首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Price TO  Samson WK  Niehoff ML  Banks WA 《Peptides》2007,28(12):2372-2381
Nesfatin-1 has recently been identified as a hypothalamic and brain stem peptide that regulates feeding behavior. Here, we determined the ability of nesfatin-1 to cross the blood–brain barrier (BBB) of mice. We used multiple-regression analysis to determine that radioactively labeled nesfatin-1 injected intravenously entered the brain. The entry rate (Ki) of 131I-nesfatin-1 from blood-to-brain was 0.20 ± 0.02 μl/g min. This modest rate of entry was not inhibited by the administration of nonradioactive nesfatin-1, suggesting that BBB transport of nesfatin-1 into the brain is by a nonsaturable mechanism. High performance liquid chromatography (HPLC) and acid precipitation showed that most of the injected radiolabeled nesfatin-1 reached the brain as intact peptide, and capillary depletion with vascular washout revealed that 67% of 131I-nesfatin-1 crossed the BBB to reach the brain parenchyma. Efflux of labeled nesfatin-1 from brain back into blood was by way of bulk flow. These findings demonstrate that nesfatin-1 crosses the BBB in both the blood-to-brain and brain-to-blood directions by nonsaturable mechanisms.  相似文献   

2.
The fasting polypeptide FGF21 can enter brain from blood   总被引:3,自引:0,他引:3  
Hsuchou H  Pan W  Kastin AJ 《Peptides》2007,28(12):2382-2386
FGF21 recently has been proposed as a missing link in the biology of fasting, raising the question of whether it directly reaches the brain. We used multiple time-regression analysis to quantify the influx rate of this polypeptide across the blood–brain barrier (BBB), size-exclusion chromatography to examine degradation, capillary depletion to differentiate entry into brain parenchyma from retention in the microvasculature, and measurement of efflux rate to determine a possible confounding effect on measurement of entry. FGF21 was 94% intact in serum and 75% in brain 10 min after intravenous bolus delivery. Its influx rate was 0.23 ± 0.12 μl/g-min, nearly four times faster than that of the vascular marker albumin. At 10 min, about 0.5% of the administered FGF21 was present in a gram of brain tissue. Of this, 70% reached the parenchyma of the brain. Co-injection of excess FGF21 failed to inhibit the influx, showing a lack of saturation. Efflux, which occurred at the same rate as the bulk reabsorption of cerebrospinal fluid, also was not saturable. In summary, FGF21 shows significant, non-saturable, unidirectional influx across the BBB.  相似文献   

3.
Goebel M  Stengel A  Wang L  Taché Y 《Peptides》2011,32(1):36-43
Nesfatin-1 is well established to reduce food intake upon brain injection in rats, while in mice its anorexigenic action and brain expression are largely unexplored. We characterized the influence of intracerebroventricular (icv) and peripheral (intraperitoneal, ip, subcutaneous, sc) injection of nesfatin-1 on dark phase ingestive behavior using an automated feeding monitoring system and co-localized NUCB2/nesfatin-1 immunoreactivity in the associated brain areas. Nesfatin-1 (0.3, 1 or 3 μg/mouse, icv) caused a dose-related reduction of 4-h dark phase food intake by 13%, 27%, and 46% respectively. Nesfatin-1 (3 μg/mouse, icv) action had a 2-h delayed onset, 82% peak inhibition occurring at 3-4 h post-injection and was long lasting (30% reduction for 12 h period post-injection). Nesfatin-1 (3 μg/mouse, icv)-treated mice had a 46% lower meal frequency associated with 2-times longer inter-meal intervals and a 35% reduction in meal size compared to vehicle during the 1-4 h post-injection (p < 0.05). NUCB2/nesfatin-1-immunopositive neurons were found in hypothalamic (supraoptic, paraventricular, arcuate, dorsomedial, lateral) and brainstem (dorsal vagal complex) feeding regulatory nuclei. When injected peripherally, neither food intake nor feeding microstructure parameters were altered. These results demonstrate that NUCB2/nesfatin-1 is prominently expressed in mouse hypothalamus and medulla and acts in the brain to curtail the dark phase feeding by inducing satiation and satiety indicated by reduced meal size and prolonged inter-meal intervals respectively. The lack of nesfatin-1 effect when injected peripherally at a 23-times higher dose indicates a primarily central site of the anorexigenic action for nesfatin-1 in mice.  相似文献   

4.

Background

Nesfatin-1 is a recently discovered anorexigen encoded in the precursor peptide, nucleobindin-2 (NUCB2) in mammals. To date, nesfatin-1 has not been described in any non-mammalian species, although some information is available in the sequenced genomes of several species. Our objective was to characterize nesfatin-1 in fish.

Methodology/Principal Findings

In the present study, we employed molecular, immunohistochemical, and physiological studies to characterize the structure, distribution, and appetite regulatory effects of nesfatin-1 in a non-mammalian vertebrate. A very high conservation in NUCB2 sequences, especially in the nesfatin-1 region was found in lower vertebrates. Abundant expression of NUCB2 mRNA was detected in several tissues including the brain and liver of goldfish. Nesfatin-1-like immunoreactive cells are present in the feeding regulatory nucleus of the hypothalamus and in the gastrointestinal tract of goldfish. Approximately 6-fold increase in NUCB2 mRNA levels was found in the liver after 7-day food-deprivation, and a similar increase was also found after short-term fasting. This points toward a possible liver specific role for NUCB2 in the control of metabolism during food-deprivation. Meanwhile, ∼2-fold increase at 1 and 3 h post-feeding and an ∼3-fold reduction after a 7-day food-deprivation was observed in NUCB2 mRNA in the goldfish hypothalamus. In vivo, a single intraperitoneal injection of the full-length native (goldfish; gf) nesfatin-1 at a dose of 50 ng/g body weight induced a 23% reduction of food intake one hour post-injection in goldfish. Furthermore, intracerebroventricular injection of gfnesfatin-1 at a dose of 5 ng/g body weight resulted in ∼50% reduction in food intake.

Conclusions/Significance

Our results provide molecular, anatomical and functional evidences to support potential anorectic and metabolic roles for endogenous nesfatin-1 in goldfish. Collectively, we provide novel information on NUCB2 in non-mammals and an anorexigenic role for nesfatin-1 in goldfish.  相似文献   

5.
Nesfatin-1 is a novel anorexigenic regulatory peptide. The peptide is the N-terminal part of nucleobindin 2 (NUCB2) and is expressed in brain areas regulating feeding. Outside the brain, nesfatin-1 expression has been reported in adipocytes, gastric endocrine cells and islet cells. We studied NUCB2 expression in human and rodent islets using immunocytochemistry, in situ hybridization and western blot. Furthermore, we investigated the potential influence of nesfatin-1 on secretion of insulin and glucagon in vitro and in vivo in mice and in INS-1 (832/13) cells. The impact of type 2 diabetes (T2D) and glucolipotoxicity on NUCB2 gene expression in human islets and its relationship to insulin secretory capacity and islet gene expression was studied using microarray. Nesfatin-1 immunoreactivity (IR) was abundant in human and rodent beta cells but absent in alpha, delta, PP and ghrelin cells. Importantly, in situ hybridization showed that NUCB2 mRNA is expressed in human and rat islets. Western blot analysis showed that nesfatin-1 IR represented full length NUCB2 in rodent islets. Human islet NUCB2 mRNA was reduced in T2D subjects but upregulated after culture in glucolipotoxic conditions. Furthermore, a positive correlation between NUCB2 and glucagon and insulin gene expression, as well as insulin secretory capacity, was evident. Nesfatin-1 enhanced glucagon secretion but had no effect on insulin secretion from mouse islets or INS-1 (832/13) cells. On the other hand, nesfatin-1 caused a small increase in insulin secretion and reduced glucose during IVGTT in mice. We conclude that nesfatin-1 is a novel glucagon-stimulatory peptide expressed in the beta cell and that its expression is decreased in T2D islets.  相似文献   

6.
Nesfatin-1, a novel hypothalamic peptide, inhibits nocturnal feeding behavior and gastrointestinal motility in rodents. The effects of nesfatin-1 on gastrointestinal secretory function, including gastric acid production, have not been evaluated. Nesfatin-1 was injected into the fourth intracerebral ventricle (4V) of chronically cannulated rats to identify a nesfatin dose sufficient to inhibit food intake. Nesfatin-1 (2 μg) inhibited dark-phase food intake, in a dose-dependent fashion, for >3 h. Gastric acid production was evaluated in urethane-anesthetized rats. Nesfatin-1 (2 μg) was introduced via the 4V following endocrine stimulation of gastric acid secretion by pentagastrin (2 μg·kg(-1)·h(-1) iv), vagal stimulation with 2-deoxy-d-glucose (200 mg/kg sc), or no stimulus. Gastric secretions were collected via gastric cannula and neutralized by titration to determine acid content. Nesfatin-1 did not affect basal and pentagastrin-stimulated gastric acid secretion, whereas 2-deoxy-d-glucose-stimulated gastric acid production was inhibited by nesfatin-1 in a dose-dependent manner. c-Fos immunofluorescence in brain sections was used to evaluate in vivo neuronal activation by nesfatin-1 administered via the 4V. Nesfatin-1 caused activation of efferent vagal neurons, as evidenced by a 16-fold increase in the mean number of c-Fos-positive neurons in the dorsal motor nucleus of the vagus (DMNV) in nesfatin-1-treated animals vs. controls (P < 0.01). Finally, nesfatin-induced Ca(2+) signaling was evaluated in primary cultured DMNV neurons from neonatal rats. Nesfatin-1 caused dose-dependent Ca(2+) increments in 95% of cultured DMNV neurons. These studies demonstrate that central administration of nesfatin-1, at doses sufficient to inhibit food intake, results in inhibition of vagally stimulated secretion of gastric acid. Nesfatin-1 activates DMNV efferent vagal neurons in vivo and triggers Ca(2+) signaling in cultured DMNV neurons.  相似文献   

7.
Nesfatin-1 is an 82 amino acid N-terminal fragment of nucleobindin2 that was consistently shown to reduce dark phase food intake upon brain injection in rodents. We recently reported that nesfatin-1(1-82) injected intracerebroventricularly (icv) reduces dark phase feeding in mice. Moreover, intraperitoneal injection of mid-fragment nesfatin-1 (nesfatin-1(30-59)) mimics the food intake-reducing effects of nesfatin-1(1-82), whereas N-terminal (nesfatin-1(1-29)) and C-terminal fragments (nesfatin-1(60-82)) did not. We therefore characterized the structure-activity relationship of nesfatin-1 injected icv to influence the dark phase meal pattern in mice. Mouse nesfatin-1(1-29), nesfatin-1(30-59), nesfatin-1(60-82) or vehicle was injected icv in freely fed C57Bl/6 mice immediately before the dark phase and food intake was monitored using an automated episodic feeding monitoring system. Nesfatin-1(30-59) (0.1, 0.3, 0.9 nmol/mouse) induced a dose-related reduction of 4-h food intake by 28%, 49% and 49% respectively resulting in a 23% decreased cumulative 24-h food intake compared to vehicle at the 0.3 nmol/mouse dose (p<0.05). The peak reduction occurred during the 3rd (-96%) and 4th hour (-91%) post injection and was associated with a reduced meal frequency (0-4h: -47%) and prolonged inter-meal intervals (3.1-times) compared to vehicle (p<0.05), whereas meal size was not altered. In contrast, neither nesfatin-1(1-29) nor nesfatin-1(60-82) reduced dark phase food intake at equimolar doses although nesfatin-1(60-82) prolonged inter-meal intervals (1.7-times, p<0.05). Nesfatin-1(30-59) is the active core of nesfatin-1(1-82) to induce satiety indicated by a reduced meal number during the first 4h post injection. The delayed onset may be indicative of time required to modulate other hypothalamic and medullary networks regulating nocturnal feeding as established for nesfatin-1.  相似文献   

8.
Chen X  Dong J  Jiang ZY 《Regulatory peptides》2012,173(1-3):21-26
Nesfatin-1 is a recently discovered neuropeptide that has been shown to decrease food intake after lateral, third, or fourth brain ventricle, cisterna magna administration, or PVN injection in ad libitum fed rats. With regards to the understanding of nesfatin-1 brain sites of action, additional microinjection studies will be necessary to define specific nuclei, in addition to the PVN, responsive to nesfatin-1 to get insight into the differential effects on food intake. In the present study, we evaluated nesfatin-1 action to modulate food intake response upon injection into the specific hypothalamic nuclei (PVN, LHA and VMN) in freely fed rats during the dark phase. We extend previous observations by showing that the nesfatin-1 (50 pmol) injected before the onset of the dark period significantly reduced the 1 to 5 h cumulative food intake in rats cannulated into the PVN, LHA, but not in rats cannulated into the VMN. Glucosensing neurons located in the hypothalamus are involved in glucoprivic feeding and homeostatic control of blood glucose. In order to shed light on the mechanisms by which nesfatin-1 exerts its satiety-promoting actions, we examined the effect of nesfatin-1 on the excitability of hypothalamic glucosensing neurons. Nesfatin-1 excited most of the glucose-inhibited (GI) neurons and inhibited most of the glucose-excited (GE) neurons in the PVN. Of 34 GI neurons in the LHA tested, inhibitory effects were seen in 70.6% (24/34) of GI neurons. The main effects were excitatory after intra-VMN administration of nesfatin-1 in GE neurons (27/35, 77.1%). Thus, our data clearly demonstrate that nesfatin-1 may exert at least a part of its physiological actions on the control of food intake as a direct result of its role in modulating the excitability of glucosensing neurons in the PVN, LHA and VMN.  相似文献   

9.
Nesfatin-1 is an anorexigenic peptide involved in energy homeostasis. Recently, nesfatin-1 was reported to decrease blood glucose level and improve insulin sensitivity in high-fat diet-fed rats. However, little information is known about the influence of nesfatin-1 on lipid metabolism either in physiological or diabetic condition. This study undertook whether nesfatin-1 was involved in the pathophysiology in Streptozotocin-induced type 2 diabetic mice (T2DM), which was induced by a combination of high-calorie diet and two low-doses Streptozotocin. We observed that plasma nesfatin-1 was significantly increased while expression of nesfatin-1 neurons were decreased in hypothalamus in diabetes group compared to only high-calorie diet control group; intravenous injection of nesfatin-1 decreased 0–1h, 0–2h, 0–3h cumulative food intake in T2DM, but 0–24h total food intake had no difference between groups. Body weight and plasma FFA were normalized after nesfatin-1(10 µg/Kg) administration for 6 days. These results suggested that nesfatin-1 improved lipid disorder in T2DM. It was found that blood glucose and insulin resistance coefficient decreased with treatment of nesfatin-1 (both in 1 µg/Kg and 10 µg/Kg doses) in diabetes mice. For further understanding the role of nesfatin-1 on lipid metabolism, we detected p-AMPK and p-ACC of skeletal muscle in T2DM using western blotting. The expression of p-AMPK and p-ACC increased when nesfatin-1 was given with doses 1 µg/Kg but not in doses 10 µg/Kg. Taken together, nesfatin-1 participated in the development of T2DM and stimulated free fatty acid utilization via AMPK-ACC pathway in skeletal muscle in T2DM.  相似文献   

10.
Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory effects on the CNS. To determine the permeability of the blood-brain barrier (BBB) to PDGF, we examined the blood-to-brain influx of radioactively labeled PDGF isoforms (PDGF-AA and PDGF-BB) by multiple-time regression analysis after intravenous (i.v.) injection and by in-situ perfusion, and also determined the physicochemical characteristics which affect their permeation across the BBB, including lipophilicity (measured by octanol:buffer partition coefficient), hydrogen bonding (measured by differences in octanol : buffer and isooctane : buffer partition coefficients), serum protein binding (measured by capillary electrophoresis), and stability of PDGF in blood 10 min after i.v. injection (measured by HPLC). After i.v. bolus injection, neither 125I-PDGF-AA nor 125I-PDGF-BB crossed the BBB, their influx rates being similar to that of the vascular marker 99mTc-albumin. 125I-PDGF-AA degraded significantly faster in blood than 125I-PDGF-BB. PDGF-BB, however, was completely bound to a large protein in serum whereas PDGF-AA showed no binding. Thus, degradation might explain the poor blood-to-brain influx of PDGF-AA, whereas protein binding could explain the poor influx of circulating PDGF-BB. Despite their lack of permeation in the intact mouse, both 125I-PDGF-AA and 125I-PDGF-BB entered the brain by perfusion in blood-free buffer, and the significantly faster rate of 125I-PDGF-AA than 125I-PDGF-BB may be explained by the lower hydrogen bonding potential of 125I-PDGF-AA. Thus, the lack of significant distribution of PDGF from blood to brain is not because of the intrinsic barrier function of the BBB but probably because of degradation and protein binding. Information from these studies could be useful in the design of analogues for delivery of PDGF as a therapeutic agent.  相似文献   

11.
W Pan  A J Kastin 《Peptides》1999,20(9):1091-1098
Epidermal growth factor (EGF) is a neurotrophic peptide produced both in the central nervous system and the periphery. Peripheral administration of EGF causes central nervous system-mediated changes. The central nervous system effects could be explained by the permeation of EGF across the blood-brain barrier (BBB). In this report, we show that 125I-EGF crosses the BBB rapidly, with an influx rate of about 2 microl/g x min, much faster than that for neurotrophins, cytokines, and most other bioactive peptides tested. The 125I-EGF was recovered intact in the brain 10 min after i.v. injection, and the majority of the peptide reaching the brain was present in the parenchyma. The fast rate of influx was significantly decreased by co-administration of nonradiolabeled EGF and transforming growth factor alpha, peptides that share the EGF receptor. By contrast, a monoclonal antibody against the EGF receptor failed to inhibit the entry of EGF. Furthermore, mice with a mutation in the EGF receptor had no significant decrease in the rapid rate of entry of 125I-EGF. By contrast to the fast rate of entry, 125I-EGF injected intracerebroventricularly (i.c.v.) only exited the brain with the bulk flow of cerebrospinal fluid. Thus, EGF has a saturable transport system at the BBB for rapid, unidirectional influx. The transport system does not require the entire EGF receptor and is susceptible to possible therapeutic manipulation.  相似文献   

12.
Banks WA  McMillian CL  Iyengar S 《Life sciences》2001,69(14):1683-1689
LY303870 (LY) is a non-peptide neurokinin-1 receptor antagonist that has effects on the brain after peripheral administration. We determined whether LY given by intravenous (iv) injection can cross the blood-brain barrier (BBB). Multiple-time regression analysis showed the unidirectional influx rate (Ki) from blood to brain for LY labeled with tritium to be 6.41+/-0.85 microl/g-min and influx was inhibited by unlabeled LY. HPLC and mass spectrometry showed LY was stable in blood and brain. LY reached a brain/serum ratio of 190+/-12 microl/g with about 0.07% of the injected dose entering each gram of brain. These results show that LY is transported across the BBB from serum into brain by a saturable system.  相似文献   

13.
The purpose of this study was to clarify the mechanism of the blood-brain barrier (BBB) transport of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), which is a novel dermorphin analog with high affinity for the micro 1-opioid receptor. The in vivo BBB permeation influx rate of [125I]TAPA after an i.v. bolus injection (7.3 pmol/g body weight) into mice was estimated to be 0.265 +/- 0.025 microL/(min.g of brain). The influx rate of [125I]TAPA was reduced 70% by the coadministration of unlabeled TAPA (33 nmol/g of brain), suggesting the existence of a specific transport system for TAPA at the BBB. In order to elucidate the BBB transport mechanism of TAPA, a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4) was used as an in vitro model of the BBB. The acid-resistant binding of [125I]TAPA, which represents the internalization of the peptide into cells, was temperature- and concentration-dependent with a half-saturation constant of 10.0 +/- 1.7 microm. The acid-resistant binding of TAPA was significantly inhibited by 2,4-dinitrophenol, dansylcadaverine (an endocytosis inhibitor) and poly-l-lysine and protamine (polycations). These results suggest that TAPA is transported through the BBB by adsorptive-mediated endocytosis, which is triggered by binding of the peptide to negatively charged sites on the surface of brain capillary endothelial cells. Blood-brain barrier transport via adsorptive-mediated endocytosis plays a key role in the expression of the potent opioid activity of TAPA in the CNS.  相似文献   

14.
Tang CH  Fu XJ  Xu XL  Wei XJ  Pan HS 《Peptides》2012,36(1):39-45
Nesfatin-1 has been demonstrated to possess anti-inflammatory and anti-apoptotic effects in the rat brain with subarachnoid hemorrhage. The study was designed to investigate the influence of nesfatin-1 on inflammatory responses and neuronal cell apoptosis after traumatic brain injury. Wistar rats were subjected to 5, 10 or 20 μg/kg of nesfatin-1 at designed time points (0.5, 2, 4 or 8h after head trauma) intraperitoneally. Rats were sacrificed at hours 2, 6 and 12, as well as day 1, 2, 3 and 5 after head trauma. The administration of 10 or 20 μg/kg of nesfatin-1 at hour 0.5 after head trauma could significantly suppress gene expressions of nuclear factor kappa-B, lessen concentrations of tumor necrosis factor-alpha, interleukin-1beta and interleukin-6, diminish caspase-3 activity as well as reduce number of apoptotic neuronal cells in traumatic rat brain tissues (P<0.05), but the administration of 5 μg/kg of nesfatin-1 not (P>0.05). Moreover, 20 μg/kg nesfatin-1 also significantly suppressed the inflammation and neuronal cell apoptosis when applied 2, 4 or 8h after head trauma. However, a clear concentration-response or time-response relationship was not found. These findings suggest that nesfatin-1 may inhibit nuclear factor kappa-B-dependent inflammatory responses, and lessen caspase-3-mediated neuronal cell apoptosis after traumatic brain injury in rats.  相似文献   

15.
Nesfatin-1 and ghrelin are the two recently discovered peptide hormones involved in the control of appetite. Besides its main appetite-control function, ghrelin also has anticonvulsant effects, while nesfatin-1 causes depolarization in the paraventricular nucleus (PVN). The aims of this study, therefore, were to investigate: (i) whether there are differences in the concentrations of nesfatin-1 and ghrelin in saliva and serum samples between eplilepsy patients and normal controls and (ii) whether salivary glands produce nesfatin-1. The study included a total of 73 subjects: 8 patients who were newly diagnosed with primary generalized seizures and had recently started antiepileptic drug therapy; 21 who had primary generalized seizures and were continuing with established antiepileptic drug therapy; 24 who had partial seizures (simple: n = 12 or complex: n = 12) and were continuing with established antiepileptic drug therapy; and 20 controls. Salivary gland tissue samples were analyzed for nesfatin-1 expression by immunochemistry and ELISA. Saliva and serum ghrelin levels were measured by ELISA and RIA, and nesfatin-1 levels by ELISA. Nesfatin-1 immunoreactivity was detected in the striated and interlobular parts of the salivary glands and the ducts. The nesfatin-1 level in the brain was around 12 times higher than in the salivary gland. Before antiepileptic treatment, both saliva and serum nesfatin-1 levels were around 160-fold higher in patients who are newly diagnosed with primary generalized epilepsy (PGE) than in controls; these levels decreased with treatment but remained about 10 times higher than the control values. Saliva and serum nesfatin-1 levels from patients with PGE and partial epilepsies who were continuing antiepileptic drugs were also 10-fold higher than control values. Serum and saliva ghrelin levels were significantly (twofold) lower in epileptic patients before treatment than in controls; they recovered somewhat with treatment but remained below the control values. These results suggest that the low ghrelin and especially the dramatically elevated nesfatin-1 levels might contribute to the pathophyisology of epilepsy. Therefore, serum and saliva ghrelin and especially the remarkably increased nesfatin-1 might be candidate biomarkers for the diagnosis of epilepsy and for monitoring the response to anti-epileptic treatment.  相似文献   

16.
Nesfatin-1 is a recently identified anorexigenic peptide that has been implicated in appetite regulation, weight loss and/or malnutrition. Anorexia and malnutrition are common features of chronic kidney disease (CKD) that predispose patients to worse outcomes. However, the reasons for the occurrence of anorexia in CKD patients are not fully elucidated. The aim of this study was to investigate the association between nesfatin-1 and protein intake and body composition in patients undergoing hemodialysis (HD). Twenty five HD patients from a private Clinic in Rio de Janeiro, Brazil were studied and compared with 15 healthy subjects that were matched for body mass index (BMI), % body fat mass (by anthropometrics) and age. Appetite was measured using a specific questionnaire, and food intake was evaluated based on 3-day food records. Nesfatin-1 levels were measured by ELISA and leptin, TNF-α and IL-6 levels were determined by a multiplex assay kit. Serum nesfatin-1 levels did not differ between HD patients (0.16±0.07ng/mL) and healthy subjects (0.17±0.10ng/mL). Nesfatin-1 levels showed significant negative correlations with protein intake (r=-0.42; p=0.03), but did not associate with inflammatory markers or appetite scores. Combining patients and controls, we observed positive correlations with BMI (r=0.33; p=0.03), % body fat (r=0.35; p=0.03), leptin (r=0.45; p=0.006) and the triceps skinfold thickness (r=0.36; p=0.02). In multivariate analysis % body fat was the main determinant of nesfatin-1 variance. In conclusion, nesfatin-1 levels did not differ between HD patients and healthy subjects and negatively correlated with protein intake. This pathway is likely not dysregulated in uremia.  相似文献   

17.
Interleukin15 (IL 15) is a proinflammatory cytokine with elevated concentrations in autoimmune diseases involving the periphery (e.g. rheumatoid arthritis) and CNS (e.g. multiple sclerosis). Its interactions with the blood-brain barrier (BBB) were studied in normal and lipopolysaccharide (LPS)-treated mice. 125I-IL15 remained intact for at least 10 min after i.v. injection and reached CNS parenchyma with regional differences between brain and spinal cord. Both in vivo and in situ brain perfusion of 125I-IL15 showed that its permeation of the BBB was non-saturable. LPS induced a significant increase of IL15 uptake by the brain and spinal cord, partly related to a higher general permeability of the BBB. The results suggest that the BBB is an interface for blood-borne IL15 to interact with the CNS in the basal state and during inflammation.  相似文献   

18.

Aims/hypothesis

The actions of peripherally administered nesfatin-1 on glucose homeostasis remain controversial. The aim of this study was to characterize the mechanisms by which peripheral nesfatin-1 regulates glucose metabolism.

Methods

The effects of nesfatin-1 on glucose metabolism were examined in mice by continuous infusion of the peptide via osmotic pumps. Changes in AKT phosphorylation and Glut4 were investigated by Western blotting and immnuofluorescent staining. Primary myocytes, adipocytes and hepatocytes were isolated from male mice.

Results

Continuous peripheral infusion of nesfatin-1 altered glucose tolerance and insulin sensitivity in mice fed either normal or high fat diet, while central administration of nesfatin-1 demonstrated no effect. Nesfatin-1 increases insulin secretion in vivo, and in vitro in cultured min6 cells. In addition, nesfatin-1 up-regulates the phosphorylation of AKT in pancreas and min6 islet cells. In mice fed normal diet, peripheral nesfatin-1 significantly increased insulin-stimulated phosphorylation of AKT in skeletal muscle, adipose tissue and liver; similar effects were observed in skeletal muscle and adipose tissue in mice fed high fat diet. At basal conditions and after insulin stimulation, peripheral nesfatin-1 markedly increased GLUT4 membrane translocation in skeletal muscle and adipose tissue in mice fed either diet. In vitro studies showed that nesfatin-1 increased both basal and insulin-stimulated levels of AKT phosphorylation in cells derived from skeletal muscle, adipose tissue and liver.

Conclusions

Our studies demonstrate that nesfatin-1 alters glucose metabolism by mechanisms which increase insulin secretion and insulin sensitivity via altering AKT phosphorylation and GLUT 4 membrane translocation in the skeletal muscle, adipose tissue and liver.  相似文献   

19.
Epidermal growth factor (EGF) is a potential peptide radiopharmaceutical for detection of brain tumors, because many human gliomas overexpress the EGF receptor (EGFR). The transport of EGF to the brain, however, is restricted by the blood-brain barrier (BBB). The purpose of the present study was to develop a vector-mediated brain delivery system for radiolabeled EGF. Human EGF was monobiotinylated with NHS-PEG3400-biotin, where NHS is N-hydroxysuccinimide and PEG3400 is poly(ethylene glycol) of 3400 Da molecular mass. EGF-PEG3400-biotin was radiolabeled with either 125I or 111In through the metal chelator, diethylenetriaminepentaacetic acid (DTPA). The radiolabeled EGF was then conjugated to a BBB delivery vector comprised of a complex of the OX26 monoclonal antibody (MAb) to the rat transferrin receptor, which was coupled to streptavidin (SA). Following intravenous injection in rats, the 125I conjugate was rapidly degraded in vivo, while the 111In conjugate was metabolically stable. The brain delivery of [111In]DTPA-EGF-PEG3400-biotin was enabled by conjugation with OX26/SA and was optimized by co-injection of unlabeled EGF to saturate EGF receptors in the liver. The specific binding of the [111In]DTPA-EGF-PEG3400-biotin conjugated to OX26/SA to the EGF receptor was confirmed in C6 rat glioma cells, which had been transfected with a gene encoding for the human EGF receptor under the regulation of a dexamethasone-inducible promoter. In vivo studies of C6-EGFR experimental tumors in Fischer 344 rats demonstrated successful brain imaging only when the peptide radiopharmaceutical was conjugated to the BBB delivery system, although the C6-EGFR tumors did not express EGFR in vivo. In conclusion, these studies describe the molecular formulation of a peptide radiopharmaceutical that can be used for imaging brain tumors behind the BBB.  相似文献   

20.
The anorexigenic neuropeptide NEFA/nucleobindin 2 (NUCB2)/nesfatin-1-containing neurons are distributed in the brain regions involved in feeding regulation. In spite of the growing knowledge of its physiological functions through extensive studies, its molecular mechanism of reaction, including its receptor, remains unknown. NUCB2/nesfatin-1 is also involved in various peripheral regulations, including glucose homeostasis. In pancreatic beta-cells, NUCB2/nesfatin-1 is reported to enhance glucose-stimulated insulin secretion (GSIS) but its exact mechanism remains unknown.To clarify this mechanism, we measured the effect of nesfatin-1 on the electrical activity of pancreatic beta-cells. Using mouse primary beta cells, we measured changes in the ATP-sensitive K+ (KATP) channel current, the voltage-gated K+ (Kv) channel current, and insulin secretion upon application of nesfatin-1.Nesfatin-1 inhibited the Kv channel, but KATP channel activity was unaffected. Nesfatin-1 enhanced insulin secretion to a same level as Kv channel blocker tetraethylammonium (TEA). The effect was not further enhanced when nesfatin-1 and TEA were applied simultaneously. The inhibition binding assay with [125I]nesfatin-1 in Kv2.1 channels, major contributor of Kv current in beta cell, expressing HEK239 cells indicated the binding of nesfatin-1 on Kv2.1 channel.Because Kv channel inhibition enhances insulin secretion under high glucose conditions, our present data suggest a possible mechanism of nesfatin-1 on enhancing GSIS through regulation of ion channels rather than its unidentified receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号