the MHB. Some RGC axons overshoot beyond the mutant tectum, suggesting that the MHB also serves a barrier function for axonal growth. By transplanting whole eye primordia, we show that mapping defects and overshooting largely, but not exclusively, depend on tectal, but not retinal genotype, and thus demonstrate an independent function for Fgf8 in retinal development. The MHB organizer, possibly via Fgf8 itself, is thus required for midbrain polarisation and for restricting axonal growth, but other cell populations may also influence midbrain polarity.  相似文献   

5.
Mice homozygous for null alleles of the putative signaling molecule Wnt-1 have a reproducible phenotype: loss of the midbrain and adjacent cerebellar component of the metencephalon. By examining embryonic expression of the mouse engrailed (En) genes, from 8.0 to 9.5 days postcoitum, we demonstrate that Wnt-1 primarily regulates midbrain development. The midbrain itself is required for normal development of the metencephalon. Thus, the observed neonatal phenotype is explained by a series of early events, within 48 hr of neural plate induction, that leads to a complete loss of En domains in the anterior central nervous system. Wnt-1 and a related gene, Wnt-3a, are coexpressed from early somite stages in dorsal aspects of the myelencephalon and spinal cord. We suggest that functional redundancy between these two genes accounts for the lack of a caudal central nervous system phenotype.  相似文献   

6.
7.
Wnt signaling is known to be required for the normal development of the vertebrate midbrain and hindbrain, but genetic loss of function analyses in the mouse and zebrafish yield differing results regarding the relative importance of specific Wnt loci. In the zebrafish, Wnt1 and Wnt10b functionally overlap in their control of gene expression in the ventral midbrain-hindbrain boundary (MHB), but they are not required for the formation of the MHB constriction. Whether other wnt loci are involved in zebrafish MHB development is unclear, although the expression of at least two wnts, wnt3a and wnt8b, is maintained in wnt1/wnt10b mutants. In order to address the role of wnt3a in zebrafish, we have isolated a full length cDNA and examined its expression and function via knockdown by morpholino antisense oligonucleotide (MO)-mediated knockdown. The expression pattern of wnt3a appears to be evolutionarily conserved between zebrafish and mouse, and MO knockdown shows that Wnt3a, while not uniquely required for MHB development, is required in the absence of Wnt1 and Wnt10b for the formation of the MHB constriction. In zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b, the expression of engrailed orthologs, pax2a and fgf8 is not maintained after mid-somitogenesis. In contrast to acerebellar and no isthmus mutants, in which midbrain and hindbrain cells acquire new fates but cell number is not significantly affected until late in embryogenesis, zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b undergo extensive apoptosis in the midbrain and cerebellum anlagen beginning in mid-somitogenesis, which results in the absence of a significant portion of the midbrain and cerebellum. Thus, the requirement for Wnt signaling in forming the MHB constriction is evolutionarily conserved in vertebrates and it is possible in zebrafish to dissect the relative impact of multiple Wnt loci in midbrain and hindbrain development.  相似文献   

8.
During the development of the zebrafish nervous system both noi, a zebrafish pax2 homolog, and ace, a zebrafish fgf8 homolog, are required for development of the midbrain and cerebellum. Here we describe a dominant mutation, aussicht (aus), in which the expression of noi and ace is upregulated. In aus mutant embryos, ace is upregulated at many sites in the embryo, while noi expression is only upregulated in regions of the forebrain and midbrain which also express ace. Subsequent to the alterations in noi and ace expression, aus mutants exhibit defects in the differentiation of the forebrain, midbrain and eyes. Within the forebrain, the formation of the anterior and postoptic commissures is delayed and the expression of markers within the pretectal area is reduced. Within the midbrain, En and wnt1 expression is expanded. In heterozygous aus embryos, there is ectopic outgrowth of neural retina in the temporal half of the eyes, whereas in putative homozygous aus embryos, the ventral retina is reduced and the pigmented retinal epithelium is expanded towards the midline. The observation that aus mutant embryos exhibit widespread upregulation of ace raised the possibility that aus might represent an allele of the ace gene itself. However, by crossing carriers for both aus and ace, we were able to generate homozygous ace mutant embryos that also exhibited the aus phenotype. This indicated that aus is not tightly linked to ace and is unlikely to be a mutation directly affecting the ace locus. However, increased Ace activity may underly many aspects of the aus phenotype and we show that the upregulation of noi in the forebrain of aus mutants is partially dependent upon functional Ace activity. Conversely, increased ace expression in the forebrain of aus mutants is not dependent upon functional Noi activity. We conclude that aus represents a mutation involving a locus normally required for the regulation of ace expression during embryogenesis.  相似文献   

9.
10.
Crossregulation between En-2 and Wnt-1 in chick tectal development   总被引:1,自引:1,他引:0  
En-1, En-2 and Wnt-1 are proposed to be essential signals for the development of the optic tectum in chick embryos. Drosophila engrailed and wingless , homologs of En ( En-1 and En-2 ) and Wnt-1 , respectively, have been shown to crossregulate each other. In the present paper, it is reported that crossregulation between En-2 and Wnt-1 is preserved in the development of the chick optic tectum. When En-2 is overexpressed by the replication competent retroviral vector, Wnt-1 is expressed ectopically at the dorsal midline of the diencephalon. When Wnt-1 is introduced extrinsically either by ectopic transplantation of mesencephalon, or by implantation of Wnt-1 producing cells, En-2 is induced ectopically at the dorsal midline of the tel-diencephalic border. Thus, ectopic expression of En-2 and Wnt-1 leads to crossregulation of each other in the chick brain. As diencephalon transdifferentiates into the optic tectum by an appropriate signal, the crossregulation of En-2 and Wnt-1 in the diencephalon may mimic the relationship required for early development in the tectum.  相似文献   

11.
12.
13.
14.
Prospective midbrain and cerebellum formation are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that midbrain and cerebellum development require different levels of FGF signaling. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. Here, we have explored the effects of inhibiting FGF signaling within the embryonic mouse midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing sprouty2 (Spry2) from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes cell death in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining mesencephalon cells develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the part of the cerebellum that spans the midline. We found that, whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dose, resulted in loss of the entire vermis. Our data suggest that cell death is not responsible for vermis loss, but rather that it fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development.  相似文献   

15.
In the E4 (embryonic day 4) chick tectal primordium, engrailed expression is strong at the caudal end and gradually weakens toward the rostral end. We used quail-chick chimeric tecta to investigate how the caudorostral gradient of engrailed expression is established and whether it is correlated with the subsequent rostrocaudal polarity of tectal development. To examine the positional value of the tectal primordium, we produced ectopic tecta in the diencephalon by transplanting a part of the mesencephalic alar plate heterotopically. In the ectopic tectum, the gradient of the engrailed expression reversed and the strength of the expression was dependent on the distance from the mes-diencephalon junction; the nearer the ectopic tectum was to the junction, the weaker the expression was. Consequently, the pattern of the engrailed expression in the host and ectopic tecta was nearly a mirror image, suggesting the existence of a repressive influence around the mes-diencephalon junction on the engrailed expression. We examined cytoarchitectonic development in the ectopic tecta, which normally proceeds in a gradient along the rostrocaudal axis; the rostral shows more advanced lamination than the caudal. In contrast, the caudal part of the ectopic tecta (near to the mes-diencephalon junction) showed more advanced lamination than the rostral. In both the host and ectopic tecta, advanced lamination was observed where the engrailed expression was repressed, and vice versa. Next we studied the correlation between engrailed expression and retinotectal projection from a view of plasticity and rigidity of rostrocaudal polarity in the tectum. We produced ectopic tecta by anisochronal transplantations between E3 host and E2 donor, and showed that there is little repressive influence at E3 around the mes-diencephalon junction. We then made chimeric double-rostral tectum (caudal half of it was replaced by rostral half of the donor tectum) or double-caudal tectum at E3. The transplants kept their original staining pattern in hosts. Consequently, the chimeric tecta showed wholly negative or positive staining of engrailed protein on the grafted side. In such tecta retinotectal projection pattern was disturbed as if the transplants retained their original position-specific characters. We propose from these heterotopic and anisochronal experiments that the engrailed expression can be a marker for subsequent rostrocaudal polarity in the tectum, both as regards cytoarchitectonic development and retinotectal projection.  相似文献   

16.
17.
The cerebellum comprises a medial domain, called the vermis, flanked by two lateral subdivisions, the cerebellar hemispheres. Normal development of the vermis involves fusion of two lateral primordia on the dorsal midline. We investigated how the cerebellum fuses on the midline by combining a study of mid/hindbrain cell movements in avian embryos with the analysis of cerebellar fusion in normal and mutant mouse embryos. We found that, in avian embryos, divergent cell movements originating from a restricted medial domain located at the mid/hindbrain boundary produce the roof plate of the mid/hindbrain domain. Cells migrating anteriorly from this region populate the caudal midbrain roof plate whereas cells migrating posteriorly populate the cerebellar roof plate. In addition, the adjacent paramedial isthmic neuroepithelium also migrates caudalward and participates in the formation of the cerebellar midline region. We also found that the paramedial isthmic territory produces two distinct structures. First, the late developing velum medullaris that intervenes between the vermis and the midbrain, and second, a midline domain upon which the cerebellum fuses. Elimination or overgrowth of this isthmic domain in Wnt1(sw/sw) and En1(+/Otx2lacZ) mutant mice, respectively, impair cerebellar midline fusion. Because the isthmus-derived midline cerebellar domain displays a distinct expression pattern of genes involved in BMP signaling, we propose that the isthmus-derived cells provide both a substratum and signals that are essential for cerebellar fusion.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号