首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stylar proteins involved in the self-incompatible (SI) response ofLycopersicon hirsutum have been identified and mapped to the locus that controls SI (S locus).L. esculentum, a self-compatible (SC) species of cultivated tomato, does not display these proteins. Hybrids between SCL. esculentum and SIL. hirsutum are self-sterile despite these individuals bearing pollen containing theS allele ofL. esculentum. In progeny derived from backcrossing the hybrids toL. esculentum, there was a strong correlation between the presence of theS allele fromL. hirsutum and self-infertility. However, this relationship was uncoupled in a number of backcross (BC) progeny. The SI response appeared to be nonexistent in two self-fertile BC individuals that were heterozygous for theS allele ofL. hirsutum, based on Mendelian segregation of a tightly linked DNA marker,CD15, in selfed progeny. Among these progeny self-fertile individuals that were homozygous for theL. hirsutum allele of the linked marker were also determined to be homozygous for anS-related protein ofL. hirsutum through test crosses withL. esculentum. Therefore, plants were produced that were homozygous for a functionalS allele but were self-fertile. This result and other evidence suggest that theS-related proteins are not sufficient to elicit a self-incompatible response inL. esculentum and that there is a mutation(s) inL. esculentum somewhere other than theS locus that leads to self-compatibility.  相似文献   

2.
Lycopersicon peruvianum (wild tomato) is a gametophytic self-incompatible (SI) species. One natural population has been shown to harbor a self-compatible (SC) allele. A stylar protein associated with the self-compatibility allele has been elucidated using SDS-PAGE. The temporal and spatial expression of this protein is presented and compared with protein expression of two SI alleles. Hybrids containing the SC and SI alleles were used in a backcrossing program to introgress the SC allele into SI backgrounds in six independent lines. Controlled pollinations and SDS-PAGE were used to identify and select classes of progeny. After four backcross generations (approximately 97% recovery of the SI backgrounds) the SC allele still confers self-fertility in lines that contain this allele, providing evidence that the mutation to SC occurred at the S-locus and that the associated protein is likely responsible.  相似文献   

3.
Lycopersicon peruvianum displays gametophytic self-incompatibility (GSI). We have isolated self-compatible (SC) tetraploids of L. peruvianum from tissue-cultured leaves and have explored the expression and inheritance of their S-related proteins. The Srelated protein profiles of styles of SC tetraploids were indistinguishable from the diploid self-incompatible (SI) explant source based on SDS-PAGE. All progeny obtained from self-fertilization of two tetraploids were SC. Cloned cDNA sequences of the S-related proteins were used to determine the inheritance of this locus in these progeny through Southern hybridization. The allelic ratio, as determined from the intensity of DNA restriction fragments, was consistent with the predicted ratio if only pollen bearing two different alleles was successful in achieving fertilization. All progeny obtained had at least one copy of each allele, and individuals fully homozygous for either allele were not found, indicating that pollen grains bearing two identical alleles were inhibited. In addition, the level of expression of the S-related proteins in the progeny correlated with the allelic dosage at the DNA level. We demonstrate that the observed self-compatibility in the tetraploids was not caused by an alteration in the expression of S-related proteins. Received: 11 September 1996 / Accepted: 21 March 1997  相似文献   

4.
Accessions of wild Lycopersicon germplasm were screened for resistance to Pseudomonas syringae pv tomato (P.s. tomato). Resistance to both race-0 and race-1 strains of P.s. tomato was identified in L. pimpinellifolium, L. peruvianum and L. hirsutum var. glabratum. Resistance to race-0 derived from L. hirsutum var. glabratum (Pto3) appeared to be inherited independently of Pto1 and Pto2. Filial and backcross generations derived from interspecific crosses between L. esculentum and L. hirsutum var. glabratum revealed that Pto3 resistance was inherited in a complex fashion and was incompletely dominant under conditions of high bacteria inocula. Resistance to P.s. tomato race-1 (Pto4) was also identified in L. hirsutum var. glabratum. Pto3 and Pto4 segregated independently of each other.  相似文献   

5.
Summary Using a modified embryo callus culture technique, hybrids between Lycopersicon esculentum and L. peruvianum were developed and their usefulness as bridge lines for facilitating interspecific gene transfer was evaluated. Four of these lines showed a high level of sexual compatibility with several other L. peruvianum var. typicum accessions, as well as with accessions of L. peruvianum var. humifusum and L. peruvianum var. glandulosum and L. esculentum. These bridge line x L. peruvianum hybrids could be crossed with L. esculentum to introgress genes from L. peruvianum into L. esculentum.  相似文献   

6.
A cDNA encoding a stylar protein was cloned from flowers of self-incompatible wild tomato (Lycopersicon peruvianum). The corresponding gene was mapped to the S locus, which is responsible for self-incompatibility. The nucleotide sequence was determined for this allele, and compared to other S-related sequences in the Solanaceae. The S allele was used to probe DNA from 92 plants comprising 10 natural populations of Lycopersicon peruvianum. Hybridization was conducted under moderate and permissive stringencies in order to detect homologous sequences. Few alleles were detected, even under permissive conditions, underscoring the great sequence diversity at this locus. Those alleles that were detected are highly homologous. Sequences could not be detected in self-incompatible Nicotiana alata, self-compatible L. esculentum (cultivated tomato) or self-compatible L. hirsutum. However, hybridization to an individual of self-incompatible L. hirsutum revealed a closely related sequence that maps to the S locus in this reproductively isolated species. This supports the finding that S locus polymorphism predates speciation. The extraordinarily high degree of sequence diversity present in the gametophytic self-incompatibility system is discussed in the context of other highly divergent systems representing several kingdoms.  相似文献   

7.
A series of crosses between a naturally-occurring self-compatible accession ofLycopersicon peruvianum and a closely-related self-incompatible accession were used to demonstrate that the mutation to self-compatibility is located at the S-locus. Progeny of the crosses contain abundant style proteins of about 30 kDa that segregate with the S6and S7-alleles from the SI parent and the Sc-allele from the SC parent. The S6and S7-associated proteins have ribonuclease activity whereas the Sc-associated protein is not an active ribonuclease. This finding indicates that S-RNases are determinants of self-incompatibility in the style and that the ribonuclease activity is essential for their function.  相似文献   

8.
Prunus dulcis, the almond, is a predominantly self-incompatible (SI) species with a gametophytic self-incompatibility system mediated by S-RNases. The economically important allele S f , which results in self-compatibility in P. dulcis, is said to have arisen by introgression from Prunus webbii in the Italian region of Apulia. We investigated the range of self-(in)compatibility alleles in Apulian material of the two species. About 23 cultivars of P. dulcis (14 self-compatible (SC) and nine SI) and 33 accessions of P. webbii (16 SC, two SI and 15 initially of unknown status), all from Apulia, were analysed using PCR of genomic DNA to amplify S-RNase alleles and, in most cases, IEF and staining of stylar protein extracts to detect S-RNase activity. Some amplification products were cloned and sequenced. The allele S f was present in nearly all the SC cultivars of P. dulcis but, surprisingly, was absent from nearly all SC accessions of P. webbii. And of particular interest was the presence in many SI cultivars of P. dulcis of a new active allele, labelled S 30 , the sequence of which showed it to be the wild-type of S f so that S f can be regarded as a stylar part mutant S 30 °. These findings indicate S f may have arisen within P. dulcis, by mutation. One SC cultivar of P. dulcis, ‘Patalina’, had a new self-compatibility allele lacking RNase activity, S n5 , which could be useful in breeding programmes. In the accessions of P. webbii, some of which were known to be SC, three new alleles were found which lacked RNase activity but had normal DNA sequences.  相似文献   

9.
L. peruvianum var humifusum is reproductively the most isolated of the species of the genusLycopersicon. It can be crossed with the cultivated tomato usingL. chilense as an intermediary. After a series of backcrosses of the three-genome hybrid F1 (L. esculentum ×L. chilense) ×L. peruvianum var humifusum withL. esculentum, accompanied by selection for resistance to some economically important diseases, several lines were established. One of these lines, Cm 180, which showed resistance toClavibacter michiganensis subsp.michiganensis, was subjected to genetic analysis. This resistance was found to be controlled by a single dominant gene (Cm) that was not allelic to the gene originating fromL. hirsutum f.glabratum. ThisCm gene was genetically mapped on chromosome 4. The germ plasm ofL. peruvianum var humifusum in combination withL. chilense was transferred intoL. esculentum. Different breeding lines possessing resistance to various diseases and pests could be developed from this material.  相似文献   

10.
Summary Mesophyl protoplasts of two genotypes of cultivated tomato (Lycopersicon esculentum Mill.) and one of its wild relative species (Lycopersicon peruvianum Mill.) were fused by using electrofusion and polyethyleneglycol-induced fusion. Forty-three fertile tetraploid somatic hybrid plants, each deriving from separate calli, were recovered from both fusion procedures. Electrofusion appeared more efficient than chemical fusion for the production of somatic hybrids. These plants appeared morphologically similar, whatever the fusion procedure and tomato genotype. They had intermediate leaf, inflorescence, and flower morphology. After self-pollination, the hybrids set fruit of intermediate size and color. The hybrid nature of these plants was confirmed by isoelectric focusing of the Rubisco small subunits used as nuclear markers. L. esculentum and L. peruvianum were distinguished by means of two chloroplast markers: CF1-ATPase subunit as analyzed by isoelectro-focusing and ct DNA restriction patterns. All hybrids displayed both ct markers of only one parent with no biased transmission. Mitochondrial (mt) DNAs were prepared from flower buds by using miniaturized CsCl gradients. Preliminary analysis indicated that mt genomes from the hybrids all differed from those of both parents. mt DNA Sall restriction enzyme analysis revealed that all but two hybrids contained one novel fragment of 13.5 kb. Gene mapping experiments showed that the mt apocytochrome b and ATPase subunit 9 homologies in the somatic hybrid mt DNA resembled L. esculentum and L. peruvianum, respectively; the mt nad5 probe distinguished at least four distinct patterns in the hybrids. These results indicated that mt DNA rearrangements involving intergenomic recombinations occurred through protoplast fusion. A greater mt DNA polymorphism was induced with chemical fusion than with electrofusion.  相似文献   

11.
Segregating populations of hybrids of the insect-resistant wild tomato,Lycopersicon hirsutum f.glabratum, C.H. Mull, PI 134417, and the susceptible tomato cultivar ofL. esculentum Mill, Walter, were screened by bioassays with the Colorado potato beetle,Leptinotarsa decemlineata (Say) and tomato fruitwormHeliothis zea (Boddie). Plant lines with a range of levels of resistance toH. zea were selected from one group of hybrids; plants with a range of resistance levels toL. decemlineata, from another group. The response of both insect species to both groups of plants was evaluated. Resistance to each of these species is under separate genetic control and apparently involves distinct mechanistic components, although it remains possible that at least some factors are important in conditioning resistance to both species.
Résumé La tomate sauvage,L. hirsutum f.glabratum C.H. Mull, n0 PI134417, présente des lamelles foliaires qui lui confèrent une résistance au doryphore,L. decemlineata Say et àH. zea Bodie. Cette étude a voulu préciser si ces résistances étaient héritées ensemble dans des populations d'hybrides entre PI 134417 et la tomate cultivée,L. esculentum Mill. Des lignées de plantes présentant une gamme de résistance àH. zea ont été sélectionnées à partir d'une population hyrbide. De même, des lignées de plantes ayant une gamme de résistance àL. decemlineata ont été sélectionnées à partir d'un second groupe d'hybrides. Les réactions des 2 insectes aux 2 groupes de plantes ont été estimées.Les résistances àH. zea et àL. decemlineata n'étaient pas corrélées nettement. Certaines lignées sont résistantes aux 2 espèces, mais d'autres ne sont résistantes qu'à une espèce. Ainsi, les résistances à chacune de ces espèces ont probablement des déterminismes génétiques différents. Différentes composantes mécaniques sont vraisemblablement impliquées dans ces résistances, bien qu'il soit possible qu'au moins quelques facteurs aient un rôle important dans le conditionnement de la résistance. La création de cultivars de tomates avec une résistance liée aux lamelles foliaires sera compliquée par le besoin d'une sélection en fonction des réponses aux 2 espèces..
  相似文献   

12.
Summary Forty single-copy, nuclear probes of known chromosomal position were used to examine restriction fragment length polymorphism in the tomato genus Lycopersion. The probes were from three libraries: one cDNA, and two genomic libraries ne genomic made with EcoRI and the other with PstI. Total DNA from 156 plants representing eight species was cut with five different restriction enzymes and scored in 198 probe-enzyme combinations. Genetic distances between accessions (populations) and species were calculated from the resultant restriction patterns and proportion of shared bands. Accessions belonging to the same species largely clustered together, confirming their current classification. However, one mountain accession, classified as L. peruvianum var. humifusum (LA2150), was sufficiently distinct from the other accessions of L. peruvianum that it may qualify as a separate species L. esculentum and L. pimpinellifolium were the least clearly differentiated, possibly reflecting introgressive hybridization, known to have been promoted by man in recent history. Dendrograms constructed from cDNA versus genomic clones were nearly identical in their general grouping of species. The dendrograms revealed two major dichotomies in the genus: one corresponding to mating behavior [self-compatible (SC) versus self-incompatible (SI) species] and the other corresponding to fruit color (red versus green-fruited species). The ratio of withinversus between-accession diversity was much lower for SC species, indicating that most of the diversity within these species exists between populations, rather than within populations. Overall, the amount of genetic variation in the SI species far exceeded that found in SC species. This result is exemplified by the fact that more genetic variation could be found within a single accession of one of the SI species (e.g., L. peruvianum) than among all accessions tested of any one of the SC species (e.g., L. esculentum or L. pimpinellifolium). Results from this study are discussed in relationship to germ plasm collection/utilization and with regard to the use of RFLPs in tomato breeding and genetics.  相似文献   

13.
A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.  相似文献   

14.
Pubescence characteristics for six accessions of Lycopersicon hirsutum Dunal and five accessions of L. hirsutum f. glabratum CH Mull. were determined and compared with those of an accession of cultivated tomato (L. esculentum Mill.). Removal of trichome exudates from excised leaflets using ethanol solution resulted in a reduced mortality and increased survival of potato moth (Phthorimaea operculella (Zeller)) neonates for the accessions that were most lethal when not treated with ethanol solution. No such treatment effect was evident for L. esculentum or for the L. hirsutum accession with least effect on neonates when its trichomes were intact. In a glasshouse experiment with caged intact plants, mortality of neonate P. operculella placed on the abaxial surface was greater on seven accessions than for L. esculentum.Neonates were less severely affected on the adaxial surface. Eleven days after inoculation, no live larvae were found on LA 1927, PI 127827, PI 134418, and PI 134428, and numbers on other accessions were lower than for L. esculentum. Eventual emergence of adults followed a similar trend. Multiple regression of insect data against pubescence indicated a significant correlation between density of type IV and VI trichomes and neonate mortality, decreased larval development and decreased adult emergence. Non-glandular type V trichomes were positively correlated with high survival of insects to 11 days and to adult. Though factors other than glandular trichomes are likely to be important, increased density of type IV and VI, along with reduced type V, are shown to be important to select in breeding for P. operculella resistance.  相似文献   

15.
The fungal pathogen Alternaria alternata f. sp. lycopersici produces AAL-toxins that function as chemical determinants of the Alternaria stem canker disease in the tomato (Lycopersicon esculentum). In resistant cultivars, the disease is controlled by the Asc locus on chromosome 3. Our aim was to characterize novel sources of resistance to the fungus and of insensitivity to the host-selective AAL-toxins. To that end, the degree of sensitivity of wild tomato species to AAL-toxins was analyzed. Of all members of the genus Lycopersicon, only L. cheesmanii was revealed to be sensitive to AAL-toxins and susceptible to fungal infection. Besides moderately insensitive responses from some species, L. pennellii and L. peruvianum were shown to be highly insensitive to AAL-toxins as well as resistant to the pathogen. Genetic analyses showed that high insensitivity to AAL-toxins from L. pennellii is inherited in tomato as a single complete dominant locus. This is in contrast to the incomplete dominance of insensitivity to AAL-toxins of L. esculentum. Subsequent classical genetics, RFLP mapping and allelic testing indicated that high insensitivity to AAL-toxins from L. pennellii is conferred by a new allele of the Asc locus.  相似文献   

16.
Summary The Mi gene originating from the wild tomato species Lycopersicon peruvianum confers resistance to all major root knot nematodes (Meloidogyne spp.). This single dominant gene is located on chromosome 6 and is very closely linked to the acid phosphatase-1 (Aps-1) locus. Resistance to nematodes has been introgressed into various cultivars of the cultivated tomato (L. esculentum), in many cultivars along with the linked L. peruvianum Aps-1 1 allele. By using a pair of nearly isogenic lines differing in a small chromosomal region containing the Mi and Aps-1 loci, we have identified two RFLP markers, GP79 and H6A2c2, which are located in the introgressed L. peruvianum region. Analysis of a test panel of 51 L. esculentum genotypes of various origins indicated that GP79 is very tightly linked to the Mi gene and allows both homozygous and heterozygous nematode-resistant genotypes to be distinguished from susceptible genotypes, irrespective of their Aps-1 alleles. Marker H6A2c2 is linked to the Aps-1 locus and is capable of discriminating between the L. peruvianum Aps-1 1 allele and the L. esculentum Aps-1 3 and Aps-1 + alleles. In combination, these RFLP markers may provide a powerful tool in breeding tomatoes for nematode resistance.  相似文献   

17.
Segregation for self-fertility has been studied in progenies from the crosses of self-sterile (SS) plants with interline hybrids obtained by a diallel scheme of pollinations between seven self-fertile (SF) lines (nos. 2–8) and with F1 (SS plant x SF line) hybrids. All the offspring families from the SS plant x F1 (SS plant x SF line) crosses demonstrated a 1SF1SS segregation. The crosses of SS plants with some interline hybrids gave only self-fertile plants, whereas the crosses with other interline hybrids gave a segregation of 3SF:1SS expected in the case of digenic segregation. The data obtained permitted us to identify three different S loci (S1, S2, S5) and to estimate the genotypes of self-fertile lines for their Sf alleles: lines 5, 6, 7 and 8 are S1f/S1f S2n/S2n S5m/S5m, line 4 is S1n/S1n S2f/S2f S5m/S5m, and lines 2 and 3 are S1n/S1n S2m/S2m S5f/S5f(Sn, Sm designate active alleles of the incompatibility genes). The identification of the particular S gene which is presented by the Sf allele in each line has been made on the basis of our data concerning the linkage of the Sf mutation with isozyme markers of particular rye chromosomes, which is reported in an accompanying paper.  相似文献   

18.
Forty-eight lines of Lycopersicon and four lines of Solanum were screened for resistance to twelve Heterodera rostochiensis populations of known patho-type(s). Plant lines were assessed for resistance first by examining the outside of the root ball for cysts and later by washing the root ball to extract all cysts. Possible resistant plant selections were re-tested against three eelworm populations, including the one to which they were first shown resistant. Resistance was discovered in two lines of Lycopersicon pimpinelli-folium, two L. esculentum L. pimpinellifolium crosses, L. esculentum var. cerasiforme, six lines of L. peruvianum, in L. peruvianum var. humifusum, L. hirsutum var. glabratum, and in Solanum indicum. Because resistance was found most commonly in L. peruvianum and because it has already been used as a resistant parent in breeding programmes to incorporate resistance to root-knot nematode (Meloidogyne spp.) in tomato, L. peruvianum seems to be the best source of resistance among plants tested so far. The host-parasite relationships of resistant L. hirsutum var. glabratum (B 6013) were compared with those of a commercial, susceptible tomato, L. esculentum‘Ailsa Craig’. Plants were inoculated with three eelworm isolates; the extent of eelworm invasion, plant reaction and eelworm development were studied. Larvae invaded and penetrated roots of the resistant plant as freely and in as large numbers as they penetrated roots of the susceptible tomato. In the latter, numerous larvae matured while, in contrast, few larvae matured in the roots of L. hirsutum var. glabratum. L. hirsutum var. glabratum was shown to possess a root diffusate as active in hatching larvae of Heterodera rostochiensis as that of L. esculentum‘Ailsa Craig’. The existence of pathotypes of H. rostochiensis, identifiable by their differing abilities to increase on resistant tomato lines, was not clearly revealed in the experiments.  相似文献   

19.
Summary In the 1940's the root-knot nematode resistance gene (Mi) was introgressed into the cultivated tomato from the wild species, L. peruvianum, and today it provides the only form of genetic resistance against this pathogen. We report here the construction of a high resolution RFLP map around the Mi gene that may aid in the future cloning of this gene via chromosome walking. The map covers the most distal nine map units of chromosome 6 and contains the Mi gene, nine RFLP markers, and one isozyme marker (Aps-1). Based on the analysis of more than 1,000 F2 plants from four crosses, we were able to pinpoint the Mi gene to the interval between two of these markers — GP79 and Aps-1. In crosses containing the Mi gene, this interval is suppressed in recombination and is estimated to be 0.4 cM in length. In contrast, for a cross not containing Mi, the estimated map distance is approximately 5 times greater (ca. 2 cM).Using RFLP markers around Mi as probes, it was possible to classify nematode resistant tomato varieties into three types based on the amount of linked peruvianum DNA still present. Two of these types (representing the majority of the varieties tested) were found to still contain more than 5 cM of peruvianum chromosome — a result that may explain some of the negative effects (e.g. fruit cracking) associated with nematode resistance. The third type (represented by a single variety) is predicted to carry a very small segment of peruvianum DNA (<2 cM) and may be useful in the identification of additional markers close to Mi and in the orientation of clones during a chromosome walk to clone the gene.  相似文献   

20.
Summary Asymmetric somatic hybrids of Lycopersicon esculentum and Lycopersicon peruvianum were analysed for the retention of genes and alleles specific for L. peruvianum. The hybrids were obtained by fusion of protoplasts from L. esculentum with those of L. peruvianum (the donor), the latter having been irradiated before fusion with 50, 300 or 1,000 Gy of gamma-rays. The retention of three different types of genes or alleles was analysed. (1) The gene coding for kanamycin resistance, which is dominant and had been introduced in most of the L. peruvianum donor plants by transformation. It was present at one locus in 16 L. peruvianum donor plants and at two loci in one donor plant. (2) The genes coding for acid phosphatase, locus Aps-1, and glutamate oxaloacetate transaminase (GOT); different alleles of these genes are co-dominant and were detected by isozyme analysis. (3) Eighteen single gene morphological markers for which most of the L. esculentum genotypes used were homozygous recessive. Kanamycin resistance from donor plants with one locus was retained in about 50% of the asymmetric 30H-hybrids (the donor was irradiated with 300 Gy). L. peruvianum specific alleles of Aps-1 and GOT were present in at least 70% of the hybrids; the retention of donor alleles was lower in 30H- than in 5H-hybrids (donor irradiated with 50 Gy). On average, 73% of the L. peruvianum-specific alleles (one or both) of the morphological markers were detected in the 30H-hybrids. Several of the L. esculentum genotypes used were homozygous recessive for two morphological markers on the same chromosome; in 43% of the 30H-hybrids derived from them, only one of these markers was complemented by the L. peruvianum allele. This is an indication of frequent breakage of the L. peruvianum chromosomes. Several hybrid calli regenerated genotypically different shoots. On the whole, this analyses confirms the conclusion drawn from the cytogenetic and morphological analysis of these asymmetric hybrids, namely that irradiation prior to fusion eliminates the L. peruvianum genome to only a limited extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号