首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinolinic acid (Q.A.) which inhibits gluconeogenesis at the site of phosphoenolpyruvate (PEP) synthesis, reduced the content of PEP while elevating that of aspartate and malate in rat livers perfused with a medium containing 10 mM L-lactate. Glucagon at 10(-9) M did not affect Q.A. inhibition of lactate gluconeogenesis nor the depression of PEP level, but further elevated malate and aspartate accumulation. Exogenous butyrate had the same effect as glucagon on these parameters. Butylmalonate (BM), an inhibitor of mitochondrial malate transport, inhibited lactate and propionate gluconeogenesis to similar extents. The addition of 10(-9) M glucagon had no effect on BM inhibition of lactate gluconeogenesis, but almost completely reversed BM inhibition of propionate gluconeogenesis. These results suggest that glucagon may act on at least two sites, resulting in elevated hepatic gluconeogenesis. First, it may stimulate dicarboxylic acid synthesis (malate and oxaloacetate, specifically) through activation of pyruvate carboxylation. Secondly, it may stimulate synthesis of other dicarboxylic acids (fumarate, for example) by activating certain steps of the tricarboxylic acid cycle. The stimulatory effect of glucagon on gluconeogenesis in the perfused rat liver is well documented (1, 2). Exton et al., who earlier located the site of stimulation between pyruvate and PEP synthesis (3), proposed that glucagon stimulated PEP synthesis in the perfused rat liver (4), while reports from Williamson et al. (5) suggested the pyruvate-carboxylase reaction as the site of glucagon action. Stimulation at sites above PEP formation and of portions of the tricarboxylic acid cycle (4) by glucagon have also been suggested (6). In the present experiments, we have used substrates entering at different parts of the gluconeogenic pathway, and specific inhibitors to further resolve the action of glucagon.  相似文献   

2.
Induction of cytosolic aspartate aminotransferase (cAspAT) was observed in rat liver on administration of a high-protein diet, or glucagon and during fasting. The enzyme activity in the liver of rats given 80% protein diet or glucagon injection during starvation increased to 2- to 2.4-fold that in the liver of rats maintained on 20% protein diet, with about 2-fold increases in the levels of hybridizable cAspAT mRNA, measured by blot analysis using the cloned rat cAspAT cDNA as a probe. No increase in the enzyme was detected in kidney, heart, brain, or skeletal muscle. The activity of mitochondrial aspartate aminotransferase (mAspAT) did not increase. Induction of cAspAT was observed when glucose metabolism tended toward gluconeogenesis. The physiological function of the induction of cAspAT is considered to be to increase the supply of oxaloacetate as a substrate for cytosolic phosphoenolpyruvate carboxykinase (PEPCK) [EC 4.1.1.32] for gluconeogenesis.  相似文献   

3.
Carbohydrate metabolism of the perfused rat liver   总被引:17,自引:16,他引:1  
1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13.3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This ;inhibition' was abolished by oleate or glucagon.  相似文献   

4.
Primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion procedure and maintained as a monolayer in a serum-free culture medium were used to study glucoeogenesis and the role that the glucocorticoids play in the control of this pathway. These cells carried out gluconeogenesis from three-carbon precursors (alanine and lactate) in response to glucagon and dexamethasone added alone or in combination. Maximum glucose production was observed with cells pretreated for several hours with dexamethasone and glucagon prior to addition of substrate and glucagon (8- to 12-fold increase over basal glucose production). Half-maximum stimulation of gluconeogenesis was seen with 3.6 × 10?10 M glucagon and 3.6 × 10?8 M dexamethasone. Maximum stimulation was oberved with 10?7 M glucagon and 10?6 M dexamethasone. The length of time of dexamethasone pretreatment was found to be important in demonstrating the effect of glucocorticoids on glucagon-stimulated gluconeogenesis. Treeatment of cells with dexamethasone for 2 hours did not result in an increase in glucose production over identical experimental conditions in the absence of dexamethasone, wherease pretreatment for 5 hours (1.2-fold increase) or 15 hours (1.7-fold increase) did result in an increase in glucose production. The results establish that the adult rat liver parenchymal cells in primary culture are a valid model system to study hepatic gluconeogenesis. In addition, we have established directly that the glucocorticoids amplify the glucagon stimulation of gluconeogenesis.  相似文献   

5.
In the perfused rat liver, administration of glucagon causes a hyperpolarization of the liver cell membrane and increases gluconeogenesis. Insulin, a hormone which is known to antagonize the effect of glucagon on gluconeogenesis also blocks the hyperpolarizing effect of glucagon. Because of this inhibitory effect of insulin of the glucagon-evoked hyperpolarization, a systematic study of possible correlation between changes in membrane potential and gluconeogenesis was undertaken. The membrane potential was changed by valinomycin, tetracaine, or by varying the ionic composition of the perfusate. A highly significant correlation between changes in membrane potential and the rate of gluconeogenesis was noticed. The possibility was raised that changes in membrane potential might exert an influence on metabolic process by a yet unknown mechanism.  相似文献   

6.
The use of n-butylmalonate as an inhibitor of malate transport from mitochondria and of aminooxyacetate as an inhibitor of glutamate-aspartate transaminase indicated that rat liver hepatocytes employ the aspartate shuttle for gluconeogenesis from lactate which supplies reducing equivalents to the cytosolic NAD system. In contrast, malate is transported from mitochondria to cytosol for gluconeogenesis from pyruvate. This conclusion is corroborated by the finding that the addition of ammonium ions enhances gluconeogenesis from lactate but inhibits glucose formation from pyruvate. In hepatocytes, glucagon and epinephrine have relatively little effect on glucose synthesis from lactate. Ammonium ions permit both of these hormones to exert their usual stimulation of gluconeogenesis from lactate.Calcium ions (1.3 mm) enhance gluconeogenesis from lactate and from lactatepyruvate mixtures (10:1). The stimulatory effects of Ca2+ and NH4+ are additive and, when lactate is the substrate, the rates of gluconeogenesis achieved are so high as to preclude further stimulation by glucagon.  相似文献   

7.
The effects of glucagon on the respiratory function of mitochondria in situ were investigated in isolated perfused rat liver. Glucagon at the concentrations higher than 20 pM and cyclic AMP (75 microM) stimulated hepatic respiration, and shifted the redox state of pyridine nucleotide (NADH/NAD) in mitochondria in situ to a more reduced state as judged by organ fluorometry and beta-hydroxybutyrate/acetoacetate ratio. The organ spectrophotometric study revealed that glucagon and cyclic AMP induced the reduction of redox states of cytochromes a(a3), b and c+c1. Atractyloside (4 micrograms/ml) abolished the effects of glucagon on these parameters and gluconeogenesis from lactate. These observations suggest that glucagon increases the availability of substrates for mitochondrial respiration, and this alteration in mitochondrial function is crucial in enhancing gluconeogenesis.  相似文献   

8.
1. The development of glycerolkinase before and after birth was investigated in liver and kidney of rat and hamster. In rat liver, enzyme activity increased very slowly before birth and rapidly thereafter, reaching adult values at the 6th day of postnatal life. In hamster liver, glycerolkinase was considerably elevated already in utero, increased dramatically within the 1st day of postnatal life and reached adult values at the end of the 1st week. The development of hepatic glycerolkinase was compared with that of hepatic phosphoenolpyruvate carboxykinase of rat and hamster up to the 20th day of postnatal life. The different time-courses of the levels of these two enzymes before and after birth as well as the known kinetics of serum insulin, glucagon and corticosterone during that time suggested that none of these hormones is involved in the perinatal development of hepatic glycerolkinase activity. In contrast to liver, kidney glycerolkinase activity in both, rat and hamster, showed a delayed increase during the first week of postnatal life followed by a more pronounced elevation to adult values within the following 2 weeks. 2. When liver and kidney glycerolkinase activity was investigated during starvation (+/- refeeding), in alloxan diabetes(+/- insulin) and after adrenalectomy (+/- cortisol) no significant change in enzyme activity per g tissue could be detected either in liver or in kidney. However, total hepatic glycerolkinase activity was diminished during starvation as a consequence of decreasing liver weight. 3. Incorporation of U-[14C]-glycerol into CO2, lipids and glucose + glycogen by rat liver and kidney cortex slices was studied under the above gluconeogenetic conditions. Despite unchanged glycerolkinase activity in both organs, gluconeogenesis from glycerol was enhanced during starvation and in chronic alloxan diabetes, and could be reversed by refeeding and insulin replacement, respectively. 4. Feeding 20% of linolic acid to normal, alloxan-diabetic or adrenalectomized rats resulted in a significant increase in glycerolkinase activity in liver but not in kidney. 5. From the present findings it is suggested that the first step of gluconeogenesis from glycerol in liver and kidney is not influenced by glucagon, insulin and glucocorticoids, which are generally believed to regulate the rate of gluconeogenesis from non-glycerol precursors, but probably by the change in blood glycerol concentration.  相似文献   

9.
The effects of the alpha-adrenergic agonist phenylephrine on the levels of adenosine 3':5'-monophosphate (cAMP) and the activity of the cAMP-dependent protein kinase in isolated rat liver parenchymal cells were studied. Cyclic AMP was very slightly (5 to 13%) increased in cells incubated with phenylephrine at a concentration (10(-5) M) which was maximally effective on glycogenolysis and gluconeogenesis. However, the increase was significant only at 5 min. Cyclic AMP levels with 10(-5) M phenylephrine measured at this time were reduced by the beta-adrenergic antagonist propranolol, but were unaffected by the alpha-blocker phenoxybenzamine, indicating that the elevation was due to weak beta activity of the agonist. When doses of glucagon, epinephrine, and phenylephrine which produced the same stimulation of glycogenolysis or gluconeogenesis were added to the same batches of cells, there were marked rises in cAMP with glucagon, minimal increases with epinephrine, and little or no changes with phenylephrine, indicating that the two catecholamine stimulated these processes largely by mechanisms not involving cAMP accumulation. DEAE-cellulose chromatography of homogenates of liver cells revealed two major peaks of cAMP-dependent protein kinase activity. These eluted at similar salt concentrations as the type I and II isozymes from rat heart. Optimal conditions for preservation of hormone effects on the activity of the enzyme in the cells were determined. High concentrations of phenylephrine (10(-5) M and 10(-4) M) produced a small increase (10 tp 16%) in the activity ratio (-cAMP/+cAMP) of the enzyme. This was abolished by propranolol, but not by phenoxybenzamine, indicating that it was due to weak beta activity of the agonist. The increase in the activity ratio of the kinase with 10(-5) M phenylephrine was much smaller than that produced by a glycogenolytically equivalent dose of glucagon. The changes in protein kinase induced by phenylephrine and the blockers and by glucagon were thus consistent with those in cAMP. Theophylline and 1-methyl-3-isobutylxanthine, which inhibit cAMP phosphodiesterase, potentiated the effects of phenylephrine on glycogenolysis and gluconeogenesis. The potentiations were blocked by phenoxybenzamine, but not by propranolol. Methylisobutylxanthine increased the levels of cAMP and enhanced the activation of protein kinase in cells incubated with phenylephrine. These effects were diminished or abolished by propanolol, but were unaffected by phenoxybenzamine. It is concluded from these data that alpha-adrenergic activation of glycogenolysis and gluconeogenesis in isolated rat liver parenchymal cells occurs by mechanisms not involving an increase in total cellular cAMP or activation of the cAMP-dependent protein kinase. The results also show that phosphodiesterase inhibitors potentiate alpha-adrenergic actions in hepatocytes mainly by a mechanism(s) not involving a rise in cAMP.  相似文献   

10.
The effects of glucagon and the glucagon-like peptide GLP-1(7-37) were compared in rat liver hepatocytes. Glucagon elevated cAMP, elevated intracellular free calcium ([Ca2+]i), activated phosphorylase and stimulated gluconeogenesis, whereas GLP-1(7-37) was without effect on any of these parameters. GLP-1(7-37) did not block any of the actions of glucagon. The glucagon analog, des His1[Glu9] glucagon amide, was a partial agonist in liver, but also was an effective antagonist of glucagon actions in liver but not those of GLP-1(7-37) in islet B cells. It was concluded that in the rat, GLP-1(7-37) is a potent insulin secretagogue [1] but is without effect on liver.  相似文献   

11.
Amino acid transport was studied in primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion technique and maintained as a monolayer in a serum-free culture medium. These cells carried out gluconeogenesis from three carbon precursors (alanine, pyruvate, and lactate) in response to glucagon addition. Amino acid transport was assayed by measuring the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB). Addition of insulin or glucagon to culture rat liver parenchymal cells resulted in an increased influx of AIB transport. The glucocorticoid, dexamethasone, when added alone to cultures did not affect AIB transport. However, prior or simultaneous addition of dexamethasone to glucagon-treated cells caused a strong potentiation of the glucagon induction of AIB transport. Kinetic analysis of the effects of insulin and glucagon demonstrated that insulin increased the Vmax for transport without changing the Km while glucagon primarily decreased the Km for AIB transport. The effect of dexamethasone was to increase the Vmax of the low Km system.  相似文献   

12.
Glucagon is a 29-amino acid polypeptide released from pancreatic islet alpha-cells that acts to maintain euglycemia by stimulating hepatic glycogenolysis and gluconeogenesis. Despite its importance, there remains controversy about the mechanisms responsible for glucagon clearance in the body. In the current study, enzymatic metabolism of glucagon was assessed using sensitive mass spectrometric techniques to identify the molecular products. Incubation of glucagon with purified porcine dipeptidyl peptidase IV (DP IV) yielded sequential production of glucagon(3-29) and glucagon(5-29). In human serum, degradation to glucagon(3-29) was rapidly followed by N-terminal cyclization of glucagon, preventing further DP IV-mediated hydrolysis. Bioassay of glucagon, following incubation with purified DP IV or normal rat serum demonstrated a significant loss of hyperglycemic activity, while a similar incubation in DP IV-deficient rat serum did not show any loss of glucagon bioactivity. Degradation, monitored by mass spectrometry and bioassay, was blocked by the specific DP IV inhibitor, isoleucyl thiazolidine. These results identify DP IV as a primary enzyme involved in the degradation and inactivation of glucagon. These findings have important implications for the determination of glucagon levels in human plasma.  相似文献   

13.
The effect of glucagon on gluconeogenesis was measured in periportal and pericentral regions of the liver lobule by monitoring changes in rates of O2 uptake on the surface of the perfused liver with miniature O2 electrodes after infusion of lactate. When lactate (2 mM) was infused into livers from starved rats perfused in the anterograde direction, O2 uptake was increased 2.5-fold more in periportal than in pericentral regions, reflecting increased energy demands for glucose synthesis. Under these conditions, glucagon infusion in the presence of lactate increased O2 uptake exclusively in periportal regions of the liver lobule. Thus, when perfusion is in the physiological anterograde direction, the metabolic actions of glucagon predominate in periportal regions of the liver lobule under gluconeogenic conditions in the starved state. When livers were perfused in the retrograde direction, however, glucagon stimulated O2 uptake exclusively in pericentral regions. Thus glucagon only stimulates gluconeogenesis in 'upstream' regions of the liver lobule irrespective of the direction of flow.  相似文献   

14.
The gluconeogenic response in the liver from rats with chronic arthritis to various substrates and the effects of glucagon were investigated. The experimental technique used was the isolated liver perfusion. Hepatic gluconeogenesis in arthritic rats was generally lower than in normal rats. The difference between normal and arthritic rats depended on the gluconeogenic substrate. In the absence of glucagon the following sequence of decreasing differences was found: alanine (-71.8 per cent) reverse similarglutamine (-71.7 per cent)>pyruvate (-60 per cent)>lactate+pyruvate (-44.9 per cent)>xylitol (n.s.=non-significant) reverse similarglycerol (n.s.). For most substrates glucagon increased hepatic gluconeogenesis in both normal and arthritic rats. The difference between normal and arthritic rats, however, tended to diminish, as revealed by the data of the following sequence: alanine (-48.9 per cent) reverse similarpyruvate (-47.6 per cent)>glutamine (-33.8 per cent)>glycerol (n.s.) reverse similarlactate+pyruvate (n.s.) reverse similarxylitol (n.s.). The causes for the reduced hepatic gluconeogenesis in arthritic rats are probably related to: (a) lower activities of key enzymes catalyzing most probably steps preceding phosphoenolpyruvate (e.g. phosphoenolpyruvate carboxykinase, pyruvate carboxylase, etc. ); (b) a reduced availability of reducing equivalents in the cytosol; (c) specific differences in the situations induced by hormones or by the individual substrates. Since glycaemia is almost normal in chronically arthritic rats, it seems that lower gluconeogenesis is actually adapted to the specific needs of these animals.  相似文献   

15.
1. The rates of gluconeogenesis from many precursors have been measured in the perfused rat liver and, for comparison, in rat liver slices. All livers were from rats starved for 48hr. Under optimum conditions the rates in perfused liver were three to five times those found under optimum conditions in slices. 2. Rapid gluconeogenesis (rates of above 0·5μmole/g./min.) were found with lactate, pyruvate, alanine, serine, proline, fructose, dihydroxyacetone, sorbitol, xylitol. Unexpectedly other amino acids, notably glutamate and aspartate, and the intermediates of the tricarboxylic acid cycle (with the exception of oxaloacetate), reacted very slowly and were not readily removed from the perfusion medium, presumably because of permeability barriers which prevent the passage of highly charged negative ions. Glutamine and asparagine formed glucose more readily than the corresponding amino acids. 3. Glucagon increased the rate of gluconeogenesis from lactate and pyruvate but not from any other precursor tested. This occurred when the liver was virtually completely depleted of glycogen. Two sites of action of glucagon must therefore be postulated: one concerned with mobilization of liver glycogen, the other with the promotion of gluconeogenesis. Sliced liver did not respond to glucagon. 4. Pyruvate and oxaloacetate formed substantial quantities of lactate on perfusion, which indicates that the reducing power provided in the cytoplasm was in excess of the needs of gluconeogenesis. 5. Values for the content of intermediary metabolites of gluconeogenesis in the perfused liver are reported. The values for most intermediates rose on addition of lactate. 6. The rates of gluconeogenesis from lactate and pyruvate were not affected by wide variations of the lactate/pyruvate ratio in the perfusion medium.  相似文献   

16.
Production of [14C]glucose from [14C]lactate in the perfused livers of 24-h fasted adrenalectomized rats was not stimulated by 1 nM glucagon but was significantly increased by 10 nM hormone. Crossover analysis of glycolytic intermediates in these livers revealed a significant reduction in glucagon action at site(s) between fructose 6-phosphate and fructose 1,6-bisphosphate as a result of adrenalectomy. Site(s) between pyruvate and P-enolpyruvate was not affected. In isolated hepatocytes, adrenalectomy reduced glucagon response in gluconeogenesis while not affecting glucagon inactivation of pyruvate kinase. A distinct lack of glucagon action on 6-phosphofructo-1-kinase activity was noted in these cells. When hepatocytes were incubated with 30 mM glucose, lactate gluconeogenesis was greatly stimulated by glucagon. A reduction in both sensitivity and responsiveness to the hormone in gluconeogenesis was seen in the adrenalectomized rat. These changes were well correlated with similar impairment in glucagon action on 6-phosphofructo-1-kinase activity and fructose 2,6-bisphosphate content in hepatocytes from adrenalectomized rats incubated with 30 mM glucose. These results suggest that adrenalectomy impaired the gluconeogenic action of glucagon in livers of fasted rats at the level of regulation of 6-phosphofructo-1-kinase and/or fructose 2,6-bisphosphate content.  相似文献   

17.
1. Administration of glucagon to foetal rats produced a 10-15-fold increase in hepatic phosphoenolpyruvate carboxykinase activity together with a similar increase in the overall pathway of pyruvate conversion into glycogen in liver slices. 2. Glucagon was without effect on gluconeogenesis in vivo, which remained at approx. 0.1% of the incorporation as measured in newborn animals. 3. The apparent discrepancy between these results was due to the ether anaesthesia that was required for experimentation in vivo. Under conditions when minimal ether was used, the rates of labelling of glycogen from [3-(14)C]pyruvate in vivo were increased 10-20-fold and there was an additional stimulus by glucagon. 4. Ether anaesthesia produced a more reduced redox state of the foetal liver cytosol and lowered the ATP/ADP concentration ratio. 5. It is proposed that these effects are significant in the limitation of gluconeogenesis in the foetal rat liver, so that only with high phosphoenolpyruvate carboxykinase activity, high ATP concentration and a relatively oxidized cytosol redox state will a functional gluconeogenic pathway be present.  相似文献   

18.
Control of gluconeogenesis from lactate was studied by titrating rat liver cells with lactate and pyruvate in a ratio of 10:1 in a perifusion system. At different steady states of glucose formation, the concentration of key gluconeogenic intermediates was measured and plotted against gluconeogenic flux (J glucose). Complete saturation was observed only in the plot relating J glucose to the extracellular pyruvate concentration. Measurement of pyruvate distribution in the cell showed that the mitochondrial pyruvate translocator operates close to equilibrium at high lactate and pyruvate concentrations. It can therefore be concluded that pyruvate carboxylase limits maximal gluconeogenic flux. Addition of glucagon did not cause a shift in the plots relating J glucose to glucose 6-phosphate, dihydroxyacetone phosphate, 3-phosphoglycerate, and phosphoenolpyruvate. It can thus be concluded that glucagon does not affect the kinetic parameters of the enzymes involved in the conversion of phosphoenolpyruvate to glucose. Addition of glucagon led to a shift in the curves relating J glucose to the concentration of cytosolic oxalacetate and extracellular pyruvate. The shift in the curve relating J glucose to oxalacetate is due to glucagon-induced inhibition of pyruvate kinase. The stimulation of gluconeogenesis by glucagon can be accounted for almost completely by inhibition of pyruvate kinase. There was almost no stimulation by glucagon of pyruvate carboxylation. In the absence of glucagon, control on gluconeogenesis from lactate is distributed among different steps including pyruvate carboxylase and pyruvate kinase. Assuming that in the presence of glucagon all pyruvate kinase flux is inhibited, the control of gluconeogenesis in the presence of the hormone is confined exclusively to pyruvate carboxylase.  相似文献   

19.
The relative contribution to basal, glucagon- and nerve stimulation-enhanced glucose output of glycogenolysis (glucose output in the presence of the gluconeogenic inhibitor mercaptopicolinate) and gluconeogenesis (difference in glucose output in the absence and presence of the inhibitor) was investigated in perfused livers from fed rats with high and from fasted animals with low levels of glycogen. 1) Basal glucose output in both states was due only to gluconeogenesis. 2) Glucagon-enhanced glucose output was due about equally to glycogenolysis and gluconeogenesis in the fed state, but predominantly to gluconeogenesis (80%) in the fasted state. 3) Nerve stimulation-increased glucose output was due mainly to glycogenolysis (65%) in the fed state and about equally to both processes in the fasted state. The results suggest that under basal conditions of normal demands the liver supplies glucose only via gluconeogenesis and thus spares its glycogen stores, and that in situations of enhanced demands signalled by an increase in glucagon or sympathetic tone the liver liberates glucose mainly via glycogenolysis.  相似文献   

20.
Hepatic gluconeogenesis in the rat does not begin until birth. The enzyme P-enolpyruvate carboxykinase appears initially at birth and is the final enzyme in the gluconeogenic sequence to develop. The appearance of this enzyme in the cytosol of rat liver is caused by the stimulation of enzyme synthesis, probably due directly to an increase in the hepatic concentration of cAMP. Enzyme degradation does not begin until 36 hours after birth. Studies with fetal rats in utero have shown that dibutyryl cAMP or glucagon will stimulate P-enolpyruvate carboxykinase synthesis and that this effect can be blocked by insulin. Insulin is known to depress the synthesis of P-enolpyruvate carboxykinase in adult rat liver and in Reuber H-35 liver cells in culture. The glucocorticoids are without effect on the synthesis of the enzyme in fetal rat liver. Work by Girard et al. (J. Clin. Invest. 52: 3190, 1973) has established that the molar ratio of insulin to glucagon drops from 10 immediately after birth, to 1 after one hour. This is due to both a rise in glucagon and a fall in insulin concentrations at birth. These studies, together with our work on the synthesis of P-enolpyruvate carboxykinase, indicate that the sharp drop in the concentration of insulin may relieve the normal inhibition of enzyme synthesis. This would allow the initial stimulation of enzyme synthesis by the glucagon-mediated rise in the concentration of CAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号