首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A stable suspension of carbon nanotube (CNT) can be obtained by dispersing the CNT in the solution of the surfactant cetyltrimethylammonium bromide. CNT has promotion effects on the direct electron transfer of hemoglobin (Hb), which was immobilized onto the surface of CNT. The direct electron transfer rate of Hb was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of Hb, with the formal potential (E0) at about −0.343 V (vs. saturated calomel electrode) in the phosphate buffer solution (pH 6.8). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of formal potential (E0) were estimated. The dependence of E0 on solution pH indicated that the direct electron transfer reaction of Hb is a one-electron transfer coupled with a one-proton transfer reaction process. The experimental results also demonstrated that the immobilized Hb retained its bioelectrocatalytic activity to the reduction of H2O2. The electrocatalytic current was proportional to the concentration of H2O2 at least up to 20 mM.  相似文献   

2.
In this work, colloidal laponite nanoparticles were further expanded into the design of the third-generation biosensor. Direct electrochemistry of the complex molybdoenzyme xanthine oxidase (XnOx) immobilized on glassy carbon electrode (GCE) by laponite nanoparticles was investigated for the first time. XnOx/laponite thin film modified electrode showed only one pair of well defined and reversible cyclic voltammetric peaks attributed to XnOx–FAD cofactor at about −0.370 V vs. SCE (pH 5). The formal potential of XnOx–FAD/FADH2 couple varied linearly with the increase of pH in the range of 4.0–8.0 with a slope of −54.3 mV pH−1, which indicated that two-proton transfer was accompanied with two-electron transfer in the electrochemical reaction. More interestingly, the immobilized XnOx retained its biological activity well and displayed an excellent electrocatalytic performance to both the oxidation of xanthine and the reduction of nitrate. The electrocatalytic response showed a linear dependence on the xanthine concentration ranging from 3.9 × 10−8 to 2.1 × 10−5 M with a detection limit of 1.0 × 10−8 M based on S/N = 3.  相似文献   

3.
A simple system is presented for the microscale, direct voltammetry of redox proteins, typically 25 micrograms, in the absence of mediators and/or modifiers. The sample consists of a droplet of anaerobic solution laid onto an oversized disc of nitric-acid-pretreated glassy carbon as the working electrode. Very reproducible, Nernstian responses are obtained with horse heart cytochrome c. The midpoint potential Em (pH 7.0) is dependent on the ionic strength, ranging from $293 mV in 1 mM potassium phosphate to $266 mV in 0.1 M phosphate. At fixed buffer and cytochrome concentrations the magnitude of the voltammetric response is found to be independent of pH over six pH units around neutrality. It is suggested that the response of the present system is not complicated by pH-dependent properties of the electrode surface around physiological pH and, therefore, that the use of this system is practical in biochemically oriented studies. Direct, quasi-reversible responses have also been obtained at pH 7.0 (5 mM phosphate) from Desulfovibrio vulgaris. Hildenborough strain, tetraheme cytochrome c3 (pI = 10.0 at 4 C; 3 X Em = -0.32 mV, Em = -0.26 V), and cytochrome c553 (pI = 9.3; Em = +60 mV), and from Megasphaera elsdenii rubredoxin (pI congruent to 3; Em = -353 mV). The latter protein absorbs onto the glassy carbon surface, thus forming a system with possible applications in the electrochemical study of ferredoxin-linked enzymes.  相似文献   

4.
This study reports direct electron transfer (DET) from immobilized glucose oxidase (GOx) via grafted and electropolymerized 1,10-phenanthroline monohydrate (PMH). The layer of poly-1,10-phenanthroline (PPMH) was gained via electrochemical deposition, which was used to create the PPMH-modified GC-electrode (PPMH/GC-electrode). Further, the GOx was immobilized on the PPMH/GC-electrode. The effect of surface-modification by the PPMH on the electron-transfer between enzyme and electrode-surface and some other electrochemical/analytical-parameters of newly designed enzymatic-electrode were evaluated. The PPMH/GC-electrode showed superior DET to/from flavine adenine dinucleotide cofactor of GOx, while some redox-compounds including ferrocene and K(3)[Fe(CN)(6)] were completely electrochemically inactive on the PPMH/GC-electrode. It was also found that the resulting GOx/PPMH/GC-electrode functioned as a "direct response type" glucose-biosensor. The biosensor showed excellent selectivity towards glucose and demonstrated good operational-stability. According to our best knowledge, this study is the first scientific report on electrochemical-polymerization of PMH on the GC-electrode in non-aqueous media followed by its application in the design of glucose-biosensor.  相似文献   

5.
Gold nanoparticles have been attached onto glassy carbon electrode surface through sulfhydryl-terminated monolayer and characterized by X-ray photoelectron spectroscopy, atomic force microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The gold nanoparticles-attached glassy carbon electrodes have been applied to the immobilization/adsorption of hemoglobin, with a monolayer surface coverage of about 2.1 x 10(-10) mol cm(-2), and consequently obtained the direct electrochemistry of hemoglobin. Gold nanoparticles, acting as a bridge of electron transfer, can greatly promote the direct electron transfer between hemoglobin and the modified glassy carbon electrode without the aid of any electron mediator. In phosphate buffer solution with pH 6.8, hemoglobin shows a pair of well-defined redox waves with formal potential (E0') of about -0.085 V (versus Ag/AgCl/saturated KCl). The immobilized hemoglobin maintained its biological activity, showing a surface controlled electrode process with the apparent heterogeneous electron transfer rate constant (ks) of 1.05 s(-1) and charge-transfer coefficient (a) of 0.46, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide. A potential application of the hemoglobin-immobilized gold nanoparticles modified glassy carbon electrode as a biosensor to monitor hydrogen peroxide has been investigated. The steady-state current response increases linearly with hydrogen peroxide concentration from 2.0 x 10(-6) to 2.4 x 10(-4) M. The detection limit (3sigma) for hydrogen peroxide is 9.1 x 10(-7) M.  相似文献   

6.
This paper is concerned with an investigation of electron transfer between cytochrome P450scc (CYP11A1) and gold nanoparticles immobilised on rhodium-graphite electrodes. Thin films of gold nanoparticles were deposited onto the rhodium-graphite electrodes by drop casting. Cytochrome P450scc was deposited onto both gold nanoparticle modified and bare rhodium-graphite electrodes. Cyclic voltammetry indicated enhanced activity of the enzyme at the gold nanoparticle modified surface. The role of the nanoparticles in mediating electron transfer to the cytochrome P450scc was verified using ac impedance spectroscopy. Equivalent circuit analysis of the impedance spectra was performed and the values of the individual components estimated. On addition of aliquots of cholesterol to the electrolyte bioelectrocatalytic reduction currents were obtained. The sensitivity of the nanoparticle modified biosensor to cholesterol was 0.13 microA microM-1 in a detection range between 10 and 70 microM of cholesterol. This confirms that gold nanoparticles enhance electron transfer to the P450scc when present on the rhodium-graphite electrodes.  相似文献   

7.
In this research, we reported a novel method of forming hemoglobin (Hb)-linoleic acid (LA) Langmuir-Blodgett (LB) monolayer by spreading Hb solution directly onto the subphase covered with a layer of LA. This method is suitable for preparing electrochemical devices with protein-lipid LB film because almost no protein adsorbed on electrode surface before protein-lipid film transferred from air-water interface to electrode, which ensured better electrode activity. The compressibility of Hb-LA monolayer was used to character the phase transition during compression process. Optimal experimental conditions were obtained by analyzing pressure-time, pressure-area and pressure-compressibility curves. The direct electrochemistry of Hb, which was immobilized on Au electrode surface incorporated with LA layer by LB method, was investigated using cyclic voltammetry for the first time. The electrode modified with Hb-LA LB film holds high electrochemical activity and shows a fast direct electron transfer of Hb. Redox peak currents increased linearly with the increase of scan rate, indicating a surface-controlled electrode process. The electron transfer rate constant was 2.68+/-0.45 s-1. As a target of this research, this work provides a new way to prepare biomimetic film and biosensor.  相似文献   

8.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

9.
Using chitosan as an effective linker between CMK-3 and glassy carbon electrode surface, {Hb/CMK-3}n multilayer film-modified electrodes were constructed through layer-by-layer assembly. The morphology of thus-formed {Hb/CMK-3}n film was characterized by scanning electron micrographs, and the interaction of hemoglobin (Hb) with CMK-3 was studied by UV-vis spectroscopy and electrochemical methods. Under optimal conditions, {Hb/CMK-3}6 film showed a couple of stable and well-defined redox peaks at about -377 and -296 mV in pH 7.0 buffers. Furthermore, the {Hb/CMK-3}6 film displayed excellent electrocatalysis to the reduction of both H2O2 and O2. Based on thus-formed film and its direct electron transfer behavior, a novel biosensor was presented for the determination of H2O2 ranging from 1.2 to 57 muM with the detection limit of 0.6microM at S/N=3. CMK-3 provided a desirable matrix for protein immobilization and biosensor preparation.  相似文献   

10.
This paper introduces the use of multi walled carbon nanotubes (MWCNTs) with palladium (Pd) nanoparticles in the electrocatalytic reduction of hydrogen peroxide (H(2)O(2)). We have developed and characterized a biosensor for H(2)O(2) based on Nafion(?) coated MWCNTs-Pd nanoparticles on a glassy carbon electrode (GCE). The Nafion(?)/MWCNTs-Pd/GCE electrode was easily prepared in a rapid and simple procedure, and its application improves sensitive determination of H(2)O(2). Characterization of the MWCNTs-Pd nanoparticle film was performed with transmission electron microscopy (TEM), Raman, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and amperometry (at an applied potential of -0.2V) measurements were used to study and optimize performance of the resulting peroxide biosensor. The proposed H(2)O(2) biosensor exhibited a wide linear range from 1.0 μM to 10 mM and a low detection limit of 0.3 μM (S/N=3), with a fast response time within 10s. Therefore, this biosensor could be a good candidate for H(2)O(2) analysis.  相似文献   

11.
Direct electron transfer process of immobilized horseradish peroxidase (HRP) on a conducting polymer film, and its application as a biosensor for H2O2, were investigated by using electrochemical methods. The HRP was immobilized by covalent bonding between amino group of the HRP and carboxylic acid group of 5,2':5',2"-terthiophene-3'-carboxylic acid polymer (TCAP) which is present on a glassy carbon (GC). A pair of redox peaks attributed to the direct redox process of HRP immobilized on the biosensor electrode were observed at the HRPmid R:TCAPmid R:GC electrode in a 10 mM phosphate buffer solution (pH 7.4). The surface coverage of the HRP immobilized on TCAPmid R:GC was about 1.2 x 10(-12) mol cm(-2) and the electron transfer rate (ks) was determined to be 1.03 s(-1). The HRPmid R:TCAPmid R:GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. The calibration range of H2O2 was determined from 0.3-1.5 mM with a good linear relation.  相似文献   

12.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme.  相似文献   

13.
Direct electron transfer of glucose oxidase promoted by carbon nanotubes   总被引:11,自引:0,他引:11  
A stable suspension of carbon nanotubes (CNT) was obtained by dispersing the CNT in a solution of surfactant, such as cetyltrimethylammonium bromide (CTAB, a cationic surfactant). CNT (dispersed in the solution of 0.1% CTAB) has promotion effects on the direct electron transfer of glucose oxidase (GOx), which was immobilized onto the surface of CNT. The direct electron transfer rate of GOx was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of GOx, with a midpoint potential of about -0.466 V (vs SCE (saturated calomel electrode)) in the phosphate buffer solution (PBS, pH 6.9). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of midpoint potential (E1/2) were estimated. The dependence of E1/2 on solution pH indicated that the direct electron transfer reaction of GOx is a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOx retained its bioelectrocatalytic activity for the oxidation of glucose, suggesting that the electrode may find use in biosensors (for example, it may be used as a bioanode in biofuel cells). The method presented here can be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

14.
Cao D  Hu N 《Biophysical chemistry》2006,121(3):209-217
Alternate adsorption of negatively charged Fe(3)O(4) nanoparticles from their pH 8.0 aqueous dispersions and positively charged hemoglobin (Hb) from its pH 5.5 buffers on solid substrates resulted in the assembly of {Fe(3)O(4)/Hb}(n) layer-by-layer films. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor and confirm the film growth. A pair of well-defined, nearly reversible CV peaks for HbFe(III)/Fe(II) redox couples was observed for {Fe(3)O(4)/Hb}(n) films on pyrolytic graphite (PG) electrodes. Although the multilayered films grew linearly with the number of Fe(3)O(4)/Hb bilayers (n) and the amount of Hb adsorbed in each bilayer was generally the same, the electroactive Hb could only extend to 6 bilayers. This indicates that only those Hb molecules in the first few bilayers closest to the electrode surface are electroactive. The electrochemical parameters such as the apparent heterogeneous electron transfer rate constant (k(s)) were estimated by square wave voltammetry (SWV) and nonlinear regression. The Soret absorption band position of Hb in {Fe(3)O(4)/Hb}(6) films showed that Hb in the films retained its near native structure in the medium pH range. The {Fe(3)O(4)/Hb}(6) film electrodes also showed good biocatalytic activity toward reduction of oxygen, hydrogen peroxide, trichloroacetic acid, and nitrite. The electrochemical reduction overpotentials of these substrates were lowered significantly by {Fe(3)O(4)/Hb}(n) films.  相似文献   

15.
Succinate:quinone oxidoreductase (SQR) from Bacillus subtilis consists of two hydrophilic protein subunits comprising succinate dehydrogenase, and a di-heme membrane anchor protein harboring two putative quinone binding sites, Q(p) and Q(d). In this work we have used spectroelectrochemistry to study the electronic communication between purified SQR and a surface modified gold capillary electrode. In the presence of two soluble quinone mediators the midpoint potentials of both hemes were revealed essentially as previously determined by conventional redox titration (heme b(H), E(m)=+65 mV, heme b(L), E(m)=-95 mV). In the absence of mediators the enzyme still communicated with the electrode, albeit with a reproducible hysteresis, resulting in the reduction of both hemes occurring approximately at the midpoint potential of heme b(L), and with a pronounced delay of reoxidation. When the specific inhibitor 2-n-heptyl-4 hydroxyquinoline N-oxide (HQNO), which binds to Q(d) in B. subtilis SQR, was added together with the two quinone mediators, rapid reductive titration was still possible which can be envisioned as an electron transfer occurring via the HQNO insensitive Q(p) site. In contrast, the subsequent oxidative titration was severely hampered in the presence of HQNO, in fact it completely resembled the unmediated reaction. If mediators communicate with Q(p) or Q(d), either event is followed by very rapid electron redistribution within the enzyme. Taken together, this strongly suggests that the accessibility of Q(p) depended on the redox state of the hemes. When both hemes were reduced, and Q(d) was blocked by HQNO, quinone-mediated communication via the Q(p) site was no longer possible, revealing a redox-dependent conformational change in the membrane anchor domain.  相似文献   

16.
The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5–5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose.  相似文献   

17.
钟雯  蒋永光  石良 《微生物学报》2020,60(9):2030-2038
冰川占地球陆地表面的11%,储存了约104 Pg有机碳。随着冰川消融有机碳被释放至下游生态系统中,刺激海洋、湖泊和径流的初级生产力进而影响其生态系统。微生物参与的固碳过程决定了冰川有机碳储量及向下游输出碳量。研究冰川固碳微生物群落构成及其生态功能,可为估算冰川碳积累量和保护下游生态系统提供数据基础。本文综述了冰川碳储量和释放量、冰川生态系统主要固碳途径、固碳微生物群落组成、固碳速率以及影响固碳速率的环境因素。最后基于研究现状展望了冰川生态系统固碳微生物的未来研究和发展方向。  相似文献   

18.
Direct electrochemical and electrocatalytic behaviors of hemoglobin (Hb) immobilized on carbon paste electrode (CPE) by a silica sol-gel film derived from tetraethylorthosilicate (TEOS) were investigated for the first time. Hb/sol-gel film modified electrodes showed a pair of well-defined and nearly reversible cyclic voltammetric peaks for Hb Fe(III)/Fe(II) redox couple at about -0.312 V (versus Ag/AgCl) in a pH 7.0 phosphate buffer. The formal potential of Hb heme Fe(III)/Fe(II) couple varied linearly with the increase of pH in the range of 5.0-10.0 with a slope of 49.44 mV pH(-1), which suggests that a proton transfer is accompanied with each electron transfer (ET) in the electrochemical reaction. The immobilized Hb displayed the features of peroxidase and gave excellent electrocatalytic performance to the reduction of O2, NO2(-) and H2O2. The calculated apparent Michaelis-Menten constant was 8.98 x 10(-4)M, which indicated that there was a large catalytic activity of Hb immobilized on CPE by sol-gel film toward H2O2. In comparison with other electrodes, the chemically modified electrodes, used in this direct electrochemical study of Hb, are easy to be fabricated and rather inexpensive. Consequently, the Hb/sol-gel film modified electrode provides a convenient approach to perform electrochemical research on this kind of proteins. It also has potential use in the fabrication of the third generation biosensors and bioreactors.  相似文献   

19.
The direct electrochemistry of hemoglobin (Hb) immobilized on a hexagonal mesoporous silica (HMS)-modified glassy carbon electrode was described. The interaction between Hb and the HMS was investigated using UV-Vis spectroscopy, FT-IR, and electrochemical methods. The direct electron transfer of the immobilized Hb exhibited two couples of redox peaks with the formal potentials of -0.037 and -0.232 V in 0.1 M (pH 7.0) PBS, respectively, which corresponded to its two immobilized states. The electrode reactions showed a surface-controlled process with a single proton transfer at the scan rate range from 20 to 200 mV/s. The immobilized Hb retained its biological activity well and displayed an excellent response to the reduction of both hydrogen peroxide (H2O2) and nitrate (NO2-). Its apparent Michaelis-Menten constants for H2O2 and NO2- were 12.3 and 49.3 microM, respectively, showing a good affinity. Based on the immobilization of Hb on the HMS and its direct electrochemistry, two novel biosensors for H2O2 and NO2- were presented. Under optimal conditions, the sensors could be used for the determination of H2O2 ranging from 0.4 to 6.0 microM and NO2- ranging from 0.2 to 3.8 microM. The detection limits were 1.86 x 10(-9) M and 6.11 x 10(-7) M at 3sigma, respectively. HMS provided a good matrix for protein immobilization and biosensor preparation.  相似文献   

20.
Present study concerns modulating the electron transfer properties of gold nanoparticles through amino acid induced coupling among them. In addition to conductivity, the amino functionalization of the nanoparticles results in enhanced activity and operational stability of the biosensor fabricated using the same. Nanoparticles synthesized using amino acid as reducing agent (average diameter-20 nm), incorporate the natural coupling property of amino acids and are seen to align in a chain-like arrangement. The coupling of the individual nanoparticles to form chain like structure was confirmed by both absorption spectroscopy as well as transmission electron microscopy. The glucose biosensor developed by adsorption of glucose oxidase (GOx) enzyme onto these coupled gold nanoparticles showed enhanced efficiency as compared to the one with glucose oxidase immobilized onto gold nanoparticles synthesized using the conventional method (trisodium citrate as reducing agent). The fabricated biosensor demonstrated a wide linear concentration range from 1 μM-5mM and a high sensitivity of 47.2 μA mM(-1) cm(-2). Also, an enhanced selectivity to glucose was observed with negligible interference in the physiological range, from easily oxidizable biospecies, e.g. uric acid and ascorbic acid. Furthermore, the electrochemical biosensor has excellent long term stability- retaining greater than 85% of the biosensor activity up to 60 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号