首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc is concentrated in certain CNS excitatory tracts, especially in hippocampal mossy fibres where it has been suggested to modulate synaptic transmission and plasticity. Using rat mossy fibre synaptosomes depolarized by 4-aminopyridine, we show here that low zinc concentrations restore the membrane potential and reduce glutamate release. Both effects arose from activation of ATP-sensitive potassium channels (KATP), since they were mimicked by the KATP opener diazoxide and antagonized by the KATP blocker tolbutamide. Using recombinant channels expressed in COS-7 cells, we confirmed that micromolar zinc did activate KATP of the type found in hippocampus. We tested the hypothesis that this action of zinc could be beneficial during an ischaemic challenge by using organotypic hippocampal slice cultures. When zinc was applied at micromolar concentrations during a brief anoxic-hypoglycaemic episode, it significantly attenuated the ensuing neuronal death, whereas chelation of endogenous zinc markedly aggravated cell damage. Protective effect of zinc was mediated through KATP, as was shown by using the opener diazoxide and the blocker tolbutamide. Thus, by activating pre-synaptic KATP channels, zinc protects neurones from hyper-excitation, excessive transmitter release and exitotoxicity, and may thus act as an endogenous neuroprotector in conditions such as epilepsy or stroke.  相似文献   

2.
AimsThe aim of this study was to investigate the effect of iron or/and zinc supplementation and termination of this treatment on the antioxidant defence of the male reproductive system and sperm viability in rats.MethodsThe study consisted of 3 stages: I) 4-week adaptation to the diets (C-control or D-iron deficient); II) 4-week iron and/or zinc supplementation (10-times more than in the C diet of iron: CSFe, DSFe; zinc: CSZn, DSZn; or iron and zinc: CSFeZn, DSFeZn; and III) 2-week post-supplementation period (the same diets as during stage I). Parameters of antioxidant status (total antioxidant capacity and SOD, GPx, and CAT activiy), oxidative damage (lipid and protein peroxidation), and sperm viability were measured.ResultsSimultaneous iron and zinc supplementation compared to iron supplementation (CSFeZn vs CSFe) increased SOD activity in the testes and decreased the level of malondialdehyde in the epididymis after stage II, and increased the percentage of live sperm after stage III. After discontinuation of the iron and zinc supplementation and a return to the control diet, the following was observed a decrease of SOD activity in the testes and GPx activity in the epididymis, and a increase malondialdehyde concentration in prostates. After stage III, in DSFeZn vs DSFe rats, an increase of SOD and CAT activity in the epididymis was found.ConclusionZinc supplementation simultaneous with iron may protect the male reproductive system against oxidative damage induced by high doses of iron and may have a beneficial effect on sperm viability. The effect of this supplementation was observed even two weeks after the termination of the intervention.  相似文献   

3.
The aim of this research was to investigate whether combined iron/zinc supplementation is more beneficial than iron supplementation alone from the perspective of the lipid profile in rats. The study was conducted on 6-week male Wistar rats in 3 stages: (1) 4-week adaptation to the diets: C (AIN-93M) and D (mineral mix without iron); (2) 4-week supplementation: 10-times more iron or iron and zinc compared to C; (3) 2-week post-supplementation period (the same diets as in the first stage). The iron and zinc content in serum was measured using ASA. Total cholesterol (TC), HDL cholesterol (HDL-C), non-HDL cholesterol (non-HDL-C) and triglycerides (TG) were determined. After 4-week supplementation (stage II) and post-supplementation (stage III) periods combined iron/zinc supplementation decreased HDL-C and increased non-HDL-C concentrations in control rats, and in contrast to iron supplementation alone TG concentration decreased. After stage II combined iron/zinc supplementation did not result in increased non-HDL-C and TG concentrations in iron deficient rats in contrast to iron supplementation alone. After stage III both iron and simultaneous iron/zinc supplementation were the cause of TC increase which was the result of the increase of non-HDL-C but not HDL-C concentration in iron deficient rats. In conclusion, there were no beneficial effects of simultaneous iron and zinc supplementation on the lipid profile of rats fed control and iron deficient diets. Combined iron and zinc supplementation may contribute to lower HDL-C and higher non-HDL-C concentrations.  相似文献   

4.
Selenium is a main component of glutathione peroxidase (GPX), a key antioxidant enzyme. Other elements, such as zinc, copper, manganese and iron, are also involved in the pathogenesis of oxidative damage as well as in other important metabolic pathways. The effects of selenium supplementation on the metabolism of these elements have yield controversial results .The aim of this study is to analyse the effects of selenium supplementation on liver, muscle and urinary excretion of zinc, copper, iron and manganese in a situation of oxidative stress, such as protein deficiency. The experimental design included four groups of adult male Sprague–Dawley rats, which received the Lieber–DeCarli control diet, an isocaloric 2 % protein-containing diet and another similar two groups to which selenomethionine (6 mg/l liquid diet) was added. After sacrifice (5 weeks later), muscle, liver and serum selenium were determined, as well as muscle, liver and urinary zinc, copper, manganese and iron and liver GPX activity and liver malondialdehyde. Selenium addition led to decreased liver copper, increased muscle copper, increased copper excretion and increased liver iron, whereas zinc and manganese parameters were essentially unaltered. Muscle, liver and serum selenium were all significantly correlated with liver GPX activity.  相似文献   

5.
Iron is a necessary substrate for neuronal function throughout the lifespan, but particularly during development. Early life iron deficiency (ID) in humans (late gestation through 2-3 yr) results in persistent cognitive and behavioral abnormalities despite iron repletion. Animal models of early life ID generated using maternal dietary iron restriction also demonstrate persistent learning and memory deficits, suggesting a critical requirement for iron during hippocampal development. Precise definition of the temporal window for this requirement has been elusive due to anemia and total body and brain ID inherent to previous dietary restriction models. To circumvent these confounds, we developed transgenic mice that express tetracycline transactivator regulated, dominant negative transferrin receptor (DNTfR1) in hippocampal neurons, disrupting TfR1 mediated iron uptake specifically in CA1 pyramidal neurons. Normal iron status was restored by doxycycline administration. We manipulated the duration of ID using this inducible model to examine long-term effects of early ID on Morris water maze learning, CA1 apical dendrite structure, and defining factors of critical periods including parvalbmin (PV) expression, perineuronal nets (PNN), and brain-derived neurotrophic factor (BDNF) expression. Ongoing ID impaired spatial memory and resulted in disorganized apical dendrite structure accompanied by altered PV and PNN expression and reduced BDNF levels. Iron repletion at P21, near the end of hippocampal dendritogenesis, restored spatial memory, dendrite structure, and critical period markers in adult mice. However, mice that remained hippocampally iron deficient until P42 continued to have spatial memory deficits, impaired CA1 apical dendrite structure, and persistent alterations in PV and PNN expression and reduced BDNF despite iron repletion. Together, these findings demonstrate that hippocampal iron availability is necessary between P21 and P42 for development of normal spatial learning and memory, and that these effects may reflect disruption of critical period closure by early life ID.  相似文献   

6.
Iron supplementation has been suggested as a strategy for prevention and treatment of iron deficiency (ID) and iron deficiency anemia (IDA) in many countries, but non-compliance of daily regimens and common dosage remain as major challenges. The aim of this study was to investigate the effects of low dose once weekly iron supplementation in adolescent girls. The study was designed as a community-based, randomized, supplementation trial. The initial sample consisted of 200 female high school students, aged 14–16 years old, of whom 193 students concluded the study. They were randomly selected and assigned into either iron-supplemented group (ISG) or iron-unsupplemented group (IUG). The ISG received 150 mg ferrous sulfate once weekly for 16 weeks, whereas the IUG received nothing. Weight, height, and hematological parameters were measured and compared between the two groups before and after the intervention. There was no significant difference between the initial measures of the two groups before the intervention. After 16 weeks of intervention, mean of hemoglobin and serum ferritin improved significantly in ISG compared to IUG. At the beginning of the study, percent of anemia, IDA, and ID in ISG were 12.5%, 8.3%, and 30.2%, whereas these figures for IUG in this period of study were 14.4, 10.3, and 38.2, respectively, which were not significantly different between the two groups. However, percentages of the above items at the end of study in ISG were 2.1%, 0%, and 21.9%, respectively. In contrast to IUG, all cases of IDA were abolished in the ISG. Our study showed that once weekly supplementation of 150 mg ferrous sulfate for 16 weeks significantly improved iron status in female adolescents and effectively treated IDA. There is no need for higher dosage of iron for supplementation that may cause adverse effects and bear higher costs.  相似文献   

7.
Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.  相似文献   

8.
We evaluated the effect of one year of supplementation with iron plus zinc (12 mg/day of Fe+++ and 12.5 mg/day of Zn++), zinc alone (12.5 mg/day of Zn++) and placebo on growth and on the iron, zinc, copper and selenium tissue contents in 30 well-selected children of short stature (16 M and 14 F; 4-11 years old). Before and after supplementation, we measured the concentrations of iron, transferrin, ferritin, zinc and copper in serum, of zinc in erythrocytes and leukocytes, and of zinc, copper and selenium in hair, as well as glutathione peroxidase activity in erythrocytes. Before supplementation, ferritin and serum, erythrocyte and hair zinc contents were significantly lower than in age-matched controls, while the other measured indices were in the normal range. Iron plus zinc supplementation caused an improvement in growth rate in all subjects, i.e., the median Z-score increased from -2.22 +/- 0.45 to -0.64 +/- 0.55; (p < 0.01). In the zinc-supplemented group, only the subjects whose ferritin levels were higher than 20 ng/L before supplementation showed a similar improvement of growth rate. Iron plus zinc supplementation could be a reasonable treatment in short, prepubertal children affected by marginal zinc and iron deficiency.  相似文献   

9.
Puberty associated with intense physical activity results in oxidation stress. Zinc supplementation may benefit antioxidant capacity although it may also affect iron and copper status. This study evaluated the effect of zinc supplementation on antioxidant, zinc and copper status of physically active male football players (13 years ± 0.4 years), divided in two groups and studied during 12 weeks: Zn‐supplemented (Zn‐SUP, 22 mg Zn d?1 as zinc gluconate, n = 21) and placebo (PLA, n = 26). At baseline, there was no significant difference in biochemical indices between the two groups. After treatment, plasma zinc and erythrocyte iron increased in both groups (p < 0.001); urinary zinc increased (p < 0.001) only in Zn‐SUP, and erythrocyte zinc decreased (p = 0.002) only in PLA. Plasma iron and copper decreased (p = 0.01 and p = 0.015, respectively) only in Zn‐SUP. Plasma ferric‐reducing ability and plasma conjugated dienes increased, and erythrocyte osmotic fragility decrease in both groups, although the latter two were significantly lower in Zn‐SUP compared to PLA (p < 0.01). In conclusion, our study indicates that the use of 22 mg d?1 of supplemental zinc during 12 week in adolescent athletes did not affect growth, improved markers of antioxidant status but reduced plasma iron and copper. Therefore, it appears that the use of zinc supplementation by healthy adolescent athletes benefits their antioxidant capacity but impairs copper and iron nutritional status. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
Copper, zinc and iron are essential metals for different physiological functions, even though their excess can lead to biological damage. This review provides a background of toxicity related to copper, iron and zinc excess, biological mechanisms of their homeostasis and their respective roles in the apoptotic process. The antioxidant action of metallothionein has been highlighted by summarizing the most important findings that confirm the role of zinc in cellular protection in relation to metallothionein expression and apoptotic processes. In particular, we show that a complex and efficient antioxidant system, the induction of metallothionein and the direct action of zinc have protective roles against oxidative damage and the resulting apoptosis induced by metals with redox proprieties. In addition, to emphasize the protective effects of Zn and Zn-MT in Cu and Fe-mediated oxidative stress-dependent apoptosis, some aspects of apoptotic cell death are shown. The most widely used cytochemical techniques also have been examined in order to critically evaluate the available data from a methodological point of view. The observations on the role of Zn and MT could potentially develop new applications for this metal and MT in biomedical research.  相似文献   

13.
Iron deficiency (ID) and iron deficiency anemia (IDA) are global public health problems that differentially impact pregnant women and infants in low and middle income countries. IDA during the first 1000 days of life (prenatally through 24 months) has been associated with long term deficits in children's socio-emotional, motor, cognitive, and physiological functioning. Mechanisms linking iron deficiency to children's development may include alterations to dopamine metabolism, myelination, and hippocampal structure and function, as well as maternal depression and unresponsive caregiving, potentially associated with maternal ID. Iron supplementation trials have had mixed success in promoting children's development. Evidence suggests that the most effective interventions to prevent iron deficiency and to promote early child development begin early in life and integrate strategies to ensure adequate iron and nutritional status, along with strategies to promote responsive mother-child interactions and early learning opportunities.  相似文献   

14.
Iron-deficiency anemia (IDA) is the most common nutritional deficiency in childhood throughout the world. Although it has been shown that IRA is associated with elevated plasma copper and depleted zinc levels in children, there are conflicting results on the effect of iron supplementation on the absorption of these elements. The aim of this study was to investigate the effects of ferrous and ferric iron supplementation on the trace element status in children (n=25, aged 8-168 mo) with IDA. Fourteen of them were treated with ferric hydroxide-polymaltose complex (Ferrum, Vifor, Switzerland) (6 mg/d in the first 3 mo for initial therapy and 3 mg/kg for 3 mo as maintenance); the others were treated with a ferrous sulfate complex (FerroSanol, Schwarz, Germany) (6 mg/d in the first 3 mo for initial therapy and 3 mg/kg for 3 mo as maintenance). Plasma copper, zinc, and ceruloplasmin levels as well as hematological parameters were determined at baseline and the first, third, and sixth month of the treatment period. The hemoglobin and iron levels of patients in both groups were higher in the first and sixth months compared to baseline. Although the ceruloplasmin levels were depleted (48.9 mg/dL vs 41.4 mg/dL, p=0.035) during ferrous iron treatment, the copper and zinc levels remained unchanged. On the other hand, ferric iron supplementation led to an increase in zinc levels in the sixth month of treatment (0.77 mg/L vs 1.0 mg/L, p=0.021). The plasma copper levels were lower in the ferrous iron-treated group at the end of the first month of treatment than in the ferric irontreated group (1.06 mg/L vs 1.29 mg/L, p=0.008). In conclusion, our data showed that copper and ceruloplasmin metabolisms were affected by ferrous iron supplementation, whereas ferric iron kept them to normal levels of zinc, possibly by affecting their absorption. We conclude that the copper and zinc status of patients with IDA should be taken into consideration before and after iron therapy.  相似文献   

15.
Zn对细胞保护作用机理的研究   总被引:16,自引:0,他引:16  
应用扫描质子微探针和同步辐射x荧光分析技术测定了细胞中元素的分布和组成,为确定Zn是细胞结构成分提供了直接的实验依据.用上述核技术结合有关生化指标,分析测定了正常和损伤细胞(脂质过氧化损伤)中Fe,Zn和丙二醛、SH基含量变化的相互关系.实验结果表明,当细胞发生脂质过氧化损伤时,Fe含量和丙二醛含量同步增高,而Zn含量和SH基量则降低.给细胞补充Zn后,提高了细胞质膜中的Zn含量,SH基量也随之增加,同时丙二醛量降低.提示Zn保护细胞完整性的作用机理之一是控制脂质过氧化作用.Zn可保护膜蛋白的SH基,减少和阻止被Fe所催化的过氧化反应.  相似文献   

16.
The aim of this study was to establish the possible effects of the sampling protocol (between-breast, within-feed, and diurnal differences) and the mother’s personal factors (age, parity, iron supple-mentation, smoking habits, and lactation period) on the copper, iron, and zinc contents in human milk. One hundred thirty-six human milk samples identified by their origin and sampling conditions were analyzed. The samples were obtained from the 2nd to 15th d postpartum from 62 women. The data on the individuals required for the study were available. Mineral determinations were analyzed by flame atomic absorption spectrometry following a standarized protocol. The results showed that iron contents were higher in hind-milk samples and at the nighttime feeding and depended on the breast from which the sample was taken. The copper and zinc concentrations showed no significant variations. There was no significant relationship among the mothers’ age, parity, smoking habits, iron supplementation, and copper content. Milk from older women had lower zinc contents than that of younger women. Increased amounts of iron were found in multiparous women. Between colostrum and transitional milk, a sharp decrease in zinc content was observed, whereas copper and iron contents remained constant. All of these results make it clear that standardized sampling protocols are needed in order to obtain comparable values.  相似文献   

17.
Nicotinic acid has functional groups capable of forming complexes with trace metals. The present study examines the effect of nicotinic acid supplementation on absorption and utilization of zinc and iron. In vitro zinc uptake by human erythrocytes was studied using blood samples of 10 healthy subjects. It was found that 8 moles nicotinic acid or NADP increased 65Zn uptake by 38.9% and 43.1% in fasting, and by 70.9% and 28.1% in postprandial conditions. In animal experiments, nicotinic acid supplementation to finger millet based diet resulted in significant enhancement of percent zinc absorption, liver zinc and growth of weanling mice (P < 0.05). When mice were fed with nicotinic acid-deficient, -adequate and -excess synthetic diets for four weeks it was observed that, in comparison with the nicotinic acid-deficient diet, percent zinc absorption, intestinal zinc, percent haeomoglobin and liver iron increased significantly under nicotinic acid-adequate and -excess conditions. The results obtained suggested that nicotinic acid, in addition to its known effect on growth and metabolism, may be playing an important role in enhancing zinc and iron utilization.  相似文献   

18.
The pulmonary vascular bed was embolized with glass beads in small doses that induced no significant changes in pulmonary arterial pressure in anesthetized cats. We analyzed changes in internal diameter (ID), flow velocity, and volume flow of embolized and nonembolized arteries simultaneously with ID changes of small veins. In embolized arteries, with 180-, 300-, and 500-microns beads, ID constricted maximally in just proximal portions of the plug by 22, 23, and 17%, respectively, but with 840-microns beads, no ID constriction occurred. With 50-microns beads, the maximum ID constriction occurred in arteries of 200-300 microns but not in those of 100-200 microns. The constriction decreased in the upstream larger arteries and disappeared in those greater than 800 microns ID. In the nonembolized arteries no ID change occurred. Veins constricted slightly compared with arteries. By heparin pretreatment, ID constriction was slightly attenuated in arteries and was almost abolished in veins, whereas it was not affected with hexamethonium bromide. At a branching site, volume flow to an embolized artery decreased because of a decrease in ID and flow velocity, whereas volume flow to a nonembolized artery increased because of an increase in flow velocity. We concluded that pulmonary microembolization induced a vasoconstriction chiefly in small pulmonary arteries upstream to the plug. After embolization, blood flow was locally redistributed from an embolized to a nonembolized artery at a branching site. Arterial vasoconstriction may be mediated chiefly by local mechanical factors.  相似文献   

19.
Iron is required for neuronal function but in excess generates neurodegeneration. Although the iron homeostasis machinery in neurons has been described extensively, little is known about the influence of corticosterone on the iron homeostasis in neurons. In this study, we characterized the response of hippocampal neurons to a model of progressive corticosterone condition. We found that increasing extracellular corticosterone-induced iron accumulation killed a large proportion of neurons. Iron concentrations were significantly increased in the corticosterone-treated cells. In the hippocampal neurons, corticosterone decreased expression of ferritin and increased expression of transferrin receptor1 (TfR1), iron regulatory protein1 (IRP1), and divalent metal transporter 1. Corticosterone-induced elevation of IRP1 expression can cause increase of TfR1 and decrease of ferritin expression, which further leads to iron accumulation in hippocampal neurons and subsequently increases the oxidative damage of the neurons; it is indicated that corticosterone might be an important reason for iron deposition-caused neurodegenerative diseases.  相似文献   

20.
Iron is required for neuronal function but in excess generates neurodegeneration. Although the iron homeostasis machinery in neurons has been described extensively, little is known about the influence of corticosterone on the iron homeostasis in neurons. In this study, we characterized the response of hippocampal neurons to a model of progressive corticosterone condition. We found that increasing extracellular corticosterone-induced iron accumulation killed a large proportion of neurons. Iron concentrations were significantly increased in the corticosterone-treated cells. In the hippocampal neurons, corticosterone decreased expression of ferritin and increased expression of transferrin receptor1 (TfR1), iron regulatory protein1 (IRP1), and divalent metal transporter 1. Corticosterone-induced elevation of IRP1 expression can cause increase of TfR1 and decrease of ferritin expression, which further leads to iron accumulation in hippocampal neurons and subsequently increases the oxidative damage of the neurons; it is indicated that corticosterone might be an important reason for iron deposition-caused neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号