首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The growth stimulating effects of a royal jelly protein (DIII protein) were studied. The DIII protein stimulated the growth of five human lymphocytic cell lines in serum-free conditions. Cell cycle analysis showed that U-937 cells cultured with the DIII protein did not arrest to the G1 phase. Furthermore, a binding assay using europium-labeled DIII protein showed U-937 cells had a large number of low affinity receptors on the cell surface.  相似文献   

2.
Ovomucoid, a major allergen in hen's egg white, consists of three tandem domains. The third domain (DIII) cDNA was sublconed into pGEMT-vector and the resultant plasmid (pGEMDIII) was inserted into a pGEM-4T-2 glutathione-S-transferase (GST) fusion vector. The GST-DIII fusion protein was expressed in Escherichia coli. The 56-residue fragment corresponding to DIII (Leu131-Cys186) was liberated using cyanogen bromide to cleave off the GST that had been hydrolized with thrombin, which left an additional peptide at the terminus of the recombinant protein. Measurement of circular dichroism spectra indicated that the recombinant third domain (DIII*) had a structure that was slightly less compact than that of the native form. Immunoblot analysis showed that the human IgE binding activity of DIII* was identical to that of native DIII, while its activity was significantly increased to IgE antibodies from egg-allergic patients when tested with an enzyme-linked immunosorbent assay. These results indicate that recombinant DIII* has similar sequential epitopes, but may have more predominant conformational epitopes than native analogues. This might have important implications in egg-allergic reactions.  相似文献   

3.
黄莺  刘珊  杨鹏  杜韫  孙志伟  俞炜源 《生物工程学报》2009,25(10):1532-1537
为了表达日本脑炎病毒囊膜蛋白(E蛋白)结构域DⅢ区,了解其作为亚单位疫苗的可能性,本研究根据SA14-14-2病毒株序列(GenBank Accession No.D90195)设计两条引物,以全长JEV感染性克隆pBR-JTF为模板,通过PCR扩增出JEVE蛋白DⅢ的cDNA片段,构建了原核表达载体pET-JEDⅢ,转化大肠杆菌Rosetta(DE3)进行融合表达。融合蛋白为可溶性表达,表达量约占菌体蛋白的75%。用纯化后蛋白免疫新西兰兔和BALB/C鼠,通过ELISA,Western blotting,噬斑减少实验,及乳鼠攻毒实验验证JEDⅢ的抗原性和免疫原性。Western blotting及ELISA结果表明纯化后的表达产物具有良好的抗原性,纯化的JEDⅢ蛋白免疫新西兰兔,可以获得高达1:7×105滴度的抗JEV特异性抗体;JEDⅢ蛋白免疫BALB/C鼠,可以获得1:8.2×104滴度的抗JEV特异性抗体。并且获得1:256滴度的中和抗体,乳鼠攻毒实验能达到75%的保护效果。以上结果说明本研究表达、纯化的重组JEDⅢ蛋白,免疫小鼠以及兔后,能产生抗JEV的特异性抗体,中和性抗体,能够保护部分乳鼠接受毒...  相似文献   

4.
Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.  相似文献   

5.
The domain III of the West Nile virus (WNV) envelope glycoprotein (E) was shown to serve as virus attachment domain to the cellular receptor, and neutralizing Abs have been mapped to this specific domain. In this study, domain III of the WNV E protein (WNV E DIII) was expressed as a recombinant protein and its potential as a subunit vaccine candidate was evaluated in BALB/C mice. Immunization of WNV E DIII protein with oligodeoxynucleotides (CpG-DNA) adjuvant by i.p. injection was conducted over a period of 3 wk. The immunized mice generated high titer of WNV-neutralizing Abs. Murine Ab against WNV E DIII protein was also capable of neutralizing Japanese encephalitis virus. The IgG isotypes generated were predominantly IgG2a in the murine sera against the recombinant protein. Splenocyte cultures from the mice coadministrated with WNV E DIII protein and CpG secreted large amounts of IFN-gamma and IL-2 and showed proliferation of T cells in the presence of WNV E DIII protein. Overall, this study highlighted that recombinant WNV E DIII protein delivered in combination with CpG adjuvant to mice generated a Th1 immune response type against WNV and can serve as a potential vaccine to prevent WNV infection.  相似文献   

6.
Factors controlling the dominance of antibody responses to specific sites in viruses and/or protein antigens are ill defined but can be of great importance for the induction of potent immune responses to vaccines. West Nile virus and other related important human-pathogenic flaviviruses display the major target of neutralizing antibodies, the E protein, in an icosahedral shell at the virion surface. Potent neutralizing antibodies were shown to react with the upper surface of domain III (DIII) of this protein. Using the West Nile virus system, we conducted a study on the immunodominance and functional quality of E-specific antibody responses after immunization of mice with soluble protein E (sE) and isolated DIII in comparison to those after immunization with inactivated whole virions. With both virion and sE, the neutralizing response was dominated by DIII-specific antibodies, but the functionality of these antibodies was almost four times higher after virion immunization. Antibodies induced by the isolated DIII had an at least 15-fold lower specific neutralizing activity than those induced by the virion, and only 50% of these antibodies were able to bind to virus particles. Our results suggest that immunization with the tightly packed E in virions focuses the DIII antibody response to the externally exposed sites of this domain which are the primary targets for virus neutralization, different from sE and isolated DIII, which also display protein surfaces that are cryptic in the virion. Despite its low potency for priming, DIII was an excellent boosting antigen, suggesting novel vaccination strategies that strengthen and focus the antibody response to critical neutralizing sites in DIII.  相似文献   

7.
A previous study has illustrated that the alphaVbeta3 integrin served as the functional receptor for West Nile virus (WNV) entry into cells. Domain III (DIII) of WNV envelope protein (E) was postulated to mediate virus binding to the cellular receptor. In this study, the specificity and affinity binding of WNV E DIII protein to alphaVbeta3 integrin was confirmed with co-immunoprecipitation and receptor competition assay. Binding of WNV E DIII protein to alphaVbeta3 integrin induced the phosphorylation of focal adhesion kinase that is required to mediate ligand-receptor internalization into cells. A novel platform was then developed using the atomic force microscopy to measure this specific binding force between WNV E DIII protein and the cellular receptor, alphaVbeta3 integrin. The single protein pair-interacting force measured was in the range of 45 +/- 5 piconewtons. This interacting force was highly specific as minimal force was measured in the WNV E DIII protein interaction with alphaVbeta5 integrin molecules and heparan sulfate. These experiments provided an insight to quantitate virus-receptor interaction. Force measurement using atomic force microscopy can serve to quantitatively analyze the effect of candidate drugs that modulate virus-host receptor affinity.  相似文献   

8.
Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential.  相似文献   

9.
Alphaviruses such as Semliki Forest virus (SFV) are enveloped viruses that infect cells through a low-pH-triggered membrane fusion reaction mediated by the transmembrane fusion protein E1. E1 drives fusion by insertion of its hydrophobic fusion loop into the cell membrane and refolding to a stable trimeric hairpin. In this postfusion conformation, the immunoglobulin-like domain III (DIII) and the stem region pack against the central core of the trimer. Membrane fusion and infection can be specifically inhibited by exogenous DIII, which binds to an intermediate in the E1 refolding pathway. Here we characterized the properties of the E1 target for interaction with exogenous DIII. The earliest target for DIII binding was an extended membrane-inserted E1 trimer, which was not detectable by assays for the stable postfusion hairpin. DIII binding provided a tool to detect this extended trimer and to define a series of SFV fusion-block mutants. DIII binding studies showed that the mutants were blocked in distinct steps in fusion protein refolding. Our results suggested that formation of the initial extended trimer was reversible and that it was stabilized by the progressive fold-back of the DIII and stem regions.  相似文献   

10.
Two beta-1,4-glucanases (DI and DIII fractions) were purified to homogeneity from the culture filtrate of a cellulolytic bacteria, Cellulomonas sp. CS1-1, which was classified as a novel species belonging to Cellulomonas uda based on chemotaxanomic and phylogenetic analyses. The molecular mass was estimated as 50,000 Da and 52,000 Da for DI and DIII, respectively. Moreover, DIII was identified as a glycoprotein with a pI of 3.8, and DI was identified as a non-glycoprotein with a pI of 5.3. When comparing the ratio of the CMC-saccharifying activity and CMC-liquefying activity, DI exhibited a steep slope, characteristic of an endoglucanase, whereas DIII exhibited a low slope, characteristic of an exoglucanase. The substrate specificity of the purified enzymes revealed that DI efficiently hydrolyzed CMC as well as xylan, whereas DIII exhibited a high activity on microcrystalline celluloses, such as Sigmacells. A comparison of the hydrolysis patterns for pNP-glucosides (DP 2-5) using an HPLC analysis demonstrated that the halosidic bond 3 from the nonreducing end was the preferential cleavage site for DI, whereas bond 2, from which the cellobiose unit is split off, was the preferential cleavage site for DIII. The partial N-terminal amino acid sequences for the purified enzymes were 1Ala-Gly-Ser-Thr-Leu-Gln-Ala-Ala-Ala-Ser-Glu-Ser-Gly-Arg-Tyr15- for DI and 1Ala-Asp-Ser-Asp-Phe-Asn-Leu-Tyr-Val-Ala-Glu-Asn-Ala-Met-Lys15- for DIII. The apparent sequences exhibited high sequence similarities with other bacterial beta-1,4-glucanases as well as beta-1,4-xylanases.  相似文献   

11.
We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459–466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic strain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C. © 1996 Wiley-Liss, Inc.  相似文献   

12.
A protein released by an invasive tumour cell line (SV28) was purified. It then had 20000 times the activity of serum in stimulating the migration of 3T3 cells. At each step in the purification there was a parallel activity that stimulated proliferation of 3T3 cells. The purified material was shown to stimulate proliferation of normal 3T3 cells at low serum concentrations where only transformed 3T3 cells proliferate and to stimulate the growth of 3T3 cultures to above their normal saturation density. The one substance could therefore account for the growth and the invasiveness of the SV28 cells. At limiting dilution of the protein only the cells along the edge of a wounded monolayer incorporate [3H]TdR. The significance of this edge effect to contact inhibition and the possible role of the diffusion boundary layer are discussed.  相似文献   

13.
The dengue virus (DV) envelope (E) protein is important in mediating viral entry and assembly of progeny virus during cellular infection. Domains I and III (DI and DIII, respectively) of the DV E protein are connected by a highly conserved but poorly ordered region, the DI/DIII linker. Although the flexibility of the DI/DIII linker is thought to be important for accommodating the structural rearrangements undergone by the E protein during viral entry, the function of the linker in the DV infectious cycle is not well understood. In this study, we performed site-directed mutagenesis on conserved residues in the DI/DIII linker of the DV2 E protein and showed that the resulting mutations had little or no effect on the entry process but greatly affected virus assembly. Biochemical fractionation and immunofluorescence microscopy experiments performed on infectious virus as well as in a virus-like particle (VLP) system indicate that the DI/DIII linker mutants express the DV structural proteins at the sites of particle assembly near the ER but fail to form infectious particles. This defect is not due to disruption of E's interaction with prM and pr in immature and mature virions, respectively. Serial passaging of the DV2 mutant E-Y299F led to the identification of a mutation in the membrane-proximal stem region of E that fully compensates for the assembly defect of this DI/DIII linker mutant. Together, our results suggest a critical and previously unidentified role for the E protein DI/DIII linker region during the DV2 assembly process.  相似文献   

14.
Chemical modification of ovomucoid third domain (DIII) has been conducted to characterize the binding site residues that determine antigenecity and allergenecity of DIII. Nitration of Tyr, ethoxyformylation of His and succinylation of Lys residues led to a decrease of alpha-helix content of DIII. Modification of His, Tyr, Glu, Asp and Lys residues on DIII resulted in a reduction of human IgG binding activity, but little effect on IgE binding activity. These results suggest that hydrophilic residues appear to be more critical for human IgG binding site, whereas hydrophobic residues may be more important for IgG binding site.  相似文献   

15.
Extracellular matrix (ECM) fragments or cryptic sites unmasked by proteinases have been postulated to affect tissue remodeling and cancer progression. Therefore, the elucidation of their identities and functions is of great interest. Here, we show that matrix metalloproteinases (MMPs) generate a domain (DIII) from the ECM macromolecule laminin-5. Binding of a recombinant DIII fragment to epidermal growth factor receptor stimulates downstream signaling (mitogen-activated protein kinase), MMP-2 gene expression, and cell migration. Appearance of this cryptic ECM ligand in remodeling mammary gland coincides with MMP-mediated involution in wild-type mice, but not in tissue inhibitor of metalloproteinase 3 (TIMP-3)-deficient mice, supporting physiological regulation of DIII liberation. These findings indicate that ECM cues may operate via direct stimulation of receptor tyrosine kinases in tissue remodeling, and possibly cancer invasion.  相似文献   

16.
We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1) infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII) of DENV-1 envelope (E) protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.  相似文献   

17.
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus closely related to the human pathogens including yellow fever virus, dengue virus and West Nile virus. There are currently no effective antiviral therapies for all of the flavivirus and only a few highly effective vaccines are licensed for human use. In this paper, the E protein domain III (DIII) of six heterologous flaviviruses (DENV1-4, WNV and JEV) was expressed in Escherichia coli successfully. The proteins were purified after a solubilization and refolding procedure, characterized by SDS-PAGE and Western blotting. Competitive inhibition showed that all recombinant flavivirus DIII proteins blocked the entry of JEV into BHK-21 cells. Further studies indicated that antibodies induced by the soluble recombinant flavivirus DIII partially protected mice against lethal JEV challenge. These results demonstrated that recombinant flavivirus DIII proteins could inhibit JEV infection competitively, and immunization with proper folding flavivirus DIII induced cross-protection against JEV infection in mice, implying a possible role of DIII for the cross-protection among flavivirus as well as its use in antigens for immunization in animal models.  相似文献   

18.
An undecane peptide (Gly-Ser-Pro-Gly-Ile-Pro-Gly-Ser-Thr-Gly-Met) was genetically attached to the N-terminus of ovomucoid third domain (DIII) to investigate structural characteristics of linear IgE and IgG (B cell) epitopes in DIII with respect to modulation of the immune response towards antigenicity and allergenicity. Balb/c mice were sensitized with native DIII, wild type recombinant DIII, and recombinant modified DIII containing the extra amino acid stretch. The immune responses to the antigens were compared using enzyme-linked immunosorbent assay. Interestingly, specific IgE and IgG levels were suppressed when the modified DIII was used as antigen. This was further confirmed by synthesizing immunodominant IgE and IgG epitopes of DIII on cellulose acetate membrane (SPOTs) and probing them with antibodies raised against DIII antigens. Anti-recombinant wild type DIII anti-serum showed strong binding activities to immunodominant IgE and IgG epitopes, while anti-modified DIII serum did not show any significant binding to the IgE and IgG epitopes. Thus, it is clearly demonstrated that the amino acid stretch in DIII is masking the immune reactive epitope. Genetical attachment of peptides into DIII was found to be effective in reducing the production of specific IgE and IgG antibodies in mice.  相似文献   

19.
Dengue virus (DV) is a flavivirus and its urban transmission is maintained largely by its mosquito vectors and vertebrate host, often human. In this study, investigation was carried out on the involvement of domain III of the envelope (E) glycosylated protein of dengue virus serotypes 1 and 2 (DV-1 and DV-2 DIII) in binding to host cell surfaces, thus mediating virus entry. Domain III protein of flavivirus can also serve as an attractive target in inhibiting virus entry. The respective DV DIII proteins were expressed as soluble recombinant fusion proteins before purification through enzymatic cleavage and affinity purification. The purified recombinant DV-1 and DV-2 DIII proteins both demonstrated the ability to inhibit the entry of DV-1 and DV-2 into HepG2 cells and C6/36 mosquito cells. As such, the DV DIII protein is indeed important for the interaction with cellular receptors in both human and mosquito cells. In addition, this protein induced antibodies that completely neutralized homologous dengue serotypes although not with the same efficiency among the heterologous serotypes. This observation may be of importance when formulating a generic vaccine that is effective against all dengue virus serotypes.  相似文献   

20.
We have purified a cell growth factor from a human lung cancer cell line, T3M-30, which was established in a protein-free chemically defined medium. The factor, designated carcinoma-derived growth factor (CD-GF), stimulated proliferation of a variety of cells, including human leukemia cells, HL-60, and melanoma cells, SK-28. Half-maximum stimulation by the purified CD-GF was achieved at a concentration of 40 ng/ml. In the purified CD-GF, two major protein bands of 24 kDa and 22 kDa were identified on a SDS polyacrylamide gel. The partial amino acid sequences of the 24 kDa protein were determined from two peptide fragments obtained by V8 protease treatment. The partial sequences were identical to those of heavy chain of human ferritin. The activity of the purified CD-GF was coprecipitated completely with a monoclonal antibody to heavy chain of ferritin. Ferritin has been considered to inhibit cell growth. However, human heart ferritin was capable of stimulating the growth of HL-60 cells. These results suggest that CD-GF is related to feritin and ferritin is a growth factor of HL-60 leukemia cells. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号