首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents CO2 flux data from 18 forest ecosystems, studied in the European Union funded EUROFLUX project. Overall, mean annual gross primary productivity (GPP, the total amount of carbon (C) fixed during photosynthesis) of these forests was 1380 ± 330 gC m?2 y?1 (mean ±SD). On average, 80% of GPP was respired by autotrophs and heterotrophs and released back into the atmosphere (total ecosystem respiration, TER = 1100 ± 260 gC m?2 y?1). Mean annual soil respiration (SR) was 760 ± 340 gC m?2 y?1 (55% of GPP and 69% of TER). Among the investigated forests, large differences were observed in annual SR and TER that were not correlated with mean annual temperature. However, a significant correlation was observed between annual SR and TER and GPP among the relatively undisturbed forests. On the assumption that (i) root respiration is constrained by the allocation of photosynthates to the roots, which is coupled to productivity, and that (ii) the largest fraction of heterotrophic soil respiration originates from decomposition of young organic matter (leaves, fine roots), whose availability also depends on primary productivity, it is hypothesized that differences in SR among forests are likely to depend more on productivity than on temperature. At sites where soil disturbance has occurred (e.g. ploughing, drainage), soil espiration was a larger component of the ecosystem C budget and deviated from the relationship between annual SR (and TER) and GPP observed among the less‐disturbed forests. At one particular forest, carbon losses from the soil were so large, that in some years the site became a net source of carbon to the atmosphere. Excluding the disturbed sites from the present analysis reduced mean SR to 660 ± 290 gC m?2 y?1, representing 49% of GPP and 63% of TER in the relatively undisturbed forest ecosystems.  相似文献   

2.
Gross primary productivity (GPP) of phytoplankton and planktonic respiration (PR) (i.e., planktonic metabolism) are critical pathways for carbon transformation in many aquatic ecosystems. In inland floodplain wetlands with variable inundation regimes, quantitative measurements of GPP and PR are rare and their relationships with wetland environmental conditions are largely unknown. We measured PR and the GPP of phytoplankton using light and dark biological oxygen demand bottles in open waters of channel and non-channel floodplain habitats of inland floodplain wetlands of southeast Australia that had been inundated by environmental water. Overall, GPP varied from 3.7 to 405.5 mg C m?3 h?1 (mean ± standard error: 89.4 ± 9.2 mg C m?3 h?1, n = 81), PR from 1.5 to 251.6 mg C m?3 h?1 (43.2 ± 5.6 mg C m?3 h?1, n = 81), and GPP/PR from 0.2 to 15.6 (3.0 ± 0.3, n = 81). In terms of wetland environmental conditions, total nitrogen (TN) ranged from 682.0 to 14,700.0 mg m?3 (mean ± standard error: 2,643.0 ± 241.6 mg m?3, n = 81), total phosphorus (TP) from 48.0 to 1,405.0 mg m?3 (316.8 ± 31.4 mg m?3, n = 81), and dissolved organic carbon (DOC) from 1.9 to 46.3 g m?3 (22.0 ± 1.6 g m?3, n = 81). Using ordinary least-squares multiple regression analyses, the rates of GPP and PR, and their ratio (GPP/PR) were modeled as a function of TN, TP, and DOC that had been measured concomitantly. The “best” models predicted GPP and GPP/PR ratio in channel habitats as a function of DOC; and GPP, PR, and GPP/PR in non-channel floodplain habitats as a function of TN and/or TP. The models explained between 46 and 74 % of the variance in channel habitats and between 17 and 87 % of the variance in non-channel floodplain habitats. Net autotrophy (mean GPP/PR 3.0) of planktonic metabolism in our work supports the prevailing view that wetlands are a net sink for carbon dioxide. We propose a nutrient-DOC framework, combined with hydrological and geomorphological delineations, to better predict and understand the planktonic metabolism in inland floodplain wetlands.  相似文献   

3.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   

4.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

5.
马文婧  李英年  张法伟  韩琳 《生态学报》2023,43(3):1102-1112
青藏高原草甸草原是生态系统中重要的植被类型,准确评估高寒草甸草原生态系统碳源汇状况及碳储量变化尤为重要。基于涡度相关系统观测,分析了2009年至2016年8年期间青海湖北岸草甸草原环境因子以及碳通量的变化特征,运用结构方程模型(SEM)分析环境因子对总初级生产力(GPP)、净生态系统CO2交换量(NEE)、生态系统呼吸(Re)的调控机制。结果表明:2009—2016年8年NEE日均值在-2.02—0.88 gC m-2 d-1之间,5—9月NEE为负值,表现为碳吸收,雨热同期的6、7、8月是CO2净吸收最强的时期,平均每月吸收CO2 39.85 gC m-2 month-1,NEE负值日数约占全年的48%,10月—翌年4月为正值,表现为碳释放,初春3月和秋末11月是CO2净释放最强的时期;Re日均值为1.69 gC m-2 d-1,受季节温度的影响,呈夏季强,冬季弱的态...  相似文献   

6.
1. Temporal variation in ecosystem metabolism over a 15‐year period (1986–2000) was evaluated in a seventh order channelised gravel bed river (mean annual discharge 48.7 m3 s?1) of the Swiss Plateau. The river is subject to frequent disturbance by bed‐moving spates. Daily integrals of gross primary production (GPP) and ecosystem respiration (ER) were calculated based on single‐station diel oxygen curves. 2. Seasonal decomposition of the time series of monthly metabolism rates showed that approximately 50% of the variation of GPP and ER can be attributed to season. Annual GPP averaged 5.0 ± 0.6 g O2 m?2 day?1 and showed no long‐term trend. 3. Ecosystem respiration, averaging 6.2 ± 1.4 g O2 m?2 day?1, declined from 8.8 to 4.1 g O2 m?2 day?1 during the 15‐year period. This significant trend paralleled a decline in nitrate and soluble reactive phosphorus concentrations, and the biochemical oxygen demand discharged by sewage treatment facilities upstream of the study reach. The ratio of GPP to ER (P/R) increased from 0.53 to about 1 as consequence of ER reduction. 4. Bed moving spates reduced GPP by 49% and ER by 19%. Postspate recovery of GPP was rapid between spring and autumn and slow during winter. Recovery of ER lacked any seasonal pattern. Annual patterns of daily GPP and to a minor extent of daily ER can be described as a sequence of recovery periods frequently truncated by spates. 5. The study showed that disturbance by frequent bed‐moving spates resulted in major stochastic variation in GPP and ER but annual patterns were still characterised by a distinct seasonal cycle. It also became evident that stream metabolism is a suitable method to assess effects of gradual changes in water quality.  相似文献   

7.
The effects of seasonality and dilution stress on the functioning of Rambla Salada, a hypersaline Mediterranean stream in SE Spain, were evaluated. The stream is subject to diffuse freshwater inputs from the drainage of intensively irrigated agriculture in the catchment and periodic losses of water through an irrigation channel. Metabolic rates and the biomass of primary producers and consumers were estimated over a 2-year period. During the first year several dilution events occurred, while during the second year the salinity recovery reached predisturbance levels. Functional indicators were compared in the disturbance and recovery salinity periods. Primary production and respiration rates in the Rambla Salada ranged between 0.07–21.05 and 0.19–17.39 g O2 m−2 day−1, respectively. The mean values for these variables were 7.35 and 5.48 g O2 m−2 day−1, respectively. Mean net daily metabolism rate was 1.87 ± 0.52 g O2 m−2 day−1 and mean production/respiration ratio was 2.48 ± 1.1, reflecting autotrophic metabolism. The metabolic rates showed the typical seasonal pattern of Mediterranean open canopy streams. Therefore, gross primary production (GPP) and ecosystem respiration (ER) registered maximum values in summer, intermediate values in spring and autumn and minimum values in winter. The metabolic rates and biomass of consumers were greater in the disturbance period than in the recovery period. However, they did not show significant differences between periods due to their important dependence on seasonal cycle. Seasonality accounted for much of the temporal variability in GPP and ER (76% and 83% in the multiregression models, respectively). Light availability seems to be the most important factor for GPP and ER in the Rambla Salada. Autotrophic biomass responded more to variations in discharge and conductivity than to seasonal variations. In fact, it was severely affected by freshwater inputs after which the epipelic biomass decreased significantly and Cladophora glomerata proliferated rapidly. Epipelic algal biomass was the most sensitive parameter to dilution disturbance. Handling editor: Luigi Naselli-Flores  相似文献   

8.
1. River metabolism was measured over an annual cycle at three sites distributed along a 1000 km length of the lowland Murray River, Australia. 2. Whole system metabolism was measured using water column changes in dissolved oxygen concentrations while planktonic and benthic metabolism were partitioned using light‐dark bottles and benthic chambers. 3. Annual gross primary production (GPP) ranged from 775 to 1126 g O2 m?2 year?1 which in comparison with rivers of similar physical characteristics is moderately productive. 4. Community respiration (CR) ranged from 872 to 1284 g O2 m?2 year?1 so that annual net ecosystem production (NEP) was near zero, suggesting photosynthesis and respiration were balanced and that allochthonous organic carbon played a minor role in fuelling metabolism. 5. Planktonic rates of gross photosynthesis and respiration were similar to those of the total channel, indicating that plankton were responsible for much of the observed metabolism. 6. Respiration rates correlated with phytoplankton standing crop (estimated as the sum of GPP plus the chlorophyll concentration in carbon units), yielding a specific respiration rate of ?1.1 g O2 g C?1 day?1. The respiration rate was equivalent to 19% of the maximum rate of phytoplankton photosynthesis, which is typical of diatoms. 7. The daily GPP per unit phytoplankton biomass correlated with the mean irradiance of the water column giving a constant carbon specific photon fixation rate of 0.35 gO2 g Chl a?1 day?1 per μmole photons m?2 s?1 (ca. 0.08 per mole photons m?2 on a carbon basis) indicating that light availability determined daily primary production. 8. Annual phytoplankton net production (NP) estimates at two sites indicated 25 and 36 g C m?2 year?1 were available to support riverine food webs, equivalent to 6% and 11% of annual GPP. 9. Metabolised organic carbon was predominantly derived from phytoplankton and was fully utilised, suggesting that food‐web production was restricted by the energy supply.  相似文献   

9.
In spring 2005, monthly sampling was carried out at a sublittoral site near Tautra Island. Microphytobenthic identification, abundance (ABU), and biomass (BIOM), were performed by microscopic analyses. Bacillariophyceae accounted for 67% of the total ABU, and phytoflagellates constituted 30%. The diatom floristic list consisted of 38 genera and 94 species. Intact light‐harvesting pigments chl a, chl c, and fucoxanthin and their derivatives were identified and quantified by HPLC. Photoprotective carotenoids were also observed (only as diadinoxanthin; no diatoxanthin was detected). Average fucoxanthin content was 4.57 ± 0.45 μg fucoxanthin · g sediment dry mass?1, while the mean chl a concentration was 2.48 ± 0.15 μg · g?1 dry mass. Both the high fucoxanthin:chl a ratio (considering nondegraded forms) and low amounts of photoprotective carotenoids indicated that the benthic microalgal community was adapted to low light. Microphytobenthic primary production was estimated in situ (MPPs, from 0.15 to 1.28 mg C · m?2 · h?1) and in the laboratory (MPPp, from 6.79 to 34.70 mg C · m?2 · h?1 under light saturation) as 14C assimilation; in April it was additionally estimated from O2‐microelectrode studies (MPPO2) along with the community respiration. MPPO2 and the community respiration equaled 22.9 ± 7.0 and 7.4 ± 1.8 mg C · m?2 · h?1, respectively. A doubling of BIOM from April to June in parallel with a decreasing photosynthetic activity per unit chl a led us to suggest that the microphytobenthic community was sustained by heterotrophic metabolism during this period.  相似文献   

10.
Switchgrass (Panicum virgatum L.) has gained importance as feedstock for bioenergy over the last decades due to its high productivity for up to 20 years, low input requirements, and potential for carbon sequestration. However, data on the dynamics of CO2 exchange of mature switchgrass stands (>5 years) are limited. The objective of this study was to determine net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary production (GPP) for a commercially managed switchgrass field in its sixth (2012) and seventh (2013) year in southern Ontario, Canada, using the eddy covariance method. Average NEE flux over two growing seasons (emergence to harvest) was ?10.4 μmol m?2 s?1 and reached a maximum uptake of ?42.4 μmol m?2 s?1. Total annual NEE was ?380 ± 25 and ?430 ± 30 g C m?2 in 2012 and 2013, respectively. GPP reached ?1354 ± 23 g C m?2 in 2012 and ?1430 ± 50g C m?2 in 2013. Annual Re in 2012 was 974 ± 20 g C m?2 and 1000 ± 35 g C m?2 in 2013. GPP during the dry year of 2012 was significantly lower than that during the normal year of 2013, but yield was significantly higher in 2012 with 1090 g  m?2, compared to 790 g m?2 in 2013. If considering the carbon removed at harvest, the net ecosystem carbon balance came to 106 ± 45 g C  m?2 in 2012, indicating a source of carbon, and to ?59 ± 45 g C m?2 in 2013, indicating a sink of carbon. Our results confirm that switchgrass can switch between being a sink and a source of carbon on an annual basis. More studies are needed which investigate this interannual variability of the carbon budget of mature switchgrass stands.  相似文献   

11.
12.
1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478–492 g m?2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m?2; mean ± SE) than Payne Creek (39 ± 9 g m?2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g?1) than those from Payne Creek (54 ± 8 mg g?1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day?1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m?2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m?2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter‐year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m?2 in Payne Creek and 7–27 g m?2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%.  相似文献   

13.
We studied the effect of nutrient inputs on the carbon (C) budget of rocky shore communities using a set of eight large experimental mesocosms. The mesocosms received a range of inorganic nitrogen (N) and phosphorus (P) additions, at an N:P ratio of 16. These additions were designed to elevate the background concentration, relative to that in eutrophic Oslofjord (Norway) waters, by 1, 2, 4, 8, 16, 32 μmol dissolved inorganic nitrogen (DIN)l−1 (and the corresponding P increase). Two unamended mesocosms were used as controls. The nutrients were added continuously for 27 months before gross primary production (GPP), respiration (R), net community production (NCP), and dissolved organic carbon (DOC) production were assessed for the dominant algal species (Fucus serratus) and for the whole experimental ecosystem. Inputs and outputs of DOC and particulate organic carbon (POC) from the mesocosms were also quantified. The F. serratus communities were generally autotrophic (average P/R ratio = 1.33 ± 0.12), with the GPP independent of the nutrient inputs to the mesocosms, and maintained a high net DOC production during both day (0.026 ± 0.008 g C m−2 h−1) and night (0.015 ± 0.004 g C m−2 h−1). All the experimental rocky shore ecosystems were autotrophic (P/R ratio = 2.04 ± 0.28), and neither macroalgal biomass nor production varied significantly with increasing nutrient inputs. Most of the excess production from these autotrophic ecosystems was exported from the systems as DOC, which accounted for 69% and 58% of the NCP of the dominant community and the experimental ecosystem, respectively, the rest being lost as POC. High DOC release and subsequent export from the highly energetic environments occupied by rocky shore communities may prevent the development of eutrophication symptoms and render these communities resistant to eutrophication. Received 10 October 2001; accepted 18 July 2002.  相似文献   

14.
Fine root dynamics have the potential to contribute significantly to ecosystem‐scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m?2 yr?1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=?0.96 year?1) than in the sandy loam soil (k=?0.61 year?1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm?2 h?1) than in the sandy loam (1.4±0.2 ng N cm?2 h?1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1‐year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m?2 yr?1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr?1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land‐use change can contribute significantly to increased rates of nitrogen trace gas emissions.  相似文献   

15.
Pacific salmon (Oncorhynchus spp.) perform important ecological roles in stream ecosystems by provisioning nutrients as resource subsidies and modifying their physical habitat as ecosystem engineers. These contrasting roles result in concurrent nutrient enrichment and benthic disturbance, where local environmental characteristics potentially determine which effect predominates. Whole-stream metabolism quantifies the functional response to salmon and may identify patterns in enrichment and disturbance not apparent from structural measurements alone. We measured ecosystem respiration (ER) and gross primary production (GPP), along with chemical and physical characteristics, in seven Southeast Alaska streams and two Michigan streams, before and during the salmon run. These streams in the native and introduced ranges of salmon differed in environmental characteristics, from geomorphology at the reach scale to climate at the biome scale. Salmon consistently increased ER across streams and biomes, from an average (±SE) of 1.92 ± 0.23 g O2 m?2 d?1 before salmon to 6.30 ± 1.08 g O2 m?2 d?1 during the run. In the cobble-bottom streams of Southeast Alaska, GPP doubled from 0.29 ± 0.05 g O2 m?2 d?1 before salmon to 0.66 ± 0.16 g O2 m?2 d?1 during the run. In contrast, GPP responded inconsistently to salmon in the sand-bottom Michigan streams, increasing in one and decreasing in the other. Patterns in ER and GPP among streams and time periods were predicted by stream water nutrients (for example, ammonium, soluble reactive phosphorus) rather than by physical characteristics (for example, light, sediment size, and so on). This study demonstrates that salmon can periodically override physical controls on ER and GPP and enhance whole-stream metabolism via their dual ecological roles as both resource subsidies and ecosystem engineers.  相似文献   

16.
Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured in a northern temperate grassland near Lethbridge, Alberta, Canada for three growing seasons using the eddy covariance technique. The study objectives were to document how NEE and its major component processes—gross photosynthesis (GPP) and total ecosystem respiration (TER)—vary seasonally and interannually, and to examine how environmental and physiological factors influence the annual C budget. The greatest difference among the three study years was the amount of precipitation received. The annual precipitation for 1998 (481.7 mm) was significantly above the 1971–2000 mean (± SD, 377.9 ± 97.0 mm) for Lethbridge, whereas 1999 (341.3 mm) was close to average, and 2000 (275.5 mm) was significantly below average. The high precipitation and soil moisture in 1998 allowed a much higher GPP and an extended period of net carbon gain relative to 1999 and 2000. In 1998, the peak NEE was a gain of 5 g C m?2 d?1 (day 173). Peak NEE was lower and also occurred earlier in the year on days 161 (3.2 g C m?2 d?1) and 141 (2.4 g C m?2 d?1) in 1999 and 2000, respectively. Change in soil moisture was the most important ecological factor controlling C gain in this grassland ecosystem. Soil moisture content was positively correlated with leaf area index (LAI). Gross photosynthesis was strongly correlated with changes in both LAI and canopy nitrogen (N) content. Maximum GPP (Amax: value calculated from a rectangular hyperbola fitted to the relationship between GPP and incident photosynthetic photon flux density (PPFD)) was 27.5, 12.9 and 8.6 µmol m?2 s?1 during 1998, 1999 and 2000, respectively. The apparent quantum yield also differed among years at the time of peak photosynthetic activity, with calculated values of 0.0254, 0.018 and 0.018 during 1998, 1999 and 2000, respectively. The ecosystem accumulated a total of 111.9 g C m?2 from the time the eddy covariance measurements were initiated in June 1998 until the end of December 2000, with most of that C gained during 1998. There was a net uptake of almost 21 g C m?2 in 1999, whereas a net loss of 18 g C m?2 was observed in 2000. The net uptake of C during 1999 was the combined result of slightly higher GPP (287.2 vs. 272.3 g C m?2 year?1) and lower TER (266.6 vs. 290.4 g C m?2 year?1) than occurred in 2000.  相似文献   

17.
The rate at which CO2 is released from woody debris post-clearcut affects the long term carbon consequences of such disturbances. Changes in microclimate post-clearcut may alter the rate of woody debris decomposition from that in a mature forest. However, very few studies have explored post-disturbance rates of woody debris respiration and the possible influence of an altered microclimate, and even fewer have considered the role of log position in influencing rates of respiration. This study explored the effects of log position and microclimate variability on the rates of coarse woody debris (CWD) respiration. The rates of respiration of downed Norway spruce (Picea abies) logs were repeatedly measured in situ using an LI-6200 gas analyzer. Treatments included native logs in the clearcut site, native logs in a neighboring mature spruce stand, and logs transferred from the clearcut site to the mature spruce stand. The transfer logs showed the highest rates of respiration (0.44 ± 0.03 g COm?2 log surface h?1), followed by the clearcut logs (0.36 ± 0.02 g CO2 m?2 log surface h?1), and spruce stand logs (0.30 ± 0.02 g CO2 m?2 log surface h?1) (P < 0.01). The boost in respiration found in the transfer treatment group was best explained by increases in log water content, while the slower rate of respiration in the spruce stand logs was best explained by the log’s contact/non-contact with the ground prior to the start of the observational campaign. CWD respiration was found to represent 18 ± 3 % of total daytime ecosystem respiration (R eco).  相似文献   

18.
1. Two acidic peatland upland streams in north‐east Scotland draining catchments of 1.3 and 41.4 km2 were sampled each season for 2 years to investigate diurnal variations in dissolved and gaseous forms of carbon. Stream metabolism, alkalinity, discharge, pH, air and water temperatures were measured to aid data interpretation. 2. Free CO2 showed marked diurnal variation with lowest concentrations during the period from late morning to early afternoon and highest during the hours of darkness. Although alkalinity and pH also showed some diurnal fluctuations, in comparison with other more productive alkaline systems, variation was small. Dissolved organic carbon (DOC) showed no significant diurnal pattern. However, significant changes in stream discharge influenced DOC concentrations, as well as over‐riding diurnal patterns of free CO2, alkalinity and pH. 3. The highest diurnal ratios (maximum concentration/minimum concentration) in CO2, gross primary productivity (GPP) and community respiration (CR) occurred in spring and summer and the lowest in autumn and winter. Variation in biotic in‐stream processes caused changes in CO2 concentrations and temperature affected both the solubility of CO2 and changes in up‐stream CO2 inputs. There was no significant difference in diurnal fluctuations between the two orders of stream studied. 4. The mean GPP (as CO2) was 0.81 g CO2 m?2 day?1 and mean CR 2.67 g CO2 m?2 day?1. The mean primary production/respiration (P/R) ratio was 0.26 ± 0.09 and 0.33 ± 0.15 in the first and second order streams, respectively. These values are low compared with published data because these heterotrophic headwater streams are dominated by benthic respiration and upstream allochthonous inputs with little autotrophic metabolism, particularly during the colder autumn and winter months. 5. The results have implications for the calculation of dissolved inorganic carbon (DIC) fluxes in streamwater. Samples taken during daylight hours tend to have lower concentrations of free CO2 and HCO3? than samples taken during darkness. During spring, concentrations of free CO2 were measured up to 2.4 (annual mean 1.8) times higher at night than during the day at a similar discharge. It is suggested that fluxes based on daytime measurements alone will under‐estimate the annual flux of these determinands in streamwater by as much as 40%.  相似文献   

19.
Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may change ecosystem C‐sink/‐source properties. We studied effects of increased background [O3] (up to [ambient] × 2) and increased N deposition (up to +50 kg ha?1 a?1) on mature, subalpine grassland during the third treatment year. During 10 days and 13 nights, distributed evenly over the growth period of 2006, we measured ecosystem‐level CO2 exchange using a static cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared with differences in soil organic C after 5 years of treatment. The high [O3] had no effect on aboveground dry matter productivity (DM), but seasonal mean rates of both Reco and GPP decreased ca. 8%. NEP indicated an unaltered growing season CO2–C balance. High N treatment, with a +31% increase in DM, mean Reco increased ca. 3%, but GPP decreased ca. 4%. Consequently, seasonal NEP yielded a 53.9 g C m?2 (±22.05) C loss compared with control. Independent of treatment, we observed a negative NEP of 146.4 g C m?2 (±15.3). Carbon loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one‐third of that loss.  相似文献   

20.
1. The single station diel oxygen curve method was used to determine the response of system metabolism to backfilling of a flood control canal and restoration of flow through the historic river channel of the Kissimmee River, a sub‐tropical, low gradient, blackwater river in central Florida, U.S.A. Gross primary productivity (GPP), community respiration (CR), the ratio of GPP/CR (P/R) and net daily metabolism (NDM) were estimated before and after canal backfilling and restoration of continuous flow through the river channel. 2. Restoration of flow through the river channel significantly increased reaeration rates and mean dissolved oxygen (DO) concentrations from <2 mg L−1 before restoration of flow to 4.70 mg L−1 after flow was restored. 3. Annual GPP and CR rates were 0.43 g O2 m−2 day−1 and 1.61 g O2 m−2 day−1 respectively, before restoration of flow. After restoration of flow, annual GPP and CR rates increased to 3.95 O2 m−2 day−1 and 9.44 g O2 m−2 day−1 respectively. 4. The ratio of P/R (mean of monthly values) increased from 0.29 during the prerestoration period to 0.51 after flow was restored, indicating an increase in autotrophic processes in the restored river channel. NDM values became more negative after flow was restored. 5. After flow was restored, metabolism parameters were generally similar to those reported for other blackwater river systems in the southeast U.S.A. Postrestoration DO concentrations met target values derived from free flowing, minimally impacted reference streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号