首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W Birmachu  D D Thomas 《Biochemistry》1990,29(16):3904-3914
We have investigated the microsecond rotational motions of the Ca-ATPase in rabbit skeletal sarcoplasmic reticulum (SR), by measuring the time-resolved phosphorescence anisotropy of erythrosin 5-isothiocyanate (ERITC) covalently and specifically attached to the enzyme. Over a wide range of solvent conditions and temperatures, the phosphorescence anisotropy decay was best fit by a sum of three exponentials plus a constant term. At 4 degrees C, the rotational correlation times were phi 1 = 13 +/- 3 microseconds, phi 2 = 77 +/- 11 microseconds, and phi 3 = 314 +/- 23 microseconds. Increasing the solution viscosity with glycerol caused very little effect on the correlation times, while decreasing the lipid viscosity with diethyl ether decreased the correlation times substantially, indicating that the decay corresponds to rotation of the protein within the membrane, not to vesicle tumbling. The normalized residual anisotropy (A infinity) is insensitive to viscosity and temperature changes, supporting the model of uniaxial rotation of the protein about the membrane normal. The value of A infinity (0.20 +/- .02) indicates that each of the three decay components can be analyzed as a separate rotational species, with the preexponential factor Ai equal to 1.25X the mole fraction. An empirically accurate measurement of the membrane lipid viscosity was obtained, permitting a theoretical analysis of the correlation times in terms of the sizes of the rotating species. At 4 degrees C, the dominant correlation time (phi 3) is too large for a Ca-ATPase monomer, strongly suggesting that the enzyme is primarily aggregated (oligomeric).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have detected directly the interactions of sarcolipin (SLN) and the sarcoplasmic reticulum Ca-ATPase (SERCA) by measuring fluorescence resonance energy transfer (FRET) between fusion proteins labeled with cyan fluorescent protein (donor) and yellow fluorescent protein (acceptor). SLN is a membrane protein that helps control contractility by regulating SERCA activity in fast-twitch and atrial muscle. Here we used FRET microscopy and spectroscopy with baculovirus expression in insect cells to provide direct evidence for: 1) oligomerization of SLN and 2) regulatory complex formation between SLN and the fast-twitch muscle Ca-ATPase (SERCA1a isoform). FRET experiments demonstrated that SLN monomers self-associate into dimers and higher order oligomers in the absence of SERCA, and that SLN monomers also bind to SERCA monomers in a 1:1 binary complex when the two proteins are coexpressed. FRET experiments further demonstrated that the binding affinity of SLN for itself is similar to that for SERCA. Mutating SLN residue isoleucine-17 to alanine (I17A) decreased the binding affinity of SLN self-association and converted higher order oligomers into monomers and dimers. The I17A mutation also decreased SLN binding affinity for SERCA but maintained 1:1 stoichiometry in the regulatory complex. Thus, isoleucine-17 plays dual roles in determining the distribution of SLN homo-oligomers and stabilizing the formation of SERCA-SLN heterodimers. FRET results for SLN self-association were supported by the effects of SLN expression in bacterial cells. We propose that SLN exists as multiple molecular species in muscle, including SERCA-free (monomer, dimer, oligomer) and SERCA-bound (heterodimer), with transmembrane zipper residues of SLN serving to stabilize oligomeric interactions.  相似文献   

3.
We have investigated the role of lipid and protein dynamics in the activation of the Ca2+-dependent ATPase in sarcoplasmic reticulum (SR) by diethyl ether. Conventional and saturation-transfer electron paramagnetic resonance (EPR) were used to probe rotational motions of spin labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase in SR. We confirm previous studies (Salama, G., and Scarpa, A. (1980) J. Biol. Chem. 255, 6525-6528; Salama, G., and Scarpa, A. (1983) Biochem. Pharmacol. 32, 3465-3477; Kidd, A., Scales, D., and Inesi, G. (1981) Biochem. Biophys. Acta 65, 124-131) reporting that addition of diethyl ether to SR results in an approximately 2-fold enzymatic activation, without loss of coupling. Diethyl ether progressively fluidizes the SR membrane with respect to lipid hydrocarbon chain dynamics probed at several depths in the bilayer. Digital substractions, used to analyze two-component lipid spin label spectra, reveal that a 2-fold mobilization occurs in the population of lipid probes motionally restricted by the protein, while the remaining more mobile population is less affected. The microwave saturation properties of lipid probes also indicate that restricted motions of these probes are mobilized in maximally activated SR membranes. Saturation-transfer EPR, applied to maleimide spin-labeled Ca-ATPase, demonstrates that a 2-fold increase in microsecond rotational motion of the Ca-ATPase correlates with the maximal enzymatic activation. Effects of diethyl ether on both the enzymatic activity and molecular dynamics are completely reversible by dilution with buffer. We propose that ether activates by selectively mobilizing lipid chains adjacent to the enzyme, thus facilitating protein motions that are essential for calcium transport.  相似文献   

4.
Protein-protein interactions mediate a vast number of cellular processes. Here, we present a regulatory mechanism in protein-protein interactions mediated by finely tuned structural instability and coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding, whereas correction of these defects results in less labile chaperones that give rise to nonfunctional biological systems. The protein substrates use structural mimicry to offset the weak spots in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionarily conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely tuned structural instability.  相似文献   

5.
The determination of the crystal structure of the Ca2+-ATPase of sarcoplasmic reticulum (SR) in its Ca2+-bound [Nature 405 (2000) 647] and Ca2+-free forms [Nature 418 (2002) 605] gives the opportunity for an analysis of conformational changes on the Ca2+-ATPase and of helix-helix and helix-lipid interactions in the transmembrane (TM) region of the ATPase. The locations of the ends of the TM α-helices on the cytoplasmic side of the membrane are reasonably well defined by the location of Trp residues and by the location of Lys-262 that snorkels up to the surface. The locations of the lumenal ends of the helices are less clear. The position of Lys-972 on the lumenal side of helix M9 suggests that the hydrophobic thickness of the protein is only about 21 Å, rather than the normal 30 Å. The experimentally determined TM α-helices do not agree well with those predicted theoretically. Charged headgroups are required for strong interaction of lipids with the ATPase, consistent with the large number of charged residues located close to the lipid-water interface. Helix packing appears to be rather irregular. Packing of helices M8 and M10 is of the 3-4 ridges-into-grooves or knobs-into-holes types. Packing of helices M5 and M7 involves two Gly residues in M7 and one Gly residue in M5. Packing of the other helices generally involves just one or two residues on each helix at the crossing point. The irregular packing of the TM α-helices in the Ca2+-ATPase, combined with the diffuse structure of the ATPase on the lumenal side of the membrane, is suggested to lead to a relative low activation energy for changing the packing of the TM α-helices, with changes in TM α-helical packing being important in the process of transfer of Ca2+ ions across the membrane. The inhibitor thapsigargin binds in a cleft between TM α-helices M3, M5 and M7. It is suggested that this and other similar clefts provide binding sites for a variety of hydrophobic molecules affecting the activity of the Ca2+-ATPase.  相似文献   

6.
The energy of binding between proteins may be seen as the sum of the contributions of the individual amino acid residues. These contributions are additive when the binding energy, due to different amino acid residues, is independent of the interactions between amino acids in the same polypeptide chain. A measure of non-additivity is the coupling free energy. In this communication it is shown that: (1) the coupling free energy is the sum of intramolecular and intermolecular contributions; and (2), when additivity exists, experimentally determined values for the free energy of transfer of amino acids from water to the hydrophobic protein-protein interface are a very good approximation of their contribution to the energy of binding. Additivity cycles can be useful in determining the precise conditions where this approximation holds.  相似文献   

7.
8.
The bacterial mechanosensitive channel of large conductance, MscL, is one of the best characterized mechanosensitive channels serving as a paradigm for how proteins can sense and transduce mechanical forces. The physiological role of MscL is that of an emergency release valve that opens a large pore upon a sudden drop in the osmolarity of the environment. A crystal structure of a closed state of MscL shows it as a homopentamer, with each subunit consisting of two transmembrane domains (TM). There is consensus that the TM helices move in an iris like manner tilting in the plane of the membrane while gating. An N-terminal amphipathic helix that lies along the cytoplasmic membrane (S1), and the portion of TM2 near the cytoplasmic interface (TM2ci), are relatively close in the crystal structure, yet predicted to be dynamic upon gating. Here we determine how these two regions interact in the channel complex, and study how these interactions change as the channel opens. We have screened 143 double-cysteine mutants of E. coli MscL for their efficiency in disulfide bridging and generated a map of protein-protein interactions between these two regions. Interesting candidates have been further studied by patch clamp and show differences in channel activity under different redox potentials; the results suggest a model for the dynamics of these two domains during MscL gating.  相似文献   

9.
The bacterial mechanosensitive channel of large conductance, MscL, is one of the best characterized mechanosensitive channels serving as a paradigm for how proteins can sense and transduce mechanical forces. The physiological role of MscL is that of an emergency release valve that opens a large pore upon a sudden drop in the osmolarity of the environment. A crystal structure of a closed state of MscL shows it as a homopentamer, with each subunit consisting of two transmembrane domains (TM). There is consensus that the TM helices move in an iris like manner tilting in the plane of the membrane while gating. An N-terminal amphipathic helix that lies along the cytoplasmic membrane (S1), and the portion of TM2 near the cytoplasmic interface (TM2ci), are relatively close in the crystal structure, yet predicted to be dynamic upon gating. Here we determine how these two regions interact in the channel complex, and study how these interactions change as the channel opens. We have screened 143 double-cysteine mutants of E. coli MscL for their efficiency in disulfide bridging and generated a map of protein-protein interactions between these two regions. Interesting candidates have been further studied by patch clamp and show differences in channel activity under different redox potentials; the results suggest a model for the dynamics of these two domains during MscL gating.  相似文献   

10.
11.
Crowley PB  Golovin A 《Proteins》2005,59(2):231-239
Arginine is an abundant residue in protein-protein interfaces. The importance of this residue relates to the versatility of its side chain in intermolecular interactions. Different classes of protein-protein interfaces were surveyed for cation-pi interactions. Approximately half of the protein complexes and one-third of the homodimers analyzed were found to contain at least one intermolecular cation-pi pair. Interactions between arginine and tyrosine were found to be the most abundant. The electrostatic interaction energy was calculated to be approximately 3 kcal/mol, on average. A distance-based search of guanidinium:aromatic interactions was also performed using the Macromolecular Structure Database (MSD). This search revealed that half of the guanidinium:aromatic pairs pack in a coplanar manner. Furthermore, it was found that the cationic group of the cation-pi pair is frequently involved in intermolecular hydrogen bonds. In this manner the arginine side chain can participate in multiple interactions, providing a mechanism for inter-protein specificity. Thus, the cation-pi interaction is established as an important contributor to protein-protein interfaces.  相似文献   

12.
Summary Interactions between proteins are extremely variable. However, in the dimeric proteins comprised of regular motifs, interface interactions are similar to those that stabilize monomers. Additional stability is gained by converting loops within motifs or domains to linkers across interfaces. In multi-domain proteins, interactions can be greatly effected by the conformation of linkers between domains. Complex association of subunits, involving higher rotational symmetry or cubic symmetry, frequently involves motif sharing across interfaces.  相似文献   

13.
In the postgenomic era, one of the most interesting and important challenges is to understand protein interactions on a large scale. The physical interactions between protein domains are fundamental to the workings of a cell: in multi-domain polypeptide chains, in multi-subunit proteins and in transient complexes between proteins that also exist independently. Thus experimental investigation of protein-protein interactions has been extensive, including recent large-scale screens using mass spectrometry. The role of computational research on protein-protein interactions encompasses not only prediction, but also understanding the nature of the interactions and their three-dimensional structures. I will discuss properties such as sequence conservation and co-regulation of genes and proteins involved in different types of physical interactions. Given that all proteins consist of their evolutionary units, the domains, all interactions occur between these domains. The interactions between domains belonging to different protein families will be the second topic of my talk.  相似文献   

14.
Ultra-weak interactions (K(d)>100μM) between proteins have in the last decade become an increasing focus of attention in cell biology, especially in relation to cell-cell interactions and signalling processes. Methods for their quantitative definition are reviewed. NMR spectroscopy plays a major role in this area, as it not only can define interactions as weak or weaker than 3mM, but in favourable cases structural information concerning the complex can be yielded. Free solution technologies mostly fail when addressed to such systems. The AUC has the highest practical capability, but evaluation of the data to yield K(a) values is complicated by the presence of thermodynamic/hydrodynamic effects of a comparable order of magnitude. These effects can however be computationally removed by means of suitable algorithms, and K(d) values of up to 50mM can be characterised. The relative merits of velocity and equilibrium approaches are discussed, and both are shown to have particular advantages.  相似文献   

15.
Diversity of protein-protein interactions   总被引:4,自引:0,他引:4  
Nooren IM  Thornton JM 《The EMBO journal》2003,22(14):3486-3492
In this review, we discuss the structural and functional diversity of protein-protein interactions (PPIs) based primarily on protein families for which three-dimensional structural data are available. PPIs play diverse roles in biology and differ based on the composition, affinity and whether the association is permanent or transient. In vivo, the protomer's localization, concentration and local environment can affect the interaction between protomers and are vital to control the composition and oligomeric state of protein complexes. Since a change in quaternary state is often coupled with biological function or activity, transient PPIs are important biological regulators. Structural characteristics of different types of PPIs are discussed and related to their physiological function, specificity and evolution.  相似文献   

16.
Protein myristoylation in protein-lipid and protein-protein interactions   总被引:1,自引:0,他引:1  
Various proteins in signal transduction pathways are myristoylated. Although this modification is often essential for the proper functioning of the modified protein, the mechanism by which the modification exerts its effects is still largely unknown. Here we discuss the roles played by protein myristoylation, in both protein-lipid and protein-protein interactions. Myristoylation is involved in the membrane interactions of various proteins, such as MARCKS and endothelial NO synthase. The intermediate hydrophobic nature of the modification plays an important role in the reversible membrane anchoring of these proteins. The anchoring is strengthened by a basic amphiphilic domain that works as a switch for the reversible binding. Protein myristoylation is also involved in protein-protein interactions, which are regulated by the interplay between protein phosphorylation, calmodulin binding, and membrane phospholipids.  相似文献   

17.
Interactions among membrane proteins regulate numerous cellular processes, including cell growth, cell differentiation and apoptosis. We need to understand which proteins interact, where they interact and to which extent they interact. This article describes a set of novel approaches to measure, on the surface of living cells, the number of clusters of proteins, the number of proteins per cluster, the number of clusters or membrane domains that contain pairs of interacting proteins and the fraction of one protein species that interacts with another protein within these domains. These data can then be interpreted in terms of the function of the protein-protein interactions.  相似文献   

18.
A variety of techniques have been developed to analyze protein-protein interactions in vitro and in cultured cells. However, these methods do not determine how protein interactions affect and are regulated by physiologic and pathophysiologic conditions in living animals. This article describes methodology for detecting and quantifying protein interactions in living mice, using an inducible two-hybrid system developed for positron emission tomography (PET) imaging. We discuss the methods to establish stably transfected cells with components of the imaging system, create tumor xenografts, synthesize PET radiopharmaceuticals used to visualize the imaging reporter, perform microPET imaging, and analyze data from imaging studies. Development and application of technologies for molecular imaging of protein-protein interactions in vivo should enable researchers to investigate intrinsic binding specificities of proteins during normal development and disease progression as well as aid drug development through direct interrogation of molecular targets within intact animals.  相似文献   

19.
Probing protein-protein interactions in real time   总被引:5,自引:0,他引:5  
We have used a prototype small cantilever atomic force microscope to observe, in real time, the interactions between individual protein molecules. In particular, we have observed individual molecules of the chaperonin protein GroES binding to and then dissociating from individual GroEL proteins, which were immobilized on a mica support. This work suggests that the small cantilever atomic force microscope is a useful tool for studying protein dynamics at the single molecule level.  相似文献   

20.

Background

As protein domains are functional and structural units of proteins, a large proportion of protein-protein interactions (PPIs) are achieved by domain-domain interactions (DDIs), many computational efforts have been made to identify DDIs from experimental PPIs since high throughput technologies have produced a large number of PPIs for different species. These methods can be separated into two categories: deterministic and probabilistic. In deterministic methods, parsimony assumption has been utilized. Parsimony principle has been widely used in computational biology as the evolution of the nature is considered as a continuous optimization process. In the context of identifying DDIs, parsimony methods try to find a minimal set of DDIs that can explain the observed PPIs. This category of methods are promising since they can be formulated and solved easily. Besides, researches have shown that they can detect specific DDIs, which is often hard for many probabilistic methods. We notice that existing methods just view PPI networks as simply assembled by single interactions, but there is now ample evidence that PPI networks should be considered in a global (systematic) point of view for it exhibits general properties of complex networks, such as 'scale-free' and 'small-world'.

Results

In this work, we integrate this global point of view into the parsimony-based model. Particularly, prior knowledge is extracted from these global properties by plausible reasoning and then taken as input. We investigate the role of the added information extensively through numerical experiments. Results show that the proposed method has improved performance, which confirms the biological meanings of the extracted prior knowledge.

Conclusions

This work provides us some clues for using these properties of complex networks in computational models and to some extent reveals the biological meanings underlying these general network properties.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号