首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phage T4-induced ribonucleotide reductase, purified to homogeneity, catalyzes the reduction of the four ribonucleotides CDP, UDP, ADP, and GDP to the corresponding deoxyribonucleotides. The enzyme is an order of magnitude more sensitive to hydroxyurea than the corresponding Escherichia coli enzyme. Fifty per cent inhibition occurs at 10 micrometer hydroxyurea. Inhibition is complete at a high concentration of the drug, and there is no differential effect on the four substrates. Treatment of T4 ribonucleotide reductase or its isolated subunits with hydroxyurea does not lead to their irreversible inactivation.  相似文献   

3.
Metaphase chromosomes purified from a hydroxyurea-resistant Chinese hamster cell line were able to transform recipient wild-type cells to hydroxyurea resistance at a frequency of 10(-6). Approximately 60% of the resulting transformant clones gradually lost hydroxyurea resistance when cultivated for prolonged periods in the absence of drug. One transformant was subjected to serial selection in higher concentrations of hydroxyurea. The five cell lines generated exhibited increasing relative plating efficiency in the presence of the drug and a corresponding elevation in their cellular content of ribonucleotide reductase. The most resistant cell line had a 163-fold increase in relative plating efficiency and a 120-fold increase in enzyme activity when compared with the wild-type cell line. The highly hydroxyurea-resistant cell lines had strong electron paramagnetic resonance signals characteristic of an elevated level of the free radical present in the M2 subunit of ribonucleotide reductase. Two-dimensional electrophoresis of cell-free extracts from one of the resistant cell lines indicated that a 53,000-dalton protein was present in greatly elevated quantities when compared with the wild-type cell line. These data suggest that the hydroxyurea-resistant cell lines may contain an amplification of the gene for the M2 subunit of ribonucleotide reductase.  相似文献   

4.
Four Chinese hamster ovary cell lines and one mouse L cell line have been isolated which are resistant to the cytotoxic effects of hydroxyurea and guanazole. These five cell lines contain an altered ribonucleotide reductase activity as judged by a decreased sensitivity to the inhibitory action of both drugs. This is strong evidence that ribonucleotide reductase is one of the lethal sites of action for these two antitumour agents. The results are also consistent with the view that mammalian cell variants can arise from structural gene mutations.  相似文献   

5.
Ribonucleotide reductase catalyzes the reduction of ribonucleotides to their corresponding deoxyribonucleotides via a radical-mediated mechanism. The enzyme from Escherichia coli consists of the two non-identical proteins, R1 and R2, the latter of which contains the necessary free radical located to a tyrosine residue. The radical scavenger hydroxyurea was found to reduce the tyrosyl radical of R2 in a second-order reaction. The rate constant (0.50 M-1 s-1 at 25 degrees C) for this process was several orders of magnitude lower than the hydroxyurea-dependent reduction of free tyrosyl radicals in solution. This difference probably reflects the fact that the R2 tyrosyl radical is buried in the interior of the protein. Formation of the R1R2 complex changed the susceptibility of the radical to hydroxyurea in a manner that reflects the regulatory state of the holoenzyme. Furthermore, binding of substrate or product to the holoenzyme complex made the R2 radical at least 10 times more susceptible to inactivation by hydroxyurea than it was in the isolated R2 protein. One active site mutation in the R1 protein was shown to affect the sensitivity of the tyrosyl radical of R2 differently than wild type protein R1 does. Our results clearly show that the susceptibility of the tyrosyl radical in R2 to inactivation by hydroxyurea can be used as an efficient probe for the regulatory state of the holoenzyme complex.  相似文献   

6.
Ribonucleotide reductase is an essential enzyme that catalyzes the reduction of ribonucleotides to deoxyribonucleotides for use in DNA synthesis. Ribonucleotide reductase from Escherichia coli consists of two subunits, R1 and R2. The R2 subunit contains an unusually stable radical at tyrosine 122 that participates in catalysis. Buried deep within a hydrophobic pocket, the radical is inaccessible to solvent although subject to inactivation by radical scavengers. One such scavenger, hydroxyurea, is a highly specific inhibitor of ribonucleotide reductase and therefore of DNA synthesis; thus it is an important anticancer and antiviral agent. The mechanism of radical access remains to be established; however, small molecules may be able to access Tyr-122 directly via channels from the surface of the protein. We used random oligonucleotide mutagenesis to create a library of 200,000 R2 mutants containing random substitutions at five contiguous residues (Ile-74, Ser-75, Asn-76, Leu-77, Lys-78) that partially comprise one side of a channel where Tyr-122 is visible from the protein surface. We subjected this library to increasing concentrations of hydroxyurea and identified mutants that enhance survival more than 1000-fold over wild-type R2 at high drug concentrations. Repetitive selections yielded S75T as the predominant R2 mutant in our library. Purified S75TR2 exhibits a radical half-life that is 50% greater than wild-type R2 in the presence of hydroxyurea. These data represent the first demonstration of R2 protein mutants in E. coli that are highly resistant to hydroxyurea; elucidation of their mechanism of resistance may provide valuable insight into the development of more effective inhibitors.  相似文献   

7.
Hydroxyurea (HU) is a clinically applied antineoplastic drug, which quenches tyrosine radicals in the active site of ribonucleotide reductase (RR) and inhibits DNA synthesis in proliferating cells. Under oxidizing conditions (Cu2+ or H2O2) long-lived radicals from HU have been found by ESR. The structure of HU radicals was established to be: (formula; see text). The kinetics of formation and decay of HU radicals after reaction of HU with H2O2 is complex; it exhibits a lag-phase, a maximum, and a decay, all depending on the concentration of HU. Biological consequences of HU radicals for the inhibition of RR as well as their role in cytotoxic events during chemotherapy of cancer are discussed.  相似文献   

8.
Ribonucleotide reductase catalyzes the formation of deoxyribonucleotides from ribonucleoside diphosphate precursors, and is a rate-limiting step in the synthesis of DNA. The enzyme consists of two dissimilar subunits usually called M1 and M2. The antitumor agent, hydroxyurea, is a specific inhibitor of DNA synthesis and acts by destroying the tyrosyl free radical of the M2 subunit of ribonucleotide reductase. Two highly drug resistant cell lines designated HR-15 and HR-30 were isolated by exposing a population of mouse L cells to increasing concentrations of hydroxyurea. HR-15 and HR-30 cells contained elevated levels of ribonucleotide reductase activity, and were 68 and 103 times, respectively, more resistant than wild type to the cytotoxic effects of hydroxyurea. Northern and Southern blot analysis indicated that the two drug resistant lines contained elevated levels of M2 mRNA and M2 gene copy numbers. Similar studies with M1 specific cDNA demonstrated that HR-15 and HR-30 cell lines also contained increased M1 message levels, and showed M1 gene amplification. Mutant cell lines altered in expression and copy numbers for both the M1 and M2 genes are useful for obtaining information relevant to the regulation of ribonucleotide reductase, and its role in DNA synthesis and cell proliferation.  相似文献   

9.
10.
Consistent with its specialized role in DNA synthesis, the activity of ribonucleotide reductase is cell cycle-dependent, reaching its maximum during S-phase. This paper demonstrates, however, the levels of the two protein subunits, M1 and M2, of this enzyme vary independently of one another. The level of protein M1 was determined by use of a two-site monoclonal antibody-enzyme immunoassay and found to be constant throughout the cell cycle in bovine kidney MDBK cells. Pulse-chase experiments showed that the half-life of protein M1 was 15 h. This contrasts with our previous results demonstrating an S-phase-correlated increase in the concentration of protein M2 and a half-life of this subunit of 3 h. Therefore, ribonucleotide reductase is controlled during the cell cycle by the level of protein M2.  相似文献   

11.
Inhibitors of ribonucleotide reductase are potential antiproliferative agents, since they deplete cells from DNA precursors. Substrate nucleoside analogues, carrying azido groups at the base moiety, are shown to have strong cytostatic properties, as measured by the inhibition of the incorporation of thymidine into DNA. One compound, 8-azidoadenosine, inhibits CDP reduction in cytosolic extracts from cancer cells. The corresponding diphosphate behaves as a substrate for ribonucleotide reductase while the triphosphate is an allosteric effector.  相似文献   

12.
13.
Ribonucleotide reductase (RNR), a crucial enzyme for nucleotide anabolism, is encoded by all living organisms and by large DNA viruses such as the herpesviruses. Surprisingly, the beta-herpesvirus subfamily RNR R1 subunit homologues are catalytically inactive and their function remained enigmatic for many years. Recent work sheds light on the function of M45, the murine cytomegalovirus R1 homologue; during viral evolution, M45 apparently lost its original RNR activity but gained the ability, via inhibiting RIP1, a cellular adaptor protein, to block cellular signaling pathways involved in innate immunity and inflammation. The discovery of this novel mechanism of viral immune subversion provides further support to the concept of evolutionary tinkering.  相似文献   

14.
15.
DNA damage induction of ribonucleotide reductase.   总被引:10,自引:6,他引:10       下载免费PDF全文
  相似文献   

16.
The reaction of the functional tyrosyl radical in protein R2 of ribonucleotide reductase from E. coli and mouse with the enzyme inhibitor hydroxyurea has been studied by EPR stopped-flow techniques at room temperature. The rate of disappearance of the tyrosyl radical in E. coli protein R2 is k2 = 0.43 M-1 s-1 at 25 degrees C. The reaction follows pseudo-first-order kinetics up to 450 mM hydroxyurea indicating that no saturation by hydroxyurea takes place even at this high concentration. Transient nitroxide-like radicals from hydroxyurea have been detected for the first time in the reaction of hydroxyurea with protein R2 from E. coli and mouse, indicating that 1-electron transfer from hydroxyurea to the tyrosyl radical is the dominating mechanism in the inhibitor reaction. The hydroxyurea radicals appear in low steady-state concentrations during 2-3 half-decay times of the tyrosyl radical and disappear thereafter.  相似文献   

17.
Anaerobic growth of Escherichia coli induces an oxygen-sensitive ribonucleoside triphosphate reductase system, different from the aerobic ribonucleoside diphosphate reductase (EC 1.17.4.1) of aerobic E. coli and higher organisms (Fontecave, M., Eliasson, R., and Reichard, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 2147-2151). We have now purified and characterized two proteins from the anaerobic system, provisionally named dA1 and dA3. dA3 is the actual ribonucleoside triphosphate reductase; dA1 has an auxiliary function. From gel filtration, dA1 and dA3 have apparent molecular masses of 27 and 145 kDa, respectively. In denaturing gel electrophoresis, dA3 gives two bands of closely related polypeptides with apparent molecular masses of 77 (beta 1) and 74 (beta 2) kDa. Immunological and structural evidence suggests that beta 2 is a degradation product of beta 1 and that the active enzyme is a dimer of beta 1. dA1 activity coincides on denaturing gels with a band of 29 kDa and thus appears to be a monomer. The reaction requires, in addition, an extract from E. coli heated for 30 min at 100 degrees C. Potassium is one required component, but one or several others remain unidentified and are provisionally designated fraction RT. With dA3, dA1, RT, and potassium ions, CTP reduction shows absolute requirements for S-adenosylmethionine, NADPH (with NADH as a less active substitute), dithiothreitol, and magnesium ions, and is strongly stimulated by ATP, probably acting as an allosteric effector. Micromolar concentrations of several chelators inhibit CTP reduction completely, suggesting the involvement of (a) transition metal(s).  相似文献   

18.
19.
Inactivation of ribonucleotide reductase by nitric oxide.   总被引:23,自引:0,他引:23  
Ribonucleotide reductase has been demonstrated to be inhibited by NO synthase product(s). The experiments reported here show that nitric oxide generated from sodium nitroprusside, S-nitrosoglutathione and the sydnonimine SIN-1 inhibits ribonucleotide reductase activity present in cytosolic extracts of TA3 mammary tumor cells. Stable derivatives of these nitric oxide donors were either inactive or much less inhibitory. EPR experiments show that the tyrosyl radical of the small subunit of E. Coli or mammalian ribonucleotide reductase is efficiently scavenged by these NO donors.  相似文献   

20.
Several structural analogs of adenosylcobalamin, containing 2, 3, 4, 5 and 6 methylene carbons instead of the ribofuranose moiety, have been synthesized and their interaction with ribonucleotide reductase from Lactobacillus leichmannii has been investigated. Kinetic studies of the inhibition of the reductase by these analogs showed that the adeninylalkylcobalamins with 4, 5 and 6 carbons interposed between the adenine moiety and the cobalt atom are potent inhibitors of ribonucleotide reduction. The stronger interaction between adeninylpentylcobalamin and the enzyme than that between adenosylcobalamin and the enzyme suggests that the more flexible acyclic analog of adenosine requires fewer adjustments of the protein upon binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号