首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeding calculi producing diet (CPD) to rats for 4 weeks produced calcium oxaltate stones. Supplementation of sodium citrate to CPD (c-CPD) prevented stone formation. Except oxalate, the excretion of calcium, phosphorus and magnesium was restored to normal in c-CPD fed rats. The CPD fed rats exhibited increase in glycolic acid oxidase (GAO) and lactate dehydrogenase (LDH) activities and only GAO activity was partially restored in c-CPD fed rats. Kidney sub-cellular fractions of calculi producing diet (CPD) fed rats showed increased susceptibility for lipid peroxidation in presence of promotors. Antioxidant enzyme activities of superoxide dismutase (SOD), catalase and glutathione peroxidase and antioxidant concentrations of reduced glutathione, total thiols, ascorbic acid and vitamin E were significantly decreased while the xanthine oxidase activity, and concentrations of hydroxyl radical, diene conjugates and hydroperoxides were significantly increased in CPD fed rats. The susceptibility to lipid peroxidation, activities of antioxidant enzymes, and the concentration of antioxidants were not normalized by feeding citrate.  相似文献   

2.
Feeding calculi producing diet (CPD) to rats for 4 weeks produced calcium oxalate stones deposition. Supplementation of methionine to CPD (m-CPD) prevented the stone deposition. However the urine pH and excretion of oxalate and calcium in m-CPD-fed rats was still as high as in CPD-fed groups compared to that of the control group. The CPD-fed rats exhibited an increase in liver oxalate synthesizing enzymes and glycolic acid oxidase (GAO) and lactate dehydrogenase (LDH), and these activities were not restored in m-CPD-fed rats. Similarly, the elevated LDH activity and oxalate concentration observed in the kidney of CPD-fed rats were not restored by methionine supplementation. Kidney sub-cellular fractions of CPD-fed rats showed increased susceptibility for lipid peroxidation in presence of iron, ascorbate, and t-butyl hydroperoxide. Antioxidant enzyme activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase and antioxidant concentrations of reduced glutathione, total thiols, ascorbic acid, and vitamin E were significantly decreased, while the xanthine oxidase activity and concentrations of hydroxyl radical, diene conjugates, and hydroperoxides were significantly increased in CPD-fed rats. The susceptibility to lipid peroxidation, activities of antioxidant enzymes, and the concentration of antioxidants were normalized in m-CPD—fed rats, thus suggesting that methionine feeding prevents the stone formation by neutralizing the free radical induced changes.  相似文献   

3.
Rats fed with either a sufficient-vitamin A or a vitamin A-free diet were pretreated with 750 mg/kg body weight of retinyl palmitate, alpha-tocopherol acetate, ascorbic acid or glutathione. Benzo[a]pyrene (BaP) metabolism and BaP-induced mutagenesis in Salmonella typhimurium TA98 were investigated and related to lipid peroxidation activities in postmitochondrial (S9) liver fraction. The microsomal mixed-function oxidase activities were decreased by vitamin A deficiency and weakly affected by scavenger treatment. The rate of lipid peroxidation of microsomal membranes was unaffected by vitamin A deficiency because of decreased polyunsaturated fatty acids and increased vitamin E contents. However, lipid peroxidation was decreased by pretreatment with fat-soluble vitamins (chiefly vitamin E) and increased by ascorbic acid. Within each experimental group both BaP metabolism and BaP mutagenic activity were closely correlated with the rate of lipid peroxidation. In vitamin A deficiency, the increased BaP metabolism and mutagenicity could be related to a decrease in cytosolic contents of scavengers (vitamin A and glutathione). In Ames test conditions, the free radical pathway became a route for BaP metabolism and thus the BaP activation to mutagenic metabolites is related to the cellular status in free radical scavengers.  相似文献   

4.
Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.  相似文献   

5.
Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.  相似文献   

6.
Renal injury is considered as one of the prerequisites for calcium oxalate retention. In order to determine the role of lipid peroxidation related effects for hyperoxaluria, we evaluated the alterations in lipid peroxidation, antioxidants and oxalate synthesizing enzymes in lithogenic rats with response to vitamin E + selenium treatment. In kidney of lithogenic rats, the level of lipid peroxidation and the activities of oxalate synthesizing enzymes were found to be increased whereas the levels/activities of non-enzymatic and enzymatic antioxidants were found to be decreased. The urinary excretion of both oxalate and calcium were significantly elevated. Supplementation of lithogenic rats with vitamin E + selenium decreased the levels of lipid peroxides and the activities of oxalate synthesizing enzymes like glycolic acid oxidase (GAO), lactate dehydrogenase (LDH), xanthine oxidase (XO) with a concomitant increase in the activities of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PDH) and increased levels of non-enzymatic antioxidants like ascorbic acid, alpha-tocopherol and reduced glutathione (GSH). The urinary excretion of oxalate and calcium were normalized. The antioxidants vitamin E + selenium thereby protected from hyperoxaluria.  相似文献   

7.
《Free radical research》2013,47(1):147-152
Diets high in fish oil containing polyunsaturated fatty acids of the n-3 family. have been suggested to decrease the risk of cardiovascular disease. However these lipids are highly susceptible to oxidative deterioration. In order to investigate the influence of n-3 fatty acids on oxidative status, the effect of feeding rats with fish oil or cocunut oil diets was studied by measuring different parameters related to an oxidative free radical challenge. Synthetic diets containing 15% (w/v) fish oil or coconut oil were used to feed growing rats for 4 weeks. As compared to control diet, the fish oil containing diet produced a significant decrease of cholesterol and triglyceride concentration in serum. however there was a significant increase in lipid peroxidation products. In addition, in fish oil fed animals, there was also a decrease in vitamin E and A concentration. Furthermore, the rate of lipid peroxidation in isolated microsomes was three fold higher in rats fed fish oil as compared to rats with coconut oil diet. No significant differences between the two experimental groups were observed in superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (PHGPX) activities. However, there was a decrease in glutathione peroxidase (GPX) activity. These results suggest that fish oil feeding at an amount compatible with human diet, although decreasing plasma lipids, actually challenge the antioxidant defence system, thus increasing the susceptibility of tissues to free radical oxidative damage.  相似文献   

8.
Diets high in fish oil containing polyunsaturated fatty acids of the n-3 family. have been suggested to decrease the risk of cardiovascular disease. However these lipids are highly susceptible to oxidative deterioration. In order to investigate the influence of n-3 fatty acids on oxidative status, the effect of feeding rats with fish oil or cocunut oil diets was studied by measuring different parameters related to an oxidative free radical challenge. Synthetic diets containing 15% (w/v) fish oil or coconut oil were used to feed growing rats for 4 weeks. As compared to control diet, the fish oil containing diet produced a significant decrease of cholesterol and triglyceride concentration in serum. however there was a significant increase in lipid peroxidation products. In addition, in fish oil fed animals, there was also a decrease in vitamin E and A concentration. Furthermore, the rate of lipid peroxidation in isolated microsomes was three fold higher in rats fed fish oil as compared to rats with coconut oil diet. No significant differences between the two experimental groups were observed in superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (PHGPX) activities. However, there was a decrease in glutathione peroxidase (GPX) activity. These results suggest that fish oil feeding at an amount compatible with human diet, although decreasing plasma lipids, actually challenge the antioxidant defence system, thus increasing the susceptibility of tissues to free radical oxidative damage.  相似文献   

9.
The effects of DOCA-salt hypertensive treatment on hepatic glutathione-dependent defense system, antioxidant enzymes, lipid peroxidation, mixed function oxidase and UDP-glucuronyl transferase activities were investigated in male Sprague Dawley rats.Compared with controls, DOCA-salt hypertensive rats had lower body weights (linked to liver hypertrophy). Mixed function oxidase and p-nitrophenol-UGT activities were not affected by the treatment but a significant lower rate of the glucuronoconjugation rate of bilirubin (p < 0.001) was observed in DOCA-salt hypertensive rats. While cytosolic glutathione contents and glutathione reductase activity were not affected, glutathione peroxidase (p < 0.001), glutathione transferase (p < 0.001) and catalase (p < 0.01) activities were decreased and associated with higher malondialdehyde contents (p < 0.001) in treated rats. The imbalance in liver antioxidant status (increasing generation of cellular radical species), associated with increases in lipid peroxidation, suggests that oxidative stress might be directly related to arterial hypertension in DOCA-salt treated male Sprague Dawley rats.  相似文献   

10.
An investigation was made to reveal the protective effects of veratric acid (VA), a phenolic acid against atherogenic diet-induced hyperlipidemic rats. Male albino Wistar rats were fed with atherogenic diet (4% cholesterol, 1% cholic acid, and 0.5% 2-thiouracil) daily for 30 days and treated with VA (40 mg/kg body weight) daily for a period of 30 days. Rats fed with atherogenic diet showed significant (P < 0.05) elevation in the level of plasma lipids, systolic and diastolic blood pressure, oxidative stress markers (thiobarbituric acid reactive substances, lipid peroxides) and significant (P < 0.05) reduction in the activities of enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (vitamin C, vitamin E, and reduced glutathione) antioxidants in erythrocytes, plasma, and tissues (liver, kidney, and aorta). Oral administration of VA (40 mg/kg body weight) for 30 days to atherogenic diet fed rats markedly attenuates systolic, diastolic blood pressure and lipid peroxidation products. Further, VA treatment significantly improved enzymatic and non-enzymatic antioxidants levels and showed beneficial effects on lipid profile in atherogenic diet rats. All the above alterations were supported by histopathological observations. These results indicate that oral administration of VA ameliorates atherogenic diet-induced hyperlipidemia in rats by its free radical scavenging; improving the antioxidants and lipid lowering properties.  相似文献   

11.
The aim of this study was to investigate effect of dietary omega-3 fatty acid supplementation on the indices of in vivo lipid peroxidation and oxidant/antioxidant status of plasma in rats. The plasma thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) levels, and activities of xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were studied in male Wistar Albino rats after ingestion of 0.4 g/kg fish oil (rich in omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid) for 30 days and compared to untreated control rats. The rats in the treated group had significantly higher SOD activity (P < 0.001), NO levels (P < 0.01) and decreased TBARS levels (P < 0.05) with respect to controls whereas GSH-Px and XO activities were not significantly different between the groups. None of the measured parameters had significant correlation with each other in both groups. We conclude that dietary supplementation of omega-3 fatty acids may enhance resistance to free radical attack and reduce lipid peroxidation. These results support the notion that omega-3 fatty acids may be effective dietary supplements in the management of various diseases in which oxidant/antioxidant defence mechanisms are decelerated.  相似文献   

12.
Glutathione S-transferases are a group of multifunctional isozymes that play a central role in the detoxification of hydrophobic xenobiotics with electrophilic centers (1). In this study we investigated the effects of in vitro lipid peroxidation on the activity of liver microsomal glutathione S-transferases from rats either supplemented or deficient in both vitamin E and selenium. Increased formation of malondialdehyde (MDA), a by-product of lipid peroxidation, was associated with a decreased activity of rat liver microsomal glutathione S-transferase. The inhibition of glutathione S-transferase occurred rapidly in microsomes from rats fed a diet deficient in both vitamin E and selenium (the B diet) but was delayed for 15 minutes in microsomes from rats fed the same diet but supplemented with these micro-nutrients (B+E+Se diet). Lipid peroxidation inhibits microsomal glutathione S-transferase and this inhibition is modulated by dietary antioxidants.  相似文献   

13.
Rebamipide, a novel antipeptic ulcer drug, 2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinone-4-yl]-propionic acid, was studied for its inhibitory effect on gastric xanthine oxidase activity and type conversion of the enzyme that has a profound role in free radical generation. Intraperitoneal administration of rebamipide at 60 mg/kg body weight reduced gastric mucosal hemorrhagic lesions and lipid peroxidation, which was proportional to the inhibitory effect of rebamipide on alcohol-induced xanthine oxidase-type conversion and enzyme activity. It was also observed that the activity of xanthine oxidase was significantly inhibited by administration of rebamipide at 60 mg/kg body weight, leading to a significant reduction of lipid peroxide content in alcohol-treated rats. The results suggest that alcohol-induced gastric mucosal lesions might be, in part, due to the increased activity of xanthine oxidase and type conversion rate of the enzyme and the protective effect of rebamipide on gastric mucosal lesions would result from its ability to protect against oxidative stress on gastric mucosal lesions of alcohol-treated rats.  相似文献   

14.
KBrO3-mediated renal injury and hyperproliferative response in Wistar rats. In this communication, we report the efficacy of Nymphaea alba on KBrO3 (125 mg/kg body weight, intraperitoneally) caused reduction in renal glutathione content, renal antioxidant enzymes and phase-II metabolising enzymes with enhancement in xanthine oxidase, lipid peroxidation, gamma-glutamyl transpeptidase and hydrogen peroxide (H202). It also induced blood urea nitrogen, serum creatinine and tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and DNA synthesis. Treatment of rats with Nymphaea alba (100 and 200 mg/kg body weight) one hour before KBrO3 (125 mg/kg body weight, i.p.) resulted in significant decreases in xanthine oxidase (P < 0.05), lipid peroxidation, gamma-glutamyl transpeptidase, H202 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content, glutathione metabolizing enzymes and antioxidant enzymes were also recovered to significant levels (P < 0.001). These results show that Nymphaea alba acts as chemopreventive agent against KBrO3-mediated renal injury and hyperproliferative response.  相似文献   

15.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

16.
This study examined the effect of dietary polyunsaturated fatty acids (PUFA) that were supplemented with vitamin E on lipid peroxidation, glutathione-dependent detoxifying enzyme system activity, and lipogenic fatty acid synthase (FAS) expression in rat liver. Male Sprague-Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 wk. Alpha-tocopherol was supplemented in perilla oil (0.015%) and fish oil (0.019%). Hepatic thiobarbituric acid reactive substances, an estimate of lipid peroxidation, were not significantly different among the dietary groups. The glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities were all elevated by the polyunsaturated fats, especially fish oil. The activity of FAS was reduced in the polyunsaturated fat-fed groups in the order of fish oil, perilla oil, and corn oil. The mRNA contents decreased in rats that were fed the 10% fat diets, particularly polyunsaturated fats, compared with the rats that were fed the 1% corn oil diet. Similarly, the inhibitory effect was the greatest in fish oil. These results suggest that lipid peroxidation can be minimized by vitamin E; PUFA in itself has a suppressive effect on lipogenic enzyme.  相似文献   

17.
Tannic acid, present in almost every food derived from plants, has been widely investigated as a chemopreventive agent because, apart from its use as a food additive, pharmacological studies have demonstrated its many health-promoting properties. In this study, we show the modulatory effect of tannic acid on 2-acetylaminofluorene (2-AAF)-mediated hepatic oxidative stress and cell proliferation in rats. 2-AAF (50 mg/kg body weight) caused reduction in hepatic glutathione content and the activities of hepatic anti-oxidant enzymes and phase-II metabolizing enzymes with an enhancement of xanthine oxidase activity, lipid peroxidation and hydrogen peroxide content. 2-AAF treatment also induced serum oxaloacetate and pyruvate transaminase, lactate dehydrogenase and gamma-glutamyl transpeptidase. Treatment of rats orally with tannic acid (125 and 250 mg/kg body weight) resulted in significant recovery of hepatic glutathione content, antioxidant and phase-II metabolizing enzymes. Also, significant decreases in lipid peroxidation, xanthine oxidase, hydrogen peroxide generation and liver damage marker enzymes were observed. The antiproliferative efficacy of the tannic acid was also evaluated. The promotion parameters induced (ornithine decarboxylase activity and DNA synthesis) by 2-AAF administration in the diet with partial hepatectomy (PH) were also significantly suppressed, dose dependently, by tannic acid. Hence, we propose that tannic acid might suppress the promotion stage via inhibition of oxidative stress and polyamine biosynthetic pathway.  相似文献   

18.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen.  相似文献   

19.
The conversion of xanthine dehydrogenase to xanthine oxidase and lipid peroxidation were measured in brain from carbon monoxide- (CO) poisoned rats. Sulfhydryl-irreversible xanthine oxidase increased from a control level of 15% to a peak of 36% over the 90 min after CO poisoning, while the conjugated diene level doubled. Reversible xanthine oxidase was 3-6% of the total enzyme activity over this span of time but increased to 31% between 90 and 120 min after poisoning. Overall, reversible and irreversible xanthine oxidase represented 66% of total enzyme activity at 120 min after poisoning. Rats depleted of this enzyme by a tungsten diet and those treated with allopurinol before CO poisoning to inhibit enzyme activity exhibited no lipid peroxidation. Treatment immediately after poisoning with superoxide dismutase or deferoxamine inhibited lipid peroxidation but had no effect on irreversible oxidase formation. Biochemical changes only occurred after removal from CO, and changes could be delayed for hours by continuous exposure to 1,000 ppm CO. These results are consistent with the view that CO-mediated brain injury is a type of postischemic reperfusion phenomenon and indicate that xanthine oxidase-derived reactive oxygen species are responsible for lipid peroxidation.  相似文献   

20.
The effects of specific xanthine oxidase induction and inhibition on glutathione antioxidant system activity, lipid peroxidation, cytochrome P-450 quantity and corticosteroids concentration in the rat liver were studied. It was dependence established that there was a straight between xanthine oxidase activity and the activity of glutathione antioxidant system, lipid peroxidation and the ascorbic acid formation. The reciprocal dependence was established between xanthine oxidase activity and the concentrations of cytochrome P-450 and corticosteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号