首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact developing embryos of the zebra fish Brachydanio rerio were exposed to [14C]DMSO and [3H]glycerol (1 M in Fish Ringer) to assess the degree of permeation of these cryoprotectants. Glycerol enters the embryo more easily, although reaching only about 8% of the expected equilibrium level after 2 hr at room temperature; DMSO reaches only about 2.5% of this level. In an attempt to identify the barrier to permeation, dechorionated embryos were similarly exposed to isotopic DMSO. Permeation increased severalfold, indicating that the chorion retards the free exchange of solute. Embryos are unaffected by exposure to 1 M DMSO in Fish Ringer at 23 °C for up to 1 hr. The number of embryos hatching after 1-hr exposure to DMSO at varying concentrations was significantly reduced at 1.5 and 2 M. Embryos exposed to 1 M glycerol for 1 hr at 23 °C showed disruption of periblast cells and separation of the blastoderm; it was impossible to remove glycerol either by abrupt or very slow dilution.  相似文献   

2.
3.
The toxic effects of sucrose and the conditions of in-straw glycerol removal after freezing and thawing were studied using Day-3 mouse embryos. At 20 degrees C, exposure to less than or equal to 1.0 M-sucrose for periods up to 30 min had no adverse effects on freshly collected embryos. At 25 and 36 degrees C, however, greater than or equal to 1.0 M-sucrose significantly reduced the developmental potential (P less than 0.001). In the freezing experiments the embryos were placed in 0.5 ml straws containing 40 microliters freezing medium separated by an air bubble from 440 microliters sucrose solution. The straws were frozen rapidly in the vapour about 1 cm above the surface of liquid nitrogen. The post-thaw viability was substantially better after sucrose dilution at 20 degrees C than at 36 degrees C. Mixing the freezing medium with the sucrose diluent immediately after thawing further improved the rate of survival relative to mixing just before freezing (P less than 0.001). The best survival was obtained when the freezing medium contained 3.0 M-glycerol + 0.25 M-sucrose; it was mixed with the diluent after thawing and the glycerol was removed at 20 degrees C. Under such conditions the sucrose concentration in the diluent had no significant effect on the rate of development (0.5 M, 69%; 1.0 M, 73%; 1.5 M, 64%). The results show that during sucrose dilution the temperature should be strictly controlled and suggest that intracellular and extracellular concentrations of glycerol are important in the cryoprotection of embryos.  相似文献   

4.
5.
6.
Cryoprotection by dimethyl sulfoxide and dimethyl sulfone   总被引:1,自引:0,他引:1  
Preservation of cells and tissues at low temperatures requires the presence of effective cryoprotectants with low toxicity to which cells are relatively permeable. Two similar compounds, dimethyl sulfoxide (DMSO) and dimethyl sulfone (DMSO2), exhibit both features for cryoprotectants, yet DMSO is a very effective cryoprotectant while DMSO2 is ineffective. This anomaly was investigated by relating observations on the phase behavior of DMSO and DMSO2 in aqueous solutions to the recovery of human lymphocytes frozen in the presence of these compounds. The lack of cryoprotection in the presence of DMSO2 appears to be due to the precipitation of DMSO2 from the solution at subzero temperatures. The observation of reduced cell recovery after freezing with increasing concentrations of DMSO2 implies that cell damage is related to the amount of solid DMSO2 present. Precipitation of DMSO2 occurs both intra- and extracellularly, but it is argued that intracellular precipitation of DMSO2 is the damaging phenomenon. Cryoprotective compounds are normally selected based on the criteria of low toxicity and permeability to the plasma membrane. An additional condition, solubility, must be included for interpretation of experimental data and for development of effective protocols for cryopreservation.  相似文献   

7.
8.
Stabilization of enveloped viruses by dimethyl sulfoxide.   总被引:9,自引:3,他引:6  
  相似文献   

9.
J M Shaw  A O Trounson 《Cryobiology》1989,26(5):413-421
Two-cell mouse embryos were frozen by direct plunging into liquid nitrogen after a 3-min exposure to solutions containing 0.25 M sucrose with 1.5, 3, or 4.5 M dimethyl sulfoxide (Me2SO), and 0, 4, 8, 16, or 32 mg/ml bovine serum albumin (BSA). In the absence of BSA, significantly more embryos were lost or damaged during freezing and thawing. Increasing the BSA concentration from 4 to 32 mg/ml had no significant effect on subsequent embryo viability in vivo or in vitro. Blastocyst formation in vitro was greater than 90% in embryos exposed to the cryoprotective solutions only. Although development to blastocysts was not significantly different to nonfrozen controls in most groups frozen in 3 and 4.5 M Me2SO (up to 92% blastocysts), it was significantly reduced when embryos were frozen in 1.5 M Me2SO (up to 65% blastocysts). The development to fetuses of embryos frozen in 3 M Me2SO (64 to 74% fetuses) was not significantly different from nonfrozen controls (68 to 79% fetuses) or embryos frozen by a conventional slow cooling method (70%). Frozen thawed two-cell embryos developed into normal adults which were able to reproduce normally. We conclude that this freezing method can efficiently cryopreserve early cleavage stage mouse embryos.  相似文献   

10.
Little is known of the effects of the solvent on hormone-receptor interactions. In the present study the effect of the polar solvent dimethyl sulfoxide on the binding of insulin to its surface receptors on cultured human lymphocytes of the IM-9 line was investigated. At concentrations exceeding 0.1% (v/v), dimethyl sulfoxide produced a dose-related inhibition of 125-I-labeled insulin binding. Insulin binding was totally abolished in 20% dimethyl sulfoxide. This inhibition was immediately present and was totally reversible. Analysis of the data of binding at steady state indicated that the decrease in binding of 125I-labeled insulin was due to a reduced affinity of the insulin receptor without noticeable change in the concentration of receptor sites. Kinetic studies showed that the decreased affinity could largely be accounted for by a decreased association rate constant; effects on dissociation and negative cooperativity of the insulin receptor was affected to a much lesser extent.  相似文献   

11.
The influence of equilibration time before vitrification on the viability of vitrified morula- to blastocyst-stage bovine embryos and in vivo viability of vitrified embryos following transfer to recipients were investigated. In experiment 1, the embryos were exposed to an equilibration solution (50% VSED) containing 12.5% v/v ethylene glycol and 12.5% v/v dimethyl sulfoxide in modified Dulbecco's phosphate buffered saline with 4 mg/ml BSA (m-PBS) for 1, 2 and 5 minutes at room temperature (22 to 24 degrees C). The embryos were then placed in 15mul vitrification solution (VSED) consisting of 25% v/v ethylene glycol and 25% v/v dimethyl sulfoxide in m-PBS and were loaded into 0.25 ml plastic straws at room temperature. After 30 seconds, the straws were placed in liquid nitrogen (LN(2)) vapor for 2 minutes, plunged and stored in LN(2). To thaw, the straws were warmed in water at 20 degrees C for 15 seconds and the contents of the straws were expelled into a plastic dish. The embryos were diluted in 0.5 M sucrose + m-PBS for 5 minutes and were cultured in TCM-199 supplemented with bovine oviductal epithelial tissue. Viability of the embryos was assessed by the forming or reforming of the blastocoele after 24 hours of culture. High in vitro survival rates (73 approximately 90%) of vitrified embryos were obtained after 1 and 2 minute equilibrations, but was reduced (P<0.05) after 5 minute equilibration. In Experiment 2, morula- to blastocyst-stage embryos were vitrified after 1 minute equilibration in 50% VSED and 30 seconds of exposure to VSED. The vitrified-warmed embryos were transferred to recipient heifers at 7 days after estrus (1 embryo per recipient). Five (38%) of 13 (40%) of 10 recipients that had received blastocysts were diagnosed as pregnant using ultrasonography 60 days following transfer.  相似文献   

12.
13.
14.
Solvent conditions play a major role in a wide range of physical properties of proteins in solution. Organic solvents, including dimethyl sulfoxide (DMSO), have been used to precipitate, crystallize and denature proteins. We have studied here the interactions of DMSO with proteins by differential refractometry and amino acid solubility measurements. The proteins used, i.e., ribonuclease, lysozyme, beta-lactoglobulin and chymotrypsinogen, all showed negative preferential DMSO binding, or preferential hydration, at low DMSO concentrations, where they are in the native state. As the DMSO concentration was increased, the preferential interaction changed from preferential hydration to preferential DMSO binding, except for ribonuclease. The preferential DMSO binding correlated with structural changes and unfolding of these proteins observed at higher DMSO concentrations. Amino acid solubility measurements showed that the interactions between glycine and DMSO are highly unfavorable, while the interactions of DMSO with aromatic and hydrophobic side chains are favorable. The observed preferential hydration of the native protein may be explained from a combination of the excluded volume effects of DMSO and the unfavorable interaction of DMSO with a polar surface, as manifested by the unfavorable interactions of DMSO with the polar uncharged glycine molecule. Such an unfavorable interaction of DMSO with the native protein correlates with the enhanced self-association and precipitation of proteins by DMSO. Conversely, the observed conformational changes at higher DMSO concentration are due to increased binding of DMSO to hydrophobic and aromatic side chains, which had been newly exposed on protein unfolding.  相似文献   

15.
16.
In this work, the effects of two non-ionic, non-hydroxyl organic solvents, dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) on the morphology and function of isolated rat hepatic mitochondria were investigated and compared. Mitochondrial ultrastructures impaired by DMSO and DMF were clearly observed by transmission electron microscopy. Spectroscopic and polarographic results demonstrated that organic solvents induced mitochondrial swelling, enhanced the permeation to H+/K+, collapsed the potential inner mitochondrial membrane (IMM), and increased the IMM fluidity. Moreover, with organic solvents addition, the outer mitochondrial membrane (OMM) was broken, accompanied with the release of Cytochrome c, which could activate cell apoptosis signaling pathway. The role of DMSO and DMF in enhancing permeation or transient water pore formation in the mitochondrial phospholipid bilayer might be the main reason for the mitochondrial morphology and function impaired. Mitochondrial dysfunctions induced by the two organic solvents were dose-dependent, but the extents varied. Ethanol (EtOH) showed the highest potential damage on the mitochondrial morphology and functions, followed by DMF and DMSO.  相似文献   

17.
Cryopreservation of chinese hamster ovary cells in tissue culture with either glycerol or dimethyl sulfoxide did not result in chromosome damage as measured by the sister chromatid exchange technique. These results are consistent with earlier negative reports in which the freezing and thawing of mammalian cells did not increase the frequency of micronuclei. No increases in the spontaneous mutation rates of several bacterial strains at different genetic loci were observed during the course of a number of years of storage at -196 degrees C. It is concluded that standard cryopreservation procedures are without genetic hazards. However, the well-documented effects of dimethyl sulfoxide on cell fusion and gene differentiation suggest caution in its use as a cryopreservative for animal and human embryos.  相似文献   

18.
19.
Mouse erythroleukemia cells contain several abundant mRNA species that occur to a considerable extent as untranslated molecules. For two of these species, which code for polypeptides P40 and P21, the proportion of molecules engaged in translation decreases rapidly after exposure of the cells to dimethyl sulfoxide. The extent of utilization of a third species, the P36 mRNA, is not altered. The rate of production of the P40 mRNA does not appear to be affected in the dimethyl sulfoxide-treated cells. The P21 mRNA appears to be produced in increasing amounts, leading to a large accumulation of untranslated molecules in the cytoplasm. The mRNA for actin remains nearly fully utilized during this process, but its intracellular concentration decreases, thus resulting in a reduction in the amounts present in polysomes. The results indicate that some mRNA species in mouse tumor cells are subject to a translational repression process that can serve to regulate selectively the extent of expression of the corresponding genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号