首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between Escherichia coli translational initiation factor 3 (IF-3) (Mr = 20668) and 30 S ribosomal subunits or fragmented 16 S rRNA was followed by 1H NMR spectroscopy. Upon addition of increasing yet largely substoichiometric amounts of deuterated 30 S ribosomal subunits, selective line broadenings and some chemical shift changes were observed. These effects can be fully reversed by increasing the temperature and/or the ionic strength. The selective line broadenings, which are explained by a medium-fast to fast exchange dynamics between free and bound IF-3 with loss of internal mobility of the protons, shed light on the amino acid residues of IF-3 involved in or affected by the binding to the 30 S subunits. Some effects (i.e. implication of 1 tyrosine, 1 phenylalanine, and some arginine and lysine residues) are seen with both 30 S subunits and rRNA while others (i.e. implication of a second tyrosine or phenylalanine residue of a group of hydrophobic residues and, possibly, of the single histidine residue), seen only or preferentially with 30 S subunits, may reflect additional interactions exclusively occurring at the ribosomal level.  相似文献   

2.
We have studied the interactions between the ribosome and the domains of Escherichia coli translation initiation factor 2, using an in vitro ribosomal binding assay with wild-type forms, N- and C-terminal truncated forms of IF2 as well as isolated structural domains. A deletion mutant of the factor consisting of the two N-terminal domains of IF2, binds to both 30S and 50S ribosomal subunits as well as to 70S ribosomes. Furthermore, a truncated form of IF2, lacking the two N-terminal domains, binds to 30S ribosomal subunits in the presence of IF1. In addition, this N-terminal deletion mutant IF2 possess a low but significant affinity for the 70S ribosome which is increased by addition of IF1. The isolated C-terminal domain of IF2 has no intrinsic affinity for the ribosome nor does the deletion of this domain from IF2 affect the ribosomal binding capability of IF2. We conclude that the N-terminus of IF2 is required for optimal interaction of the factor with both 30S and 50S ribosomal subunits. A structural model for the interaction of IF2 with the ribosome is presented.  相似文献   

3.
F H Zucker  J W Hershey 《Biochemistry》1986,25(12):3682-3690
The interaction of initiation factor IF1 with 30S ribosomal subunits was measured quantitatively by fluorescence polarization. Purified IF1 was treated with 2-iminothiolane and N-[[(iodoacetyl)-amino]ethyl]-5-naphthylamine-1-sulfonic acid in order to prepare a covalent fluorescent derivative without eliminating positive charges on the protein required for biochemical activity. The fluorescent-labeled IF1 binds to 30S subunits and promotes the formation of N-formylmethionyl-tRNA complexes with 70S ribosomes. Analyses of mixtures of fluorescent-labeled IF1 and 30S ribosomal subunits with an SLM 4800 spectrofluorometer showed little change in fluorescence spectra or lifetimes upon binding, but a difference in polarization between free and bound forms is measurable. Bound to free ratios were calculated from polarization data and used in Scatchard plots to determine equilibrium binding constants and number of binding sites per ribosomal subunit. Competition between derivatized and nonderivatized forms of IF1 was quantified, and association constants for the native factor were determined: (5 +/- 1) X 10(5) M-1 with IF1 alone; (3.6 +/- 0.4) X 10(7) M-1 with IF3; (1.1 +/- 0.2) X 10(8) M-1 with IF2; (2.5 +/- 0.5) X 10(8) M-1 with both IF2 and IF3. In all cases, 0.9-1.1 binding sites per 30S subunit were detected. Divalent cations have little effect on affinities, whereas increasing monovalent cations inhibit binding. On the basis of the association constants, we predict that greater than 90% of native 30S subunits are complexed with all three initiation factors in intact bacterial cells.  相似文献   

4.
Titrations of Escherichia coli translation initiation factor IF3, isotopically labeled with 15N, with 30S ribosomal subunits were followed by NMR by recording two-dimensional (15N,1H)-HSQC spectra. In the titrations, intensity changes are observed for cross peaks belonging to amides of individual amino acids. At low concentrations of ribosomal subunits, only resonances belonging to amino acids of the C-domain of IF3 are affected, whereas all those attributed to the N-domain are still visible. Upon addition of a larger amount of 30S subunits cross peaks belonging to residues of the N-terminal domain of the protein are also selectively affected. Our results demonstrate that the two domains of IF3 are functionally independent, each interacting with a different affinity with the ribosomal subunits, thus allowing the identification of the individual residues of the two domains involved in this interaction. Overall, the C-domain interacts with the 30S subunits primarily through some of its loops and alpha-helices and the residues involved in ribosome binding are distributed rather symmetrically over a fairly large surface of the domain, while the N-domain interacts mainly via a small number of residues distributed asymmetrically in this domain. The spatial organization of the active sites of IF3, emerging through the comparison of the present data with the previous chemical modification and mutagenesis data, is discussed in light of the ribosomal localization of IF3 and of the mechanism of action of this factor.  相似文献   

5.
During initiation of protein synthesis in bacteria, translation initiation factor IF2 is responsible for the recognition of the initiator tRNA (fMet-tRNA). To perform this function, IF2 binds to the ribosome interacting with both 30S and 50S ribosomal subunits. Here we report the topographical localization of translation initiation factor IF2 on the 70S ribosome determined by base-specific chemical probing. Our results indicate that IF2 specifically protects from chemical modification two sites in domain V of 23S rRNA, namely A2476 and A2478, and residues around position 2660 in domain VI, the so-called sarcin-ricin loop. These footprints are generated by IF2 regardless of the presence of fMet-tRNA, GTP, mRNA, and IF1. IF2 causes no specific protection of 16S rRNA. We observe a decreased reactivity of residues A1418 and A1483, which is an indication that the initiation factor has a tightening effect on the association of ribosomal subunits. This result, confirmed by sucrose density gradient analysis, seems to be a universally conserved property of IF2.  相似文献   

6.
Bacterial translation initiation factor IF1 is homologous to archaeal aIF1A and eukaryal eIF1A, which form a complex with their homologous IF2-like factors (aIF5B and eIF5B respectively) during initiation of protein synthesis. A similar IF1-IF2 interaction is assumed to occur in all bacteria and supported by cross-linking data and stabilization of the 30S-IF2 interaction by IF1. Here we compare Escherichia coli IF1 with thermophilic factors from Bacillus stearothermophilus and Thermus thermophilus. All three IF1s are structurally similar and functionally interchangeable in vivo and in vitro. However, the thermophilic factors do not stimulate ribosomal binding of IF2DeltaN, regardless of 30S subunits and IF2 origin. We conclude that an IF1-IF2 interaction is not universally conserved and is not essential for cell survival.  相似文献   

7.
The effects of other components of the initiation complex on Escherichia coli initiation factor IFI binding to 30 S ribosomal subunits were studied. Binding of [14C]IF1 in the absence of other initiation complex components was slight. Addition of either IF2 or IF3 stimulated binding to a variable extent. Maximum binding was observed when both IF2 and IF3 were present. Addition of GTP, fMet-tRNA, and phage R17 RNA caused little or no further stimulation of [14C]IF1 binding. A maximum of 0.5 molecule of [14C]IF1 bound per 30 S subunit in the presence of an excess of each of the three factors over 30 S subunits.Complexes of 30 S subunits, [14C]IF1, IF2, and IF3 were treated with the bifunctional protein cross-linking reagent dimethyl suberimidate in order to identify the ribosomal proteins near the binding site for IF1. Non-cross-linked [14C]IF1 was removed from the complexes by sedimentation through buffer containing a high salt concentration, and total protein was extracted from the pelleted particles. Approximately 12% of the [14C]IF1 was recovered in the pellet fraction. The mixture of cross-linked products was analyzed by polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Autoradiography of the gel showed radioactive bands with molecular weights of 21,000, 25,000, and many greater than 120,000. The results indicate that [14C]IF1 was cross-linked directly to at least two ribosomal proteins. Analysis of the cross-linked mixture by radioimmunodiffusion with specific antisera prepared against each of the 30 S ribosomal proteins showed radioactivity in the precipitin bands formed with antisera against S12 and S19, and in lower yield with those against S1 and S13. Antiserum against IF2 also showed [14C]IF1 in the precipitin band. The results show that [14C]IF1 was present in covalently cross-linked complexes containing 30 S ribosomal proteins S1, S12, S13 and S19, and initiation factor IF2. The same ribosomal proteins have been implicated in the binding sites for IF2 and IF3. The results suggest that the three initiation factors bind to the 30 S subunit at the same or overlapping sites.  相似文献   

8.
Initiation Factor 1 (IF1) is required for the initiation of translation in Escherichia coli. However, the precise function of IF1 remains unknown. Current evidence suggests that IF1 is an RNA-binding protein that sits in the A site of the decoding region of 16 S rRNA. IF1 binding to 30 S subunits changes the reactivity of nucleotides in the A site to chemical probes. The N1 position of A1408 is enhanced, while the N1 positions of A1492 and A1493 are protected from reactivity with dimethyl sulfate (DMS). The N1-N2 positions of G530 are also protected from reactivity with kethoxal. Quantitative footprinting experiments show that the dissociation constant for IF1 binding to the 30 S subunit is 0.9 microM and that IF1 also alters the reactivity of a subset of Class III sites that are protected by tRNA, 50 S subunits, or aminoglycoside antibiotics. IF1 enhances the reactivity of the N1 position of A1413, A908, and A909 to DMS and the N1-N2 positions of G1487 to kethoxal. To characterize this RNA-protein interaction, several ribosomal mutants in the decoding region RNA were created, and IF1 binding to wild-type and mutant 30 S subunits was monitored by chemical modification and primer extension with allele-specific primers. The mutations C1407U, A1408G, A1492G, or A1493G disrupt IF1 binding to 30 S subunits, whereas the mutations G530A, U1406A, U1406G, G1491U, U1495A, U1495C, or U1495G had little effect on IF1 binding. Disruption of IF1 binding correlates with the deleterious phenotypic effects of certain mutations. IF1 binding to the A site of the 30 S subunit may modulate subunit association and the fidelity of tRNA selection in the P site through conformational changes in the 16 S rRNA.  相似文献   

9.
Translational initiation factor 3 (IF3) is an RNA helix destabilizing protein which interacts with strongly conserved sequences in 16S rRNA, one at the 3' terminus and one in the central domain. It was therefore of interest to identify particular residues whose exposure changes upon IF3 binding. Chemical and enzymatic probing of central domain nucleotides of 16S rRNA in 30S ribosomal subunits was carried out in the presence and absence of IF3. Bases were probed with dimethyl sulfate (DMS), at A(N-1), C(N-3), and G(N-7), and with N-cyclohexyl-N'-[2-(N-methyl-4-morpholinio)ethyl] carbodiimide p-toluenesulfonate (CMCT), at G(N-1) and U(N-3). RNase T1 and nuclease S1 were used to probe unpaired nucleotides, and RNase V1 was used to monitor base-paired or stacked nucleotides. 30S subunits in physiological buffers were probed in the presence and absence of IF3. The sites of cleavage and modification were detected by primer extension. IF3 binding to 30S subunits was found to reduce the chemical reactivity and enzymatic accessibility of some sites and to enhance attack at other sites in the conserved central domain of 16S rRNA, residues 690-850. IF3 decreased CMCT attack at U701 and U793 and V1 attack at G722, G737, and C764; IF3 enhanced DMS attack at A814 and V1 attack at U697, G833, G847, and G849. Many of these central domain sites are strongly conserved and with the conserved 3'-terminal site define a binding domain for IF3 which correlates with a predicted cleft in two independent models of the 30S ribosomal subunit.  相似文献   

10.
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet‐tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2‐30S interaction, is positioned between the GTP‐binding G2 and the fMet‐tRNA binding C‐terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β‐sheets with each four anti‐parallel strands, followed by a C‐terminal α‐helix. In line with its role as linker between G3 and subdomain C1, this helix has no well‐defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB‐fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA‐binding modules such as IF2‐C2, IF1 and subdomains II of elongation factors EF‐Tu and EF‐G. Structural comparisons have resulted in a model that describes the interaction between IF2‐G3 and the 30S ribosomal subunit.  相似文献   

11.
Ribosome recycling is a process which dissociates the post-termination complexes (post-TC) consisting of mRNA-bound ribosomes harbouring deacylated tRNA(s). Ribosome recycling factor (RRF), and elongation factor G (EFG) participate in this crucial process to free the ribosomal subunits for a new round of translation. We discuss the overall pathway of ribosome recycling in eubacteria with especial reference to the important role of the initiation factor 3 (IF3) in this process. Depending on the step(s) at which IF3 function is implicated, three models have been proposed. In model 1, RRF and EFG dissociate the post-TCs into the 50S and 30S subunits, mRNAand tRNA(s). In this model, IF3, which binds to the 30S subunit, merely keeps the dissociated subunits apart by its anti-association activity. In model 2, RRF and EFG separate the 50S subunit from the post-TC. IF3 then dissociates the remaining complex of mRNA, tRNA and the 30S subunit, and keeps the ribosomal subunits apart from each other. However, in model 3, both the genetic and biochemical evidence support a more active role for IF3 even at the step of dissociation of the post-TC by RRF and EFG into the 50S and 30S subunits.  相似文献   

12.
Starting from a synthetic modular gene (infA) encoding Escherichia coli translation initiation factor IF1, we have constructed mutants in which amino acids are deleted from the carboxyl terminus or in which His29 or His34 are replaced by Tyr or Asp residues. The mutant proteins were overproduced, purified and tested in vitro for their properties in several partial reactions of the translation initiation pathway and for their capacity to stimulate MS2 RNA-dependent protein synthesis. The results allow for the conclusion that: (i) Arg69 is part of the 30S ribosomal subunit binding site of IF1 and its deletion results in the substantial loss of all IF1 function; (ii) neither one of its two histidines is essential for the binding of IF1 to the 30S ribosomal subunit, for the stimulation of fMet-tRNA binding to 30S or 70S ribosomal particles or for MS2 RNA-dependent protein synthesis; but (iii) His29 is involved in the 50S subunit-induced ejection of IF1 from the 30S ribosomal subunit.  相似文献   

13.
Translation initiation factor IF3 is an essential bacterial protein, consisting of two domains (IF3C and IF3N) separated by a linker, which interferes with ribosomal subunit association, promotes codon-anticodon interaction in the P site, and ensures translation initiation fidelity. Using time-resolved chemical probing, we followed the dynamic binding path of IF3 on the 30S subunit and its release upon 30S-50S association. During binding, IF3 first contacts the platform (near G700) of the 30S subunit with the C domain and then the P-decoding region (near A790) with its N domain. At equilibrium, attained within less than a second, both sites are protected, but before reaching binding equilibrium, IF3 causes additional transient perturbations of both the platform edge and the solvent side of the subunit. Upon 30S-50S association, IF3 dissociates concomitantly with the establishment of the 30S-50S bridges, following the reverse path of its binding with the IF3N-A790 interaction being lost before the IF3C-G700 interaction.  相似文献   

14.
Complexes of 30 S subunits and [14C]IF3 were allowed to react with the protein cross-linking reagents, N,N′-p-phenylenedimaleimide or dimethylsuberimidate. Non-cross-linked IF3 was removed from the complex by centrifugation in a buffer containing a high salt concentration, and the total protein was extracted from the pelleted particles. The mixture of cross-linked products was analyzed by radioimmunodiffusion with antisera prepared against all of the individual 30 S ribosomal proteins. Radioactivity was found in the precipitin bands formed with antisera against ribosomal proteins S1, S11, S12, S13, S19 and S21. The results show that IF3 was present in covalent cross-linked complexes containing those 30 S ribosomal proteins and imply that they comprise or are near the binding site for initiation factor IF3.  相似文献   

15.
Translation initiation factor IF3 is required for peptide chain initiation in Escherichia coli. IF3 binds directly to 30S ribosomal subunits ensuring a constant supply of free 30S subunits for initiation complex formation, participates in the kinetic selection of the correct initiator region of mRNA, and destabilizes initiation complexes containing noninitiator tRNAs. The roles that tyrosine 107 and lysine 110 play in IF3 function were examined by site-directed mutagenesis. Tyrosine 107 was changed to either phenylalanine (Y107F) or leucine (Y107L), and lysine 110 was converted to either arginine (K110R) or leucine (K110L). These single amino acid changes resulted in a reduced affinity of IF3 for 30S subunits. Association equilibrium constants (M-1) for 30S subunit binding were as follows: wild-type, 7.8 x 10(7); Y107F, 4.1 x 10(7); Y107L, 1 x 10(7); K110R, 5.1 x 10(6); K110L, < 1 x 10(2). The mutant IF3s were similarly impaired in their abilities to specifically select initiation complexes containing tRNA(fMet). Toeprint analysis indicated that 5-fold more Y107L or K110R protein was required for proper initiator tRNA selection. K110L protein was unable to mediate this selection even at concentrations up to 10-fold higher than wild type. The results indicate that tyrosine 107 and lysine 110 are critical components of the ribosome binding domain of IF3 and, furthermore, that dissociation of complexes containing noninitiator tRNAs requires prior binding of IF3 to the ribosomes.  相似文献   

16.
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.  相似文献   

17.
Equilibrium dialysis and protection from heat inactivation and proteolysis show that initiation factor 2 (IF-2) interacts not only with GTP but also with GDP and that its conformation is changed upon binding of either nucleotide. The apparent Ka (at 25 degrees C) for the IF-2 X GDP and IF-2 X GTP complexes was 8.0 X 10(4) and 7.0 X 10(3) M(-1), respectively. The lower affinity for GTP is associated with a more negative delta S0. The interaction, monitored by 1HNMR spectroscopy, is characterized by fast exchange and results in line broadening and downfield shift of the purine C-8 and ribose C-1' protons of GTP as well as of the beta, gamma-methylene protons of (beta-gamma-methylene)guanosine 5'-triphosphate. The interaction of guanosine nucleotides with IF-2 requires an H bond donor (or acceptor) group at position C-2 of the purine and involves the beta- and/or gamma-phosphate of the nucleotide while the ribose 2'-OH group or the integrity of the furan ring are less critical. IF-2 binds to ribosomal particles with decreasing affinity: 30 S greater than 70 S greater than 50 S. GTP and GDP have no effect on the binding to 70 S. GTP stimulates the binding to the 30 S and depresses somewhat the binding to the 50 S subunits; GDP has the opposite effect. These results seem to rule out that the release of IF 2 from 70 S is due to a "GDP-conformation" of the factor incompatible with its permanence on the ribosome. The rate and the extent of 30 S initiation complex formation are approximately 2-fold higher with IF-2 X GTP than with IF-2 alone. At low concentrations of IF-2 and 30 S subunits, GDP inhibits this reaction, acting as a strong competitive inhibitor of GTP (Ki = 1.25 X 10(-5)m) and preventing IF-2 from binding to the ribosomal subunit.  相似文献   

18.
Escherichia coli translational initiation factor 3 (IF3) may be crosslinked to the 3' end of 16S RNA in 30S ribosomal subunits. In order to determine the sequence to which IF3 may bind in vivo, samples of 5'-32P labelled 3' terminal 49-nucleotide fragment of 16S RNA were incubated 5 min. at 37 degrees in 40 mM Tris-HOAc, pH 7.4, 100 mM NaCl, 1 mM Mg (OAc)2, 1 mM ZnSO4, with or without IF3, then reacted a further 5 min with nuclease S1, RNase T1, or RNase A. Base pairing between the 5' and 3' legs of the fragment occurs in the absence of IF3, but is disrupted by IF3 binding. IF3 appears to protect some residues near the 5' end of the fragment (U1495, A1499, A1500, A1502, and A1503) from nuclease S1, and potentiates S1 attack on others (G1494, G1497, C1501, G1504, G1505, U1506, G1517, G1529, G1530, and C1533). A series of equimolar reactions at increasing dilution imply an association constant range of 1.4-7.0 X 10(7) M-1.  相似文献   

19.
Ribosomal protein S1 covalently reacts with approximately one equivalent of iodoacetylethylenediamine (1,5-napthol sulfonate (IAEDANS) or iodoacetylaminofluorescein (IAAF). The product AEDANS-S1 can bind to 30S ribosomal subunits lacking S1 as shown by polyacrylamide-agarose gel electrophoresis AEDANS-S1 and AAF-S1 when added back to S1-depleted 30S subunits modulate poly(U)-dependent polyphenylalanine synthesis in the presence of IF3 in a very similar way to unmodified S1. AEDANS-S1 also stimulates RI7-dependent fMet-tRNA binding to 1.0M NH4C1 washed ribosomes whereas AAF-S1 does not. Both static and nanosecond fluorescence polarization techniques were used to study the rotational motions of AEDANS-S1. Several previous studies had indicated that S1 is a highly extended protein which can be modeled by a prolate ellipsoid with an axial ratio of 10 to 1. However, the rotational correlation time we find is about half that expected for such a particle. This suggests that S1 is a flexible protein with at least two domains that can rotate independently.  相似文献   

20.
Complexes were prepared containing 30S ribosomal subunits from Escherichia coli and the three initiation factors IF1, IF2, and IF3. In different experiments, each of the factors was radiolabeled with the others unlabeled. The complexes were allowed to react with 2-iminothiolane and then oxidized to promote the formation of intermolecular disulfide bonds, some of which were between factors and ribosomal proteins. Each of the labeled factors becomes covalently cross-linked to the complex as judged by its failure to dissociate when centrifuged in a sucrose gradient containing a high salt concentration. Proteins from the complexes were extracted and analyzed on two-dimensional polyacrylamide gels by nonequilibrium isoelectric focusing and sodium dodecyl sulfate gel electrophoresis. Spots corresponding to cross-linked dimers that contained initiation factors, as indicated on autoradiographs, were cut out and analyzed further. The following cross-linked dimers between factors and ribosomal proteins were identified: IF1-S12, IF1-S18, IF2-S13, IF3-S7, IF3-S11, IF3-S13, and IF3-S19. Cross-links between factors IF1-IF2 and IF3-IF2 were also identified. A model integrating these findings with others on the protein topography of the ribosome is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号