首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
海藻糖合酶能够利用麦芽糖一步法转化生产海藻糖,其底物专一性较高,该酶体系生产工艺简单,不受底物麦芽糖浓度的影响,是工业生产海藻糖的首选。为获得具有生产海藻糖合酶能力的毕赤酵母表面展示载体,实验以筛选的Pseudomonas putide P06海藻糖合酶基因为模板,PCR扩增得到海藻糖合酶基因(tres,2064 bp),连接至pPICZαA质粒中,获得重组质粒pPICZαA-tres。以来自酿酒酵母的共价连接细胞壁的Pir系列蛋白的Pir1p成熟肽蛋白作为毕赤酵母表面展示的锚定蛋白,利用PCR技术扩增得到pir1p(847 bp),连接至重组质粒pPICZαA-tres中,获得重组质粒pPICZαA-tres-pir1p。将重组质粒电击转入毕赤酵母GS115中,利用α-factor信号肽将蛋白引导分泌至细胞壁展示于毕赤酵母表面。通过Zeocin抗性筛选,挑选出阳性克隆子并摇瓶发酵。发酵产物经离心、破碎并使用昆布多糖酶水解,洗脱,结果显示,SDS-聚丙烯酰胺凝胶电泳分析可见明显融合蛋白条带,表明海藻糖合酶已成功地锚定在毕赤酵母。将重组毕赤酵母使用pH 7.5的缓冲液清洗并重悬,与底物浓度为30%的麦芽糖在30℃~60℃水浴条件下作用2 h,反应产物利用HPLC检测,能够检测到酶学活性。在优化后的条件pH 7.5,50℃,表面展示海藻糖合酶酶活达到300.65 U/g。40℃~50℃酶活较稳定,保温60 min,残留酶活相对活力达75%以上;最适反应pH值为7.5,并在碱性环境下稳定。  相似文献   

2.
3.
毕赤酵母表达系统   总被引:15,自引:0,他引:15  
选择合适的表达系统是蛋白质体外成功表达的关键。毕赤酵母表达系统是一种新的、极具潜力的真核表达系统,其在蛋白质表达方面具有其它系统不可比拟的优点,正在得到越来越广泛的应用。较详细地综迷了毕赤酵母表达系统的特点、组成及影响其表达的因素等。  相似文献   

4.
毕赤酵母表达蛋白质的糖基化   总被引:8,自引:0,他引:8  
毕赤酵母表达系统可对表达产物进行翻译后加工如糖基化等。通过研究其糖基化的特点、影响因素以及对重组蛋白质质产量、功能的影响,介绍如何避免过度糖基化以使表达产物更加符合人类需求。  相似文献   

5.
海藻糖合成是微生物对抗环境逆境的一种重要途径。研究10L发酵罐中的分批、分批补料及分批补料控温三种不同的海藻糖发酵调控策略下酱油风味形成微生物鲁氏酵母CCTCC M2013310的代谢特征。色谱结果表明,乳酸、丙酮酸和α-酮戊二酸受到不同发酵调控模式的显著影响,但谷氨酸和谷氨酰胺总含量在三种发酵调控模式间却无显著差异。这些结果表明,细胞还原力平衡途径和碳氮调控代谢均对胞内海藻糖的积累产生影响。研究结果为鲁氏酵母CCTCC M2013310的高浓度内源性海藻糖细胞代谢工程改造提供了新思路。  相似文献   

6.
海藻糖合成是微生物对抗环境逆境的一种重要途径。研究10L发酵罐中的分批、分批补料及分批补料控温三种不同的海藻糖发酵调控策略下酱油风味形成微生物鲁氏酵母CCTCC M2013310的代谢特征。色谱结果表明,乳酸、丙酮酸和α-酮戊二酸受到不同发酵调控模式的显著影响,但谷氨酸和谷氨酰胺总含量在三种发酵调控模式间却无显著差异。这些结果表明,细胞还原力平衡途径和碳氮调控代谢均对胞内海藻糖的积累产生影响。研究结果为鲁氏酵母CCTCC M2013310的高浓度内源性海藻糖细胞代谢工程改造提供了新思路。  相似文献   

7.
毕赤酵母表达系统研究进展   总被引:8,自引:1,他引:8  
毕赤酵母表达系统是目前最为成功的外源蛋白表达系统之一。该表达系统不存在原核表达系统的内毒素难以除去的问题 ,也不存在哺乳动物细胞表达系统的病毒和支原体污染等问题 ;并能够对目的蛋白进行类似高等真核生物的信号肽剪切、二硫键形成、糖基化等过程的翻译后蛋白加工。至今已有多种外源蛋白在该表达系统中成功表达。下面对毕赤酵母表达系统的特点及研究进展作一简要综述。  相似文献   

8.
在发酵过程中产生的总体积为30%~40%的毕赤酵母菌体,大部分在发酵后,会直接把酵母菌体排入环境中,不仅浪费资源,还污染环境,因此,实现资源再利用是文章的研究目的。最终结果表明,对毕赤酵母自溶破壁的最佳自溶水解条件为50℃、pH 6.0,作用时间为30 h、4%Na Cl,酵母悬浮液终体积分数为10%。此外,通过对木瓜蛋白酶、中性蛋白酶、碱性蛋白酶和酸性蛋白酶进行研究发现,添加木瓜蛋白酶效果最佳,添加后的酵母水解物氨基氮得率为4.5%,固形物得率为59%,粗蛋白含量为45.38%。  相似文献   

9.
简述了运用巴斯德毕赤酵母系统表达基因工程抗体从构建载体到表达的一般过程,及如何改善和提高抗体的表达。侧重介绍运用该系统获得抗体高表达、高产量的研究近况。  相似文献   

10.
毕赤酵母外源基因表达系统研究进展   总被引:4,自引:0,他引:4  
巴斯德毕赤酵母Pichia pastoris外源基因表达系统已经成功表达了很多胞间型和胞内型蛋白质。与酿酒酵母Saccharomyces ceresiviae相比,该系统所具有的很多优势使其应用越来越广泛。有关研究主要涉及以下几个方面:宿主菌株,表达载体,转化方法,外源基因整合,外源蛋白糖基化和高密度发酵培养等。  相似文献   

11.
Trehalose, a non-reducing disaccharide that accumulates in Saccharomyces cerevisiae, has been implicated in survival under various stress conditions by acting as membrane protectant, as a supplementary compatible solute or as a reserve carbohydrate which may be mobilized during stress. However, most of these studies have been done with strains isolated from European or Asian habitats of temperate climate. In this study, yeasts living in tropical environments, isolated from different microhabitats in Southeastern Brazil, were used to evaluate whether trehalose contributes to survival under osmotic, ethanol and heat stress. The survival under severe stress was compared to a well-characterized laboratorial wild-type strain (D273-10B). Most of the Saccharomyces cerevisiae strains isolated from Drosophila in Tropical Rain Forest were able to accumulate trehalose after a preconditioning treatment at 40 °C for 1 h. The amount of intracellular trehalose levels was better correlated with survival during a challenging heat shock at 50.5 °C for 8 min. Saccharomyces cerevisiae and Candida guilliermondii were observed to be thermotolerant as well as osmotolerant. No clear correlation between intracellular trehalose levels and survival could be derived during ethanol stress. In some cases, the amount of trehalose accumulated before the ethanol stress seemed to play an important role for the survival of these strains.  相似文献   

12.
The methylotrophic yeast Pichia methanolica possesses two genes, PmDAS1 and PmDLP1, whose amino acid sequences show high similarity to dihydroxyacetone synthase (DAS), the formaldehyde-fixing enzyme for methanol metabolism within the peroxisome. The PmDAS1 and PmDLP1 genes encode 709 and 707 amino acid residues respectively, and PmDas1p contains a type-1 peroxisomal targeting signal (PTS1), while PmDlp1p does not. Upon phylogenetic analysis, PmDas1p fit into the DAS group with other DASs, while PmDlp1p was grouped with the DAS-like proteins (DLP) of non-methylotrophic yeasts and fungi, a branch of the phylogenetic tree independent of the DAS and transketolase (TK) groups. While expression of PmDAS1 restored the methylotrophic growth of the Candida boidinii das1Δ strain, the PmDLP1 and PmDAS1?ΔPTS1 genes did not. Taken together, these results indicate that PmDAS1 encodes a functional DAS and has an indispensable role in methanol metabolism, and that PmDlp1p share a common, as yet uncharacterized function in P. methanolica as well as in non-methylotrophic yeasts and fungi.  相似文献   

13.
疟疾目前仍是危害人类健康的主要传染病,现全球每年新增疟疾病例3~5亿人,其中约300万人死于该病.特别是病原虫抗药性的产生和扩散已给疟疾防治工作带来极大困难,因此研制新的预防措施已成为当务之急.研制有效的疟疾疫苗被认为是人类控制乃至消灭疟疾的重要途径,已越来越受到重视,并已构建和鉴定多个疫苗候选抗原[1,2].本研究进行高密度优化表达的融合抗原就是一个疫苗候选抗原.  相似文献   

14.
Fibronectin splice variant ED B (extracellular domain B) is a promising marker for angiogenesis in growing solid tumors. Currently, recombinant antibodies against ED B are being investigated concerning their potential use, for either therapeutic or diagnostic purposes. Single-chain antibody fragments directed against the ED B can be efficiently expressed in Pichia pastoris; thus, a recombinant strain of the methylotropic yeast P. pastoris was used for this work. Three different forms of scFv antibody fragment are found in the supernatant from this fermentation: covalent homodimer, associative homodimer, and monomer. Both homodimeric forms can be converted to the monomeric form (under reducing conditions) and be efficiently radiolabeled, whereas the monomeric form of scFv already present in the supernatant cannot. It was also found that the fraction of protein in the monomeric form is highly dependent on the mode of induction rather than scFv concentration. This suggests that the monomeric form of the scFv present in the supernatant might be a result of events occurring at the expression, secretion, or folding level. A high cell density fermentation protocol was developed by optimizing methanol induction, yielding the highest scFv antibody fragment production rate and product quality; cell concentration at the induction point and specific methanol uptake rate were found to be the most important control variables. A decrease in specific methanol uptake rate led to a higher specific production rate for the scFv antibody fragment (5.4 microg g(cell) h(-1)). Product quality, i.e., percentage of product in a homodimeric form, also increased with the decrease in methanol uptake rate. Furthermore, the volumetric productivity depended on cell concentration at the induction point, increasing with the increase of cell concentration up to 320 g L(-1) wet cell weight (WCW). The reduction of the methanol feeding rate for induction, and consequently of the oxygen uptake rate, have important consequences for optimizing product titers and quality and thus on the scale-up of this production process; hence one of the major limitations upon high cell density cultivation in bioreactors is keeping the high oxygen transfer rate required. From the results obtained, a scale-up strategy was developed based on the available oxygen transfer rates at larger scales, allowing the definition of the optimum biomass concentration for induction and methanol feeding strategy for maximization of product titer and quality.  相似文献   

15.
16.
Golubev  V. I.  Golubev  N. V. 《Microbiology》2002,71(4):386-390
Selenium tolerance of yeasts widely varies: the growth of some yeasts can be inhibited by a selenium concentration as low as 10–4 M, whereas others can grow in the presence of 10–1 M selenium. Homogeneous yeast taxa are characterized by a certain level of selenium tolerance, and heterogeneous taxa show a variable level of tolerance to selenium. In general, ascomycetous yeasts are more tolerant to selenium than basidiomycetous yeasts. Among the ascomycetous yeasts, the genera Dekkera and Schizosaccharomyces exhibited the lowest and the species Candida maltosa, Hanseniaspora valbyensis, Kluyveromyces marxianus, and Yarrowia lipolytica the highest tolerance to selenium. Among the basidiomycetous yeasts, the genera Bullera, Cryptococcusand Holtermannia showed the lowest and the species Cryptococcus curvatus, Cr. humicola, and Trichosporon spp. the highest tolerance to selenium. The selenium tolerance of yeasts depends on the composition of the growth medium, in particular, on the presence of sulfate, sulfur-containing amino acids, and glutamine in the medium.  相似文献   

17.
The methylotrophic yeast Pichia methanolica can be used to express recombinant genes at high levels under the control of the methanol-inducible alcohol oxidase (AUG1) promoter. Methanol concentrations during the induction phase directly affect cellular growth and protein yield. Various methanol concentrations controlled by an on-line monitoring and control system were investigated in mixed glucose/methanol fed-batch cultures of P. methanolica expressing the human transferrin N-lobe protein. The PMAD18 P. methanolica strain utilized is a knock-out for the chromosomal AUG1 gene locus, resulting in a slow methanol utilization phenotype. Maximum growth of 100 g of dry cell weight per liter of culture was observed in cultures grown at 1.0% (v/v) methanol concentration. Maximum recombinant gene expression was observed for cultures controlled at 0.7% (v/v) methanol concentration, resulting in maximum volumetric production of 450 mg of transferrin per liter after 72 h of elapsed fermentation time.  相似文献   

18.
The ascomycetous yeast Pichia anomala is frequently associated with food and feed products, either as a production organism or as a spoilage yeast. It belongs to the nonSaccharomyces wine yeasts and contributes to the wine aroma by the production of volatile compounds. The ability to grow in preserved food and feed environments is due to its capacity to grow under low pH, high osmotic pressure and low oxygen tension. A new application of P. anomala is its use as a biocontrol agent, which is based on the potential to inhibit a variety of moulds in different environments. Although classified as a biosafety class-1 organism, cases of P. anomala infections have been reported in immunocompromised patients. On the other hand, P. anomala killer toxins have a potential as antimicrobial agents. The yeast can use a broad range of nitrogen and phosphor sources, which makes it a potential agent to decrease environmental pollution by organic residues from agriculture. However, present knowledge of the physiological basis of its performance is limited. Recently, the first studies have been published dealing with the global regulation of the metabolism of P. anomala under different conditions of oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号