首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triplet flash photolysis techniques, coupled with quenching of the triplets by molecular oxygen, are utilized as probes of the microenvironment of polycyclic aromatic molecules bound covalently and non-covalently to DNA. The triplet-oxygen quenching properties of the following adducts in aqueous solutions at 25±1°C were investigated: covalent adducts derived from the reaction of (±)-7β,8α-dihydroxy-9α,10α-epoxy -7,8,9,10-tetrahydrobenzo[a]pyrene (BaPDE) and of (±)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaPE) with DNA, and non-covalent intercalation complexes of acridine orange (AO) and DNA. In all cases the quenching follows the Stern-Volmer quenching law with a quenching constant of KO2T≈109 M?1·s?1 for the covalent BaPDE-DNA and BaPE-DNA complexes in aqueous solution. This value of KO2T is characteristic of free molecules (not bound to DNA) and indicates that the pyrene chromophore is totally accessible to oxygen, and is thus not located at an intercalation-type of binding site in these covalent adducts. In contrast, the AO-DNA complexes are characterized by values of KO2T≈108 M?1·s?1 indicating that the intercalated AO molecules are about ten times less accessible to molecular oxygen than free AO molecules. The KO2T values for the covalent BaPDE-DNA and BaPE-DNA adducts decrease when the DNA concentration is increased in the 1·10?4?3·10?3 M range (expressed in nucleotide concentration). This effect is attributed to intermolecular DNA-DNA interactions in which segments of adjacent DNA molecules tend to cover the pyrene chromophores on other strands, thus decreasing their accessibility to oxygen. In contrast the values of KO2T for the non-covalent AO-DNA intercalation complexes are independent of DNA concentration, as expected for interior binding sites.  相似文献   

2.
Abstract

A theoretical model is proposed for the covalent binding of (+) 7 β,8α-dihydroxy-9α, 10α- epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene denoted by BPDE I(+), to N2 on guanine. The DNA must kink a minimum of 39° to allow proper hybrid configurations about the C10 and N2 atoms involved in bond formation and to allow stacking of the pyrene moiety with the non-bonded adjacent base pair. Conservative (same sugar puckers and glycosidic angles as in B-DNA) and non-conservative (alternating sugar puckers as in intercalation sites) conformations are found and they are proposed structures in pathways connecting B-DNA, an intercalation site, and a kink site in the formation of a covalently intercalative bound adduct of BPDE I(+) to N2 on guanine. Stereographic projections are presented for (3′) and (5′) binding in the DNA. Experimental data for bending of DNA by BPDE, orientation of BPDE in DNA and unwinding of superhelical DNA is explained. The structure of a covalent intercalative complex is predicted to result from the reaction. Also, an anti ? syn transition of guanine results in a structure which allows the DNA to resume its overall B-form. The only change is that guanine has been rotated by 200° about its glycosidic bond so that the BPDE I(+) is bound in the major groove. The latter step may allow the DNA to be stored with an adduct which may produce an error in the genetic code.  相似文献   

3.
Linear dichroism and absorption methods are used to study the orientations of transition moments of absorption bands of polycyclic aromatic epoxide derivatives which overlap with those of the DNA band in the 240-300 nm region. Both the short and long axes of the pyrene residues of 1-oxiranylpyrene (1-OP) and the (+) and (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) noncovalently bound to double-stranded native DNA are oriented approximately perpendicular to the axis of the DNA helix, consistent with intercalative modes of binding. The covalent binding of these three epoxide derivatives to DNA is accompanied by reorientations of both the short and long axes of the pyrene residues. Covalent adducts derived from the highly mutagenic (+)-anti-BPDE are characterized by tilts of the short axis within 35 degrees or less, and of the long axis by more than 60-80 degrees, with respect to the planes of the DNA bases. In the adducts derived from the binding of the less mutagenic (-)-anti-BPDE and 1-OP epoxide derivatives to DNA, the long axes of the pyrenyl rings are predominantly oriented within 25 degrees of the planes of the DNA bases; however, in the case of the (-) enantiomer of BPDE, there is significant heterogeneity of conformations. In the case of the 1-OP covalent DNA adducts, the short axis of the pyrene ring system is tilted away from the planes of the DNA bases, and the pyrene ring system is not intercalated between DNA base-pairs as in the noncovalent complexes. The stereochemical properties of the saturated 7,8,9,10-ring in BPDE, or the lack of the 7 and 8 carbon atoms in 1-OP, do not seem to affect noncovalent intercalative complex formation which, most likely, is influenced mainly by the flat pyrenyl residues. These structural features, however, strongly influence the conformations of the covalent adducts, which in turn may be responsible for the differences in the mutagenic activities of these molecules.  相似文献   

4.
A benzo[a]pyrene derivative, 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, forms physical complexes with DNA. The measured absorption spectrum of the hydrocarbon in the complex is shifted approximately 10 nm to the red and the fluorescence emission spectrum is red-shifted approximately 6 nm, characteristic of a physical intercalation complex. The decay-associated emission spectra of the hydrocarbon in the presence of DNA have been measured, thus providing a new technique to obtain information about the DNA binding sites. The decay-associated emission spectra of the free and bound hydrocarbons were obtained by deconvoluting the time-dependent emission at several wavelengths. Stern-Volmer plots with iodide and silver ions as quenchers suggest that at least one set of binding sites for the formation of a physical intercalation complex between the benzo[a]pyrene derivative and DNA is at guanine sites in the biopolymer.  相似文献   

5.
The physical (noncovalent) binding of pyrene and phenanthrene to calf-thymus DNA in aqueous NaCl solutions was measured by a spectral method (analysis of absorption spectra by Benesi-Hildebrand plots) and a coupled-column liquid chromatography method (equilibration of DNA solutions with solid hydrocarbon in a generator column and analysis of dissolved hydrocarbon by liquid chromatography). The measurements yielded values of an affinity constant K′ = nK, where n is the apparent number of binding sites per nucleotide and K is the apparent binding constant. The affinity of native DNA for pyrene decreases monotonically with increasing NaCl concentration, whereas the affinity of heat-denatured DNA exhibits a maximum at 0.10M NaCl.K′ for the binding of phenanthrene to native DNA is an order of magnitude lower than K′ for pyrene. The molar enthalpy for the binding of pyrene to native DNA in 10 mM NaCl is (?34.0 ± 1.0) kJ mol?1. The spectral method data indicate that 50 is an upper limit for the average number of base pairs between intercalation sites for pyrene along the DNA helix and that only a fraction of these sites are bound at the highest binding ratios.  相似文献   

6.
A Wolfe  G H Shimer  T Meehan 《Biochemistry》1987,26(20):6392-6396
We have investigated the physical binding of pyrene and benzo[a]pyrene derivatives to denatured DNA. These compounds exhibit a red shift in their absorbance spectra of 9 nm when bound to denatured calf thymus DNA, compared to a shift of 10 nm when binding occurs to native DNA. Fluorescence from the hydrocarbons is severely quenched when bound to both native and denatured DNA. Increasing sodium ion concentration decreases binding of neutral polycyclic aromatic hydrocarbons to native DNA and increases binding to denatured DNA. The direct relationship between binding to denatured DNA and salt concentration appears to be a general property of neutral polycyclic aromatic hydrocarbons. Absorption measurements at 260 nm were used to determine the duplex content of denatured DNA. When calculated on the basis of duplex binding sites, equilibrium constants for binding of 7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydro-benzo[a]pyrene to denatured DNA are an order of magnitude larger than for binding to native DNA. The effect of salt on the binding constant was used to calculate the sodium ion release per bound ligand, which was 0.36 for both native and denatured DNA. Increasing salt concentration increases the duplex content of denatured DNA, and it appears that physical binding of polycyclic aromatic hydrocarbons consists of intercalation into these sites.  相似文献   

7.
8.
The influence of water-soluble cationic meso-tetra-(4?N-oxyethylpyridyl)porphyrin (H2TOEPyP4) and it’s metallocomplexes with Ni, Cu, Co, and Zn on hydrodynamic and spectral behavior of DNA solutions has been studied by UV/Vis absorption and viscosity measurement. It was shown that the presence of planar porphyrins such as H2TOEPyP4, NiTOEPyP4, and СuTOEPyP4 leads to an increase in viscosity at relatively small concentrations, and then decrease to stable values. Such behavior is explained by intercalation of these porphyrins in DNA structure because the intercalation mode involves the insertion of a planar molecule between DNA base pairs which results in a decrease in the DNA helical twist and lengthening of the DNA. Further decrease of viscosity is explained by the saturation intercalation sites and occurs outside the binding mode. But, in the case of porphyrins with axial ligands such as CoTOEPyP4 and ZnTOEPyP4, the hydrodynamic parameters decrease, which is explained by self-stacking of these porphyrins in DNA surface. This data are proved by spectral measurements. The results obtained from titration experiments were used for calculation of binding parameters: the binding constant K b and the number of binding sites per base pair n. Obtained data reveal that K b varies between 3.4 and 5.4?×?106?M?1 for a planar porphyrins, a range typical for intercalation mode interactions, and 5.6?×?105?M?1 and 1.8?×?106?M?1 for axial porphyrins. In addition, the exclusion parameter n also testifies that at intercalation, (n~2) the adjacent base pairs are removed to place the planar molecules, and for outside binders to pack on the surface needs too few places (n~0.5–1). It is apparent that the binding is somewhat stronger at intercalation. The viscometric and spectrophotometric measurements are in good agreement.  相似文献   

9.
The interaction of methylene blue (MB) with DNA has been investigated by UV absorption spectra, Fluorescence spectra and UV-melting method. Analysis of the results of the melting experiments shows that melting temperature (T m) of the complexes increases with the [total ligand]: DNA ratio (r) at two concentrations of Na+ (2?mM Na+ and 20?mM Na+) providing support for conclusion that MB is a stabilizer of DNA helix structure. By contrast, the shapes of dependences of width of transition (ΔT) on r at low and high [Na+] are different which points to the existence of different types of binding modes of MB with DNA. UV-spectroscopy experiments and fluorescence spectra indicated that the binding modes of MB with DNA depended on r. At high r (r?>?0.25), remarkable hypochromic effect with no shift of λ max in the absorption spectra of MB was observed. The fluorescence of MB was quenched which indicated that MB was bound to phosphate groups of DNA by electrostatic interaction. At low r ratios (r?<?0.2), the absorption spectra of MB upon increasing the concentration of DNA showed gradually decrease in the peak intensities with a red shift. This phenomenon is usually associated with molecular intercalation into the base stack of the ds-DNA. Using the Scatchard’s model, the complex formation constants for MB with DNA were determined: the binding constant K?≈?6.5?×?105 and binding site size n?≈?4. Obtained data are not typical for intercalation model of ligands to DNA. Moreover, comparison between these data and our early experimental results of interaction of ethidium bromide with DNA made it possible to suggest that this binding type of MB is, more probably, semi-intercalation mode (Vardevanyan et al., 2003). This conclusion is in accordance with the analysis of the model structures of MB–DNA complexes which clearly shows the importance of solvent contributions in suggested structural form (Tong et al., 2010).  相似文献   

10.
Flow linear dichroism (LD) of different benzo[a]pyrene diol epoxide (BPDE) isomers covalently bound to calf thymus DNA or poly(dG-dC) provides information about binding geometry and DNA perturbation. With anti-BPDE the apparent angle between the long axis (z) of the pyrene chromophore and the DNA helix axis is approximately 30 degrees as evidenced from the LD of z-polarized absorption bands in the pyrenyl chromophore at 252 and 346 nm. The corresponding angle for the in-plane short axis (y) is determined to be approximately 70 degrees from a y-polarized band at 275 nm. The binding of (+)-anti-BPDE to DNA is found to cause a considerable reduction of the DNA orientation. This is ascribed to a decreased persistence length of DNA, owing either to increased flexibility ("flexible joints") or to permanent kinks at the points of binding. The reduced linear dichroism (LDr), i.e., the ratio between LD and isotropic absorbance, of the long-wavelength absorption band system of BPDE bound to DNA exhibits a wavelength dependence that indicates a relatively wide orientational distribution of the z axis of pyrene. Fluorescence data support the conclusion of a heterogeneous distribution, and a very low polarization anisotropy indicates a mobility between the different orientational states, which is rapid compared to the fluorescence lifetime (nanosecond time scale). Attempts are made to simulate the observed LDr features of the (+)-anti-BPDE-poly(dG-dC) complex using different distribution models on the assumption that the angular dependence of the spectral perturbation is due to dispersive interactions with DNA bases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Ethidium bromide forms spectroscopically detectable aggregates in aqueous solution and at a high dye concentration larger than 1 × 10?3 moles/ρ. At moderate concentration in the order of 1 × 10?4 moles/ρ the dye interacts with inorganic polyphosphate Graham salt and with phage sd DNA in situ by formation of stacking complexes. Maximal stacking was found at a phosphate to dye ratio, P/D, of approximately 1 for Graham salt and 1.5–2 for phages. In going to a higher P/D ratio Graham salt dye complex dissociates again and free dye reappears, while phage dye binding changes from stacking (type II complex) to intercalation (type I complex). Stacking is accompanied by a decrease and intercalation by an increase of relative fluorescence intensity with respect to free dye. However, both binding types lead to hypechromism and a red shift of the dye absorption band in the visible spectral region. Thus spectral behavior of ethidium aggregates deviate clearly from that known for other dyes, i.e., acridines.  相似文献   

12.
The pyrene-like fluorescence of the covalent benzo(a)pyrene diol-epoxide-DNA complex prepared by reacting 7,8,-dihydrodiol 9,10-epoxy benzo(a)pyrene (BPDE) with DNA in aqueous solution in vitro, has been investigated. It is shown that this fluorescence is sensitive to molecular oxygen, to the concentration of native DNA and to the ionic strength (KCl concentration), but is insensitive to the concentration of denatured DNA. These effects are related to the conformation of the pyrene-like chromophore of BPDE. Most of the fluorescence of a dilute solution of the DNA-bound benzo(a)pyrene derivative originates from binding sites in which the pyrene moiety is not intercalated between the DNA base pairs, but is located on the outside of the DNA double helix.  相似文献   

13.
Insertion of nickel ions into the empty catalytic site of horse liver alcohol dehydrogenase yields an active enzyme with 65% metal substitution and about 12% intrinsic activity. The electronic absorption spectrum is characterized by bands at 357 nm (2900 M?1 cm?1, 407 nm (3500 M?1 cm?1), 505 nm (300 M?1 cm?1), 570 nm (?130 M?1 cm?1), and 680 nm (?80 M?1 cm?1). The absorption and CD spectra are similar to those of nickel(II) azurin and nickel(II) aspartate transcarbamoylase and prove coordination of the nickel(II) ions to sulfur in a distorted tetrahedral coordination geometry. Changes of the spectra upon ligand binding at the metal or conformation changes of the protein induced by coenzyme, or both, indicate alterations of the metal geometry.The chromophoric substrate trans-4-(N, N-dimethylamino)-cinnamaldehyde forms a ternary complex with Ni(II) liver alcohol dehydrogenase and the coenzyme analogue 1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide, stable between pH 6 and 10. The corresponding ternary complex with NADH is only stable at pH > 9.0. The spectral redshifts induced in the substrate are 11 nm larger than those found in the zinc enzyme. We suggest direct coordination of the substrate to the catalytic metal ion which acts as a Lewis acid in both substrate coordination and catalysis.  相似文献   

14.
The binding of polyamines, including spermidine ( 1 ) and spermine ( 2 ), to poly[d(G-C) · d(G-C) ] was probed using spectroscopic studies of anthracene-9-carbonyl-N1-spermine ( 3 ); data from normal absorption, linear dichroism (LD), and circular dichroism (CD) are reported. Ligand LD and CD for transitions located in the DNA region of the spectrum were used. The data show that 3 binds to DNA in a manner characteristic of both its amine and polycyclic aromatic parts. With poly [(dG-dC) · (dG-dC)], binding modes are occupied sequentially and different modes correspond to different structural perturbations of the DNA. The most stable binding mode for 3 with poly[d(G-C) · d(G-C)] has a site size of 6 ± 1 bases, and an equilibrium binding constant of (2.2 ± 1.1) × 107 M?1 with the anthracene moiety intercalated. It dominates the spectra from mixing ratios of approximately 133:1 until 6:1 DNA phosphate: 3 is reached. The analogous data for poly [d(A-T) · d(A-T)] between mixing ratios 36:1 and 7:1 indicates a site size of 8.3 ± 1.1 bases and an equilibrium binding constant of (6.6 ± 3.3) × 105 M?1. Thus, 3 binds preferentially to poly [d(G-C) · d(G-C)] at these concentrations. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The base-sequence selectivity of the noncovalent binding of (+/-)-trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyr ene (BPDE) to a series of synthetic polynucleotides in aqueous solutions (5 mM sodium cacodylate buffer, 20 mM NaCl, pH 7.0, 22 degrees C) was investigated. The magnitude of a red-shifted absorbance at 353 nm, attributed to intercalative complex formation, was utilized to determine values of the association constant Kic. Intercalation in the alternating pyridine-purine polymers poly(dA-dT).(dA-dT) (Kic = 20,000 M-1), poly(dG-dC).(dG-dC) (4200 M-1), and poly(dA-dC).(dG-dT) (9600 M-1) is distinctly favored over intercalation in their nonalternating counterparts poly(dA).(dT) (780 M-1), poly(dG).(dC) (1800 M-1), and poly(dA-dG).(dT-dC) (5400 M-1). Methylation at the 5-position of cytosine gives rise to a significant enhancement of intercalative binding, and Kic is 22,000 M-1 in poly(dG-m5dG).(dG-m5dC). In a number of these polynucleotides, values of Kic for pyrene qualitatively follow those exhibited by BPDE, suggesting that the pyrenyl residue in BPDE is a primary factor in determining the extent of intercalation. Both BPDE and pyrene exhibit a distinct preference for intercalating within dA-dT and dG-m5dC sequences. The catalysis of the chemical reactions of BPDE (hydrolysis to tetrols and covalent adduct formation) is enhanced significantly in the presence of each of the polynucleotides studied, particularly in the dG-containing polymers. A model in which catalysis is mediated by physical complex formation accounts well for the experimentally observed enhancement in reaction rates of BPDE in the alternating polynucleotides; however, in the nonalternating polymers a different or more complex catalysis mechanism may be operative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The thermodynamics of ethidium ion binding to the double strands formed by the ribooligonucleotides rCA5G + rCU5G and the analogous deoxyribo-oligonucleotides dCA5G + dCT5G were determined by monitoring the absorbance versus temperature at 260 and 283 nm at several concentrations of oligonucleotides and ethidium bromide. A maximum of three ethidium ions bind to the oligonucleotides, which is consistent with intercalation and nearest-neighbor exclusion. For the ribo-oligonucleotide the binding mechanism is complex. Either two sites (assumed to be the intercalation sites at the two ends of the oligonucleotide) bind more strongly by a factor of 140 than the third site, or all sites are identical, but there is strong anticooperativity on binding (cooperativity parameter, 0.1). In sharp contrast, the binding to the same sequence (with thymine substituted for uracil) in the deoxyribo-oligonucleotide showed all sites equivalent and no cooperativity. For the ribo-oligonucleotides the enthalpy for ethidium binding is ?14 kcal/mol. The equilibrium constants at 25°C depend on the model; either K = 6 × 105M?1 for the two strong sites (4 × 103M?1 for the weak site) or K = 2.5 × 105M?1 for the intrinsic constant of the anticooperative model. For the equivalent deoxyribo-oligonucleotide the enthalpy of binding is -9 kcal/mol and the equilibrium constant at 25°C is a factor of 10 smaller (K = 2.5 × 104M?1).  相似文献   

17.
The primary mode of non-covalent interaction of the strong carcinogen, benzo(a)pyrene diol epoxide, with DNA is through intercalation. It has variously been suggested that intercalative complexes may be prerequisite for either covalent binding or DNA-catalysed hydrolysis of the epoxide or both. Geacintov [Geacintov, N. E. (1986). Carcinogenesis 7, 589.] has recently argued that intercalation is important in covalent binding and presented theoretical constructs consistent with this proposal. A more general theoretical model is presented here which includes the possibilities that either catalysis of hydrolysis or covalent binding of benzo(a)pyrene diol epoxide DNA can occur (a) in an intercalation complex, or (b) without formation of a detectable, physically bound complex. It is shown that a variety of possible mechanisms formulated under this general theory lead to equations for overall reaction rates and covalent binding fractions which are all of the same form with respect to DNA concentration dependence. A consequence of this is that experimental studies of the dependence of hydrolysis rates and covalent binding fractions on DNA concentration do not distinguish between the various possible mechanisms. These findings are discussed in relation to the interactions of benzo(a)pyrene diol epoxide with chromatin in cells.  相似文献   

18.
F G Walz  B Terenna  D Rolince 《Biopolymers》1975,14(4):825-837
Spectrophotometric binding studies were undertaken on the interaction of neutral red with native and heat-denatured, sonicated, calf thymus DNA in a 0.2M ionic strength buffer containing Tris–sodium acetate–potassium chloride at 25°C. The pKA of neutral red was found to be 6.81. At pH 5 the binding of protonated neutral red was complicated even at low concentration ratios of dye to DNA. In the pH range 7.5–8.5 the tight binding process could be studied and it was found that both protonated and free base species of neutral red significantly bind with DNA having association constants (in terms of polynucleotide phosphate) of 5.99 × 103 M?1 and 0.136 × 103 M?1, respectively, for native DNA and 7.48 × 103 M?1 and 0.938 × 103 M?1, respectively, for denatured DNA. The pKA value of the neutral red–DNA complexes were 8.46 for native DNA and 7.72 for denatured DNA. These results are discussed in terms of possible binding mechanisms.  相似文献   

19.
Abstract

The DNA binding of nonreactive model compounds of metabolites of 7,12-dimethylbenz[a]-anthracene (DMBA)1 was studied in fluorescence quenching and fluorescence lifetime experiments. The model compounds examined were DMA and 8,9,10,11-tetrahydro-BA. DMA is a π electron model of a highly carcinogenic bay region epoxide of DMBA. 8,9,10,11- tetrahydro-BA is a model compound of a less carcinogenic DMBA epoxide.

The results indicate that the binding of DMA occurs primarily via intercalation. In 15% methanol the binding constant is 3.1 × 103M?1. In 15% methanol and at DNA phosphate levels of 5.0 × ?4 M the intercalative binding of DMA is reduced by a factor of 6.2 when 5.0 × 10?4 M Mg+2 is added. The DMA binding constant for intercalation is reduced by more than a factor of 4 when the methanol content of the solvent is increased from 0% to 20%. Finally DMA binding arising from π interactions with the DNA bases is reduced more than 15 times when the DNA is denatured. For 8,9,10,11-tetrahydro-BA in 15% methanol the binding constant for intercalation is 6 times lower than that for DMA.

These results along with previously reported binding data on other model compounds suggest that bay region metabolites of DMBA readily participate in physical π stacking interactions with DNA.  相似文献   

20.
L H Pearl  S Neidle 《FEBS letters》1986,209(2):269-276
A general computational procedure for the modelling of intercalated DNA-ligand complexes has been developed, and is used here to model intercalated complexes of the (+)-anti and (-)-anti enantiomers of benzo[a]pyrene diol-epoxide (BPDE) with cytosine-3',5'-guanosine double-stranded DNA sequences (dCpG). Results are presented indicating differences between the behaviours of the two enantiomers which have implications for the understanding of the stereospecificity of DNA strand breakage by benzo[a]pyrene diol-epoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号