首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cardinal feature of the biology of lymphocytic choriomeningitis virus (LCMV) is its ability to establish persistent infections in mice. Persistence is usually established by infection of the mouse during the in utero or neonatal period. Susceptibility can be extended to the adult by treatment with immunosuppressive agents or by infection with immunosuppressive strains of LCMV. In this study we investigated the capacity of passively acquired anti-LCMV antibodies to prevent the establishment of persistence in both neonatal and adult mice. Suckling BALB/c mouse pups nursed by mothers immunized against LCMV before pregnancy had higher survival rates following infection than controls and withstood challenge doses of up to 400 PFU without becoming persistently infected. To establish that maternal antibody alone and not maternally derived T cells provided this protection, nonimmune mothers were infused with monoclonal anti-LCMV neutralizing antibodies within 24 h after delivering their pups. Pups nursing on these passively immunized mothers were resistant to persistent LCMV infection. The establishment of persistence in adult BALB/c mice by the immunosuppressive, macrophage-tropic LCMV variant, clone 13 was also prevented by prophylactic treatment with anti-LCMV monoclonal antibodies. However, the protection afforded by passively acquired antibody was found to be incomplete if the recipients lacked functional CD8+ T cells. While 65% of neonatal athymic (nu/nu) mice nursed by immune nu/+ dams resisted low-dose viral challenge (25 PFU), the majority of nude pups challenged with high doses of virus (100 PFU) became persistently infected. Also, protection was incomplete in beta2-microglobulin knockout mice, which lack functional CD8+ T cells, suggesting that a cooperative effect was exerted by the combination of neutralizing antibody and endogenous T cells. These results indicate that antibodies provide an effective barrier to the establishment of persistent infections in immunocompetent mice and reaffirm that vaccines which induce strong humoral responses may provide efficient protection against arenavirus infections.  相似文献   

2.
DNA vaccination against persistent viral infection.   总被引:13,自引:5,他引:8       下载免费PDF全文
This study shows that DNA vaccination can confer protection against a persistent viral infection by priming CD8+ cytotoxic T lymphocytes (CTL). Adult BALB/c (H-2d) mice were injected intramuscularly with a plasmid expressing the nucleoprotein (NP) gene of lymphocytic choriomeningitis virus (LCMV) under the control of the cytomegalovirus promoter. The LCMV NP contains the immunodominant CTL epitope (amino acids 118 to 126) recognized by mice of the H-2d haplotype. After three injections with 200 micrograms of NP DNA, the vaccinated mice were challenged with LCMV variants (clones 13 and 28b) that establish persistent infection in naive adult mice. Fifty percent of the DNA-vaccinated mice were protected, as evidenced by decreased levels of infectious virus in the blood and tissues, eventual clearance of viral antigen from all organs tested, the presence of an enhanced LCMV-specific CD8+ CTL response, and maintenance of memory CTL after clearance of virus infection. However, it should be noted that protection was seen in only half of the vaccinated mice, and we were unable to directly measure virus-specific immune responses in any of the DNA-vaccinated mice prior to LCMV challenge. Thus, at least in the system that we have used, gene immunization was a suboptimal method of inducing protective immunity and was several orders of magnitude less efficient than vaccination with live virus. In conclusion, our results show that DNA immunization works against a persistent viral infection but that efforts should be directed towards improving this novel method of vaccination.  相似文献   

3.
Currently used vaccines protect mainly through the production of neutralizing antibodies. However, antibodies confer little or no protection for a majority of chronic viral infections that require active involvement of cytotoxic T lymphocytes (CTLs). Virus-like particles (VLPs) have been shown to be efficient inducers of cell-mediated immune responses, but administration of an adjuvant is generally required. We recently reported the generation of a novel VLP system exploiting the self-assembly property of the papaya mosaic virus (PapMV) coat protein. We show here that uptake of PapMV-like particles by murine splenic dendritic cells (DCs) in vivo leads to their maturation, suggesting that they possess intrinsic adjuvant-like properties. DCs pulsed with PapMV-like particles displaying the lymphocytic choriomeningitis virus (LCMV) p33 immunodominant CTL epitope (PapMV-p33) efficiently process and cross-present the viral epitope to p33-specific transgenic T cells. Importantly, the CTL epitope is also properly processed and presented in vivo, since immunization of p33-specific T-cell receptor transgenic mice with PapMV-p33 induces the activation of large numbers of specific CTLs. C57BL/6 mice immunized with PapMV-p33 VLPs in the absence of adjuvant develop p33-specific effector CTLs that rapidly expand following LCMV challenge and protect vaccinated mice against LCMV infection in a dose-dependent manner. These results demonstrate the efficiency of this novel plant virus-based vaccination platform in inducing DC maturation leading to protective CTL responses.  相似文献   

4.
The outcome of viral infections is dependent on the amount of tissue destruction caused either by direct lysis of infected cells and/or by immunopathology resulting from the immune response to the virus. We investigated whether induction of tolerance to only one viral protein could reduce immunopathology caused by nonlytic lymphocytic choriomeningitis virus (LCMV) in perforin-deficient hosts. Earlier studies had shown that LCMV infection results in aplastic anemia and death in most of these mice and that this is associated with bone marrow infiltration by antiviral cytotoxic T lymphocytes (CTL) that secrete inflammatory cytokines. We report here that perforin-deficient mice exhibit severe immunopathology in multiple organs that is characterized by infiltration of anti-LCMV CTL that secrete large amounts of gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). Importantly, this immunopathology is significantly reduced and long-term survival of LCMV infection is increased in perforin-deficient mice expressing LCMV nucleoprotein (NP) in the thymus (and therefore deleting most of their LCMV-NP CTL) compared to the situation in thymus nonexpressors. This is due to the selective reduction of NP-specific CTL responses and their inflammatory-cytokine (IFN-gamma and TNF-alpha) secretion and to a lack of pathogenetically relevant compensatory responses to other viral proteins. Thus, "selective reduction" of the antiviral immune response to only one viral protein can significantly reduce inflammatory immunopathology and might be a therapeutic possibility for certain nonlytic infections.  相似文献   

5.
Identification of a single viral T-cell epitope, associated with greater than 95% of the virus-specific cytotoxic T-lymphocyte (CTL) activity in BALB/c (H-2d) mice (J. L. Whitton, A. Tishon, H. Lewicki, J. Gebhard, T. Cook, M. Salvato, E. Joly, and M. B. A. Oldstone, J. Virol. 63:4303-4310, 1989), permitted us to design a CTL vaccine and test its ability to protect against a lethal virus challenge. Here we show that a single immunization with a recombinant vaccinia virus-lymphocytic choriomeningitis virus (LCMV) vaccine (VVNPaa1-201) expressing the immunodominant epitope completely protected H-2d mice from lethal infection with LCMV but did not protect H-2b mice. Furthermore, we show that the success or failure of immunization was determined entirely by the host class I major histocompatibility glycoproteins. The difference in outcome between mice of these two haplotypes was consistent with the presence or absence in the immunizing sequences of an epitope for CTL recognition and is correlated with the induction of LCMV-specific H-2-restricted CTL in H-2d mice. Protection is not conferred by a humoral immune response, since LCMV-specific antibodies were not detectable in sera from VVNPaa1-201-immunized mice. In addition, passive transfer of sera from vaccinated mice did not confer protection upon naive recipients challenged with LCMV. Hence, the molecular dissection of viral proteins can uncover immunodominant CTL epitope(s) that can be engineered into vaccines that elicit CTL. A single CTL epitope can protect against a lethal virus infection, but the efficacy of the vaccine varies in a major histocompatibility complex-dependent manner.  相似文献   

6.
We previously demonstrated that immunization of mice with plasmid DNAs (pDNAs) expressing the murine cytomegalovirus (MCMV) genes IE1-pp89 and M84 provided synergistic protection against sublethal viral challenge, while immunization with plasmids expressing putative virion proteins provided no or inconsistent protection. In this report, we sought to augment protection by increasing the breadth of the immune response. We identified another MCMV gene (m04 encoding gp34) that provided strong and consistent protection against viral replication in the spleen. We also found that immunization with a DNA pool containing 10 MCMV genes that individually were nonprotective elicited reproducible protection against low to intermediate doses of challenge virus. Moreover, inclusion of these plasmids into a mixture with gp34, pp89, and M84 DNAs provided even greater protection than did coimmunization with pp89 and M84. The highest level of protection was achieved by immunization of mice with the pool of 13 pDNAs, followed by formalin-inactivated MCMV (FI-MCMV). Immunization with FI-MCMV elicited neutralizing antibodies against salivary gland-derived MCMV, and of greatest importance, mice immunized with both the combined pDNA pool and FI-MCMV had undetectable levels of virus in the spleen and salivary glands after challenge. Intracellular cytokine staining of splenocytes from pDNA- and FI-MCMV-immunized mice showed that pDNA immunization elicited high levels of pp89- and M83-specific CD8(+) T cells, whereas both pDNA and FI-MCMV immunizations generated strong CD8(+)-T-cell responses against virion-associated antigens. Taken together, these results show that immunization with pDNA and inactivated virus provides strong antibody and cell-mediated immunity against CMV infection.  相似文献   

7.
Early vaccination is necessary to protect infants from various infectious diseases. However, this is often unsuccessful largely due to the immaturity of the neonatal immune system. Furthermore, maternally derived antibodies can interfere with active immunization. We have previously shown in young mice that immune responses against several different antigens can be improved by the addition of oligodeoxynucleotides containing immunostimulatory CpG motifs (CpG ODN). In this study we have evaluated immunization of newborn (1-7-day-old) BALB/c mice against hepatitis B surface antigen (HBsAg), with alum and/or CpG ODN, in the presence of high levels of maternal antibody against HBsAg (anti-HBs). Seroconversion rates and anti-HBs titers were compared to those induced by a HBsAg-expressing plasmid, since other studies had suggested DNA vaccines to be superior to protein vaccines in young mice with maternal antibody. HBsAg/alum/CpG ODN was superior to DNA vaccine in inducing HBsAg-specific CTL responses in young mice in the presence of maternally transferred anti-HBs antibodies. However, B cell responses to both HBsAg/alum/CpG ODN and DNA vaccines remained weak in the presence of maternally transferred anti-HBs antibodies.  相似文献   

8.
CD8(+) T-cell responses can be induced by DNA immunization, but little is known about the kinetics of these responses in vivo in the absence of restimulation or how soon protective immunity is conferred by a DNA vaccine. It is also unclear if CD8(+) T cells primed by DNA vaccines express the vigorous effector functions characteristic of cells primed by natural infection or by immunization with a recombinant live virus vaccine. To address these issues, we have used the sensitive technique of intracellular cytokine staining to carry out direct ex vivo kinetic and phenotypic analyses of antigen-specific CD8(+) T cells present in the spleens of mice at various times after (i) a single intramuscular administration of a plasmid expressing the nucleoprotein (NP) gene from lymphocytic choriomeningitis virus (LCMV), (ii) infection by a recombinant vaccinia virus carrying the same protein (vvNP), or (iii) LCMV infection. In addition, we have evaluated the rapidity with which protective immunity against both lethal and sublethal LCMV infections is achieved following DNA vaccination. The CD8(+) T-cell response in DNA-vaccinated mice was slightly delayed compared to LCMV or vvNP vaccinees, peaking at 15 days postimmunization. Interestingly, the percentage of antigen-specific CD8(+) T cells present in the spleen at day 15 and later time points was similar to that observed following vvNP infection. T cells primed by DNA vaccination or by infection exhibited similar cytokine expression profiles and had similar avidities for an immunodominant cytotoxic T lymphocyte epitope peptide, implying that the responses induced by DNA vaccination differ quantitatively but not qualitatively from those induced by live virus infection. Surprisingly, protection from both lethal and sublethal LCMV infections was conferred within 1 week of DNA vaccination, well before the peak of the CD8(+) T-cell response.  相似文献   

9.
Peptide vaccination induces T cell activation and cytotoxic T cell development. In an effort to understand what factors can improve immune responses to peptide vaccination, the role of 4-1BB (CD137) costimulation was examined, since 4-1BB has been shown to promote T cell responses in other systems. 4-1BBL-deficient (-/-) and wild-type (+/+) mice were immunized with a lipidated lymphocytic choriomeningitis virus (LCMV) peptide NP396-404. Analysis of peptide-specific responses early after immunization by CTL assay, intracellular IFN-gamma staining, and IFN-gamma enzyme-linked immunospot assay (ELISPOT) indicated that CD8 T cell responses were reduced 3- to 10-fold in the absence of 4-1BB costimulation. Moreover, when agonistic anti-4-1BB Ab was given, CD8 T cell responses in 4-1BBL-/- mice were augmented to levels similar to those in 4-1BBL+/+ mice. Two months after immunization, 4-1BBL+/+ mice still had epitope-specific cells and were protected against viral challenge, demonstrating that peptide vaccination can induce long-term protection. In fact, 70% of CD8 T cells were specific for the immunizing peptide after viral challenge, demonstrating that strong, epitope-specific CD8 T cell responses are generated after peptide vaccination. In contrast, peptide-immunized 4-1BBL-/- mice had fewer epitope-specific cells and were impaired in their ability to resolve the infection. These results show that immunization with a single LCMV peptide provides long term protection against LCMV infection and point to costimulatory molecules such as 4-1BB as important components for generating protective immunity after vaccination.  相似文献   

10.
Mice of several strains persistently infected with lymphocytic choriomeningitis virus (LCMV) mount continuous anti-LCMV immune responses leading to the formation and tissue deposition of immune complexes. Such mice carry infectious virus-immunoglobulin (presumably anti-LCMV antibody) complexes in the circulation. We have now determined that anti-LCMV antibody both complexed and free is found in the circulation of mice persistently infected with LCMV. This antibody reacts specifically against the three main LCMV structural polypeptides: nucleoprotein, 63,000 m.w. and two glycopeptides, GP-1 and GP-2 with m.w. of 45,000 and 35,000, respectively. A C1q binding assay was developed and found to be effective in measuring C1Q binding substances (presumably virus-anti-viral Ig complexes) in the circulations of several strains of mice persistently infected with LCMV. With different strains of mice, the levels, time of formation, and fate of C1q binding materials varied markedly. Formation of antibodies to LCMV was correlated with the detection of C1q binding materials. Mice (SWR/J) persistently infected with lactic dehydrogenase virus also form infectious virus-Ig in their sera but deposit minimal amounts of complexes in their tissues. In such mice, C1q binding substances did not form in the circulation.  相似文献   

11.
DNA vaccines for viral diseases   总被引:1,自引:0,他引:1  
DNA vaccines, with which the antigen is synthesized in vivo after direct introduction of its encoding sequences, offer a unique method of immunization that may overcome many of the deficits of traditional antigen-based vaccines. By virtue of the sustained in vivo antigen synthesis and the comprised stimulatory CpG motifs, plasmid DNA vaccines appear to induce strong and long-lasting humoral (antibodies) and cell-mediated (T-help, other cytokine functions and cytotoxic T cells) immune responses without the risk of infection and without boost. Other advantages over traditional antigen-containing vaccines are their low cost, the relative ease with which they are manufactured, their heat stability, the possibility of obtaining multivalent vaccines and the rapid development of new vaccines in response to new strains of pathogens. The antigen-encoding DNA may be in different forms and formulations, and may be introduced into cells of the body by numerous methods. To date, animal models have shown the possibility of producing effective prophylactic DNA vaccines against numerous viruses as well as other infectious pathogens. The strong cellular responses also open up the possibility of effective therapeutic DNA vaccines to treat chronic viral infections.  相似文献   

12.
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1( )-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.  相似文献   

13.
Epitope-based vaccines designed to induce CTL responses specific for HIV-1 are being developed as a means for addressing vaccine potency and viral heterogeneity. We identified a set of 21 HLA-A2, HLA-A3, and HLA-B7 restricted supertype epitopes from conserved regions of HIV-1 to develop such a vaccine. Based on peptide-binding studies and phenotypic frequencies of HLA-A2, HLA-A3, and HLA-B7 allelic variants, these epitopes are predicted to be immunogenic in greater than 85% of individuals. Immunological recognition of all but one of the vaccine candidate epitopes was demonstrated by IFN-gamma ELISPOT assays in PBMC from HIV-1-infected subjects. The HLA supertypes of the subjects was a very strong predictor of epitope-specific responses, but some subjects responded to epitopes outside of the predicted HLA type. A DNA plasmid vaccine, EP HIV-1090, was designed to express the 21 CTL epitopes as a single Ag and tested for immunogenicity using HLA transgenic mice. Immunization of HLA transgenic mice with this vaccine was sufficient to induce CTL responses to multiple HIV-1 epitopes, comparable in magnitude to those induced by immunization with peptides. The CTL induced by the vaccine recognized target cells pulsed with peptide or cells transfected with HIV-1 env or gag genes. There was no indication of immunodominance, as the vaccine induced CTL responses specific for multiple epitopes in individual mice. These data indicate that the EP HIV-1090 DNA vaccine may be suitable for inducing relevant HIV-1-specific CTL responses in humans.  相似文献   

14.
Zhao Z  Wakita T  Yasui K 《Journal of virology》2003,77(7):4248-4260
We established a simple and effective method for DNA immunization against Japanese encephalitis virus (JEV) infection with plasmids encoding the viral PrM and E proteins and colloidal gold. Inoculation of plasmids mixed with colloidal gold induced the production of specific anti-JEV antibodies and a protective response against JEV challenge in BALB/c mice. When we compared the efficacy of different inoculation routes, the intravenous and intradermal inoculation routes were found to elicit stronger and more sustained neutralizing immune responses than intramuscular or intraperitoneal injection. After being inoculated twice, mice were found to resist challenge with 100,000 times the 50% lethal dose (LD(50)) of JEV (Beijing-1 strain) even when immunized with a relatively small dose of 0.5 micro g of plasmid DNA. Protective passive immunity was also observed in SCID mice following transfer of splenocytes or serum from plasmid DNA- and colloidal gold-immunized BALB/c mice. The SCID mice resisted challenge with 100 times the LD(50) of JEV. Analysis of histological sections detected expression of proteins encoded by plasmid DNA in the tissues of intravenously, intradermally, and intramuscularly inoculated mice 3 days after inoculation. DNA immunization with colloidal gold elicited encoded protein expression in splenocytes and might enhance immune responses in intravenously inoculated mice. This approach could be exploited to develop a novel DNA vaccine.  相似文献   

15.
In this study, we have examined the relative contributions of CD4+ and CD8+ T cells in controlling an acute or chronic lymphocytic choriomeningitis virus (LCMV) infection. To study acute infection, we used the LCMV Armstrong strain, which is cleared by adult mice in 8 to 10 days, and to analyze chronic infection, we used a panel of lymphocyte-tropic and macrophage-tropic variants of LCMV that persist in adult mice for several months. We show that CD4+ T cells are not necessary for resolving an acute LCMV infection. CD4+ T-cell-depleted mice were capable of generating an LCMV-specific CD8+ cytotoxic T-lymphocyte (CTL) response and eliminated virus with kinetics similar to those for control mice. The CD8+ CTL response was critical for resolving this infection, since beta 2-microglobulin knockout (CD8-deficient) mice were unable to control the LCMV Armstrong infection and became persistently infected. In striking contrast to the acute infection, even a transient depletion of CD4+ T cells profoundly affected the outcome of infection with the macrophage- and lymphocyte-tropic LCMV variants. Adult mice given a single injection of anti-CD4 monoclonal antibody (GK1.5) at the time of virus challenge became lifelong carriers with high levels of virus in most tissues. Unmanipulated adult mice infected with the different LCMV variants contained virus for prolonged periods (> 3 months) but eventually eliminated infection from most tissues, and all of these mice had LCMV-specific CD8+ CTL responses. Although the level of CTL activity was quite low, it was consistently present in all of the chronically infected mice that eventually resolved the infection. These results clearly show that even in the presence of an overwhelming viral infection of the immune system, CD8+ CTL can remain active for long periods and eventually resolve and/or keep the virus infection in check. In contrast, LCMV-specific CTL responses were completely lost in chronically infected CD4-depleted mice. Taken together, these results show that CD4+ T cells are dispensable for short-term acute infection in which CD8+ CTL activity does not need to be sustained for more than 2 weeks. However, under conditions of chronic infection, in which CD8+ CTLs take several months or longer to clear the infection, CD4+ T-cell function is critical. Thus, CD4+ T cells play an important role in sustaining virus-specific CD8+ CTL during chronic LCMV infection. These findings have implications for chronic viral infections in general and may provide a possible explanation for the loss of human immunodeficiency virus-specific CD8+ CTL activity that is seen during the late stages of AIDS, when CD4+ T cells become limiting.  相似文献   

16.
The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8+ T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8+ T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.  相似文献   

17.
Given the current difficulties generating vaccine-induced neutralizing antibodies to human immunodeficiency virus (HIV), the focus of the vaccine community has shifted toward creating cytotoxic-T-lymphocyte (CTL)-based vaccines. Recent reports of CTL-based vaccine trials in macaques challenged with simian/human immunodeficiency virus SHIV-89.6P have supported the notion that such vaccines can ameliorate the course of disease. However, almost all of these studies included Env as an immunogen and since SHIV-89.6P is sensitive to neutralizing antibodies it is difficult to determine the mechanism(s) of protection. Consequently, SHIV-89.6P challenge of macaques may be a poor model for determining vaccine efficacy in humans. To ascertain the effect of vaccine-induced multispecific mucosal CTL, in the absence of Env-specific antibody, on the control of an immunodeficiency virus challenge, we vaccinated Mamu-A*01(+) macaques with constructs encoding a combination of CTL epitopes and full-length proteins (Tat, Rev, and Nef) by using a DNA prime/recombinant modified vaccinia virus Ankara (rMVA) boost regimen. The vaccination induced virus-specific CTL and CD4(+) helper T lymphocytes with CTL frequencies as high as 20,000/million peripheral blood mononuclear cells. The final rMVA vaccination, delivered intravenously, engendered long-lived mucosal CTL. At 16 weeks after the final rMVA vaccination, the vaccinees and naive, Mamu-A*01(+) controls were challenged intrarectally with SIVmac239. Massive early anamnestic cellular immune responses controlled acute-phase viral replication; however, the three vaccinees were unable to control virus replication in the chronic phase. The present study suggests that multispecific mucosal CTL, in the absence of neutralizing antibodies, can achieve a modicum of control over early viral replication but are unable to control chronic-phase viral replication after a high-dose mucosal challenge with a pathogenic simian immunodeficiency virus.  相似文献   

18.
In an effort to develop an AIDS vaccine that elicits high-frequency cytotoxic-T-lymphocyte (CTL) responses with specificity for a diversity of viral epitopes, we explored two prototype multiepitope plasmid DNA vaccines in the simian-human immunodeficiency virus/rhesus monkey model to determine their efficiency in priming for such immune responses. While a simple multiepitope vaccine construct demonstrated limited immunogenicity in monkeys, this same multiepitope genetic sequence inserted into an immunogenic simian immunodeficiency virus gag DNA vaccine elicited high-frequency CTL responses specific for all of the epitopes included in the vaccine. Both multiepitope vaccine prototypes primed for robust epitope-specific CTL responses that developed following boosting with recombinant modified vaccinia virus Ankara vaccines expressing complete viral proteins. The natural hierarchy of immunodominance for these epitopes was clearly evident in the boosted monkeys. These studies suggest that multiepitope plasmid DNA vaccine-based prime-boost regimens can efficiently prime for CTL responses of increased breadth and magnitude, although they do not overcome predicted hierarchies of immunodominance.  相似文献   

19.
CD8+ T cells are crucial for the control of intracellular pathogens such as viruses and some bacteria. Using lymphocytic choriomeningitis virus (LCMV) infection of mice--the prototypic arenavirus evolutionarily closely related to human Lassa fever and South American hemorrhagic fever viruses, we have shown previously that the kinetics of Ag presentation determine immunodominance of the LCMV-specific CTL response due to progressive exhaustion of LCMV nucleoprotein (NP)-specific CTL upon increasing viral load. In this study, we provide evidence that CTL against early LCMV NP-derived epitopes are more important in virus control than those against late glycoprotein-derived epitopes. We show that mice that are tolerant to all NP-derived T cell epitopes are severely compromised in their ability to control larger inocula of LCMV, supporting our hypothesis that CD8+ T cells specific for early viral Ags play a major role in acute virus control. Thus, the kinetics with which virus-derived T cell epitopes are presented has a strong impact on the efficacy of the antiviral immunity. This aspect should be taken into consideration for the development of vaccines.  相似文献   

20.
The effects of genetic adjuvants on humoral and cell-mediated immunity to two human immunodeficiency virus antigens, Env and Nef, have been examined in mice. Despite similar levels of gene expression and the same gene delivery vector, the immune responses to these two gene products differed following DNA immunization. Intramuscular immunization with a Nef expression vector plasmid generated a humoral response and antigen-specific gamma interferon (IFN-gamma) production but little cytotoxic-T-lymphocyte (CTL) immunity. In contrast, immunization with an Env vector stimulated CTL activity but did not induce a high-titer antibody response. The ability to modify these antigen-specific immune responses was investigated by coinjection of DNA plasmids encoding cytokine and/or hematopoietic growth factors, interleukin-2 (IL-2), IL-12, IL-15, Flt3 ligand (FL), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Coadministration of these genes largely altered the immune responses quantitatively but not qualitatively. IL-12 induced the greatest increase in IFN-gamma and immunoglobulin G responses to Nef, and GM-CSF induced the strongest IFN-gamma and CTL responses to Env. A dual approach of expanding innate immunity by administering the FL gene, together with a cytokine that enhances adaptive immune responses, IL-2, IL-12, or IL-15, generated the most potent immune response at the lowest doses of Nef antigen. These findings suggest that intrinsic properties of the antigen determine the character of immune reactivity for this method of immunization and that specific combination of innate and adaptive immune cytokine genes can increase the magnitude of the response to DNA vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号