首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of glucose ingestion on the changes in blood glucose, FFA, insulin and glucagon levels induced by a prolonged exercise at about 50% of maximal oxygen uptake were investigated. Healthy volunteers were submitted to the following procedures: 1. a control test at rest consisting of the ingestion of 100 g glucose, 2. an exercise test without, or 3. with ingestion of 100 g of glucose. Exercise without glucose induced a progressive decrease in blood glucose and plasma insulin; plasma glucagon rose significantly from the 60th min onward (+45 pg/ml), the maximal increase being recorded during the 4th h of exercise (+135 pg/ml); plasma FFA rose significantly from the 60th min onward and reached their maximal values during the 4th h of exercise (2177 +/- 144 muEq/l, m +/- SE). Exercise with glucose ingestion blunted almost completely the normal insulin response to glucose. Under these conditions, exercise did not increase plasma glucagon before the 210th min; similarly, the exercise-induced increase in plasma FFA was markedly delayed and reduced by about 60%. It is suggested that glucose availability reduces exercise-induced glucagon secretion and, possibly consequently, FFA mobilization.  相似文献   

2.
The effects of low blood glucose concentration during low-intensity prolonged physical exercise on the hypothalamus-pituitary-adrenocortical axis were investigated in healthy young men. In experiment 1, six subjects who had fasted for 14 h performed bicycle exercise at 50% of their maximal O2 uptake until exhaustion. At the end of the exercise, adrenocorticotropic hormone (ACTH) and cortisol increased significantly. However, this hormonal response was totally abolished when the same subjects exercised at the same intensity while blood glucose concentrations were maintained at the preexercise level. In experiment 2, in addition to ACTH and cortisol, the possible changes in plasma concentration of corticotropin-releasing factor (CRF) were investigated during exercise of the same intensity performed by six subjects. As suggested by a previous study (Tabata et al. Clin. Physiol. Oxf. 4: 299-307, 1984), when the blood glucose concentrations decreased to less than 3.3 mM, plasma concentrations of CRF, ACTH, and cortisol showed a significant increase. At exhaustion, further increases were observed in plasma CRF, ACTH, and cortisol concentrations. These results demonstrate that decreases in blood glucose concentration trigger the pituitary-adrenocortical axis to enhance secretion of ACTH and cortisol during low-intensity prolonged exercise in humans. The data also might suggest that this activation is due to increased concentration of CRF, which was shown to increase when blood glucose concentration decreased to a critical level of 3.3 mM.  相似文献   

3.
Near-infrared spectroscopy (NIRS) could allow insights into controversial issues related to blood lactate concentration ([La](b)) increases at submaximal workloads (). We combined, on five well-trained subjects [mountain climbers; peak O(2) consumption (VO(2peak)), 51.0 +/- 4.2 (SD) ml. kg(-1). min(-1)] performing incremental exercise on a cycle ergometer (30 W added every 4 min up to voluntary exhaustion), measurements of pulmonary gas exchange and earlobe [La](b) with determinations of concentration changes of oxygenated Hb (Delta[O(2)Hb]) and deoxygenated Hb (Delta[HHb]) in the vastus lateralis muscle, by continuous-wave NIRS. A "point of inflection" of [La](b) vs. was arbitrarily identified at the lowest [La](b) value which was >0.5 mM lower than that obtained at the following. Total Hb volume (Delta[O(2)Hb + HHb]) in the muscle region of interest increased as a function of up to 60-65% of VO(2 peak), after which it remained unchanged. The oxygenation index (Delta[O(2)Hb - HHb]) showed an accelerated decrease from 60- 65% of VO(2 peak). In the presence of a constant total Hb volume, the observed Delta[O(2)Hb - HHb] decrease indicates muscle deoxygenation (i.e., mainly capillary-venular Hb desaturation). The onset of muscle deoxygenation was significantly correlated (r(2) = 0.95; P < 0.01) with the point of inflection of [La](b) vs., i.e., with the onset of blood lactate accumulation. Previous studies showed relatively constant femoral venous PO(2) levels at higher than approximately 60% of maximal O(2) consumption. Thus muscle deoxygenation observed in the present study from 60-65% of VO(2 peak) could be attributed to capillary-venular Hb desaturation in the presence of relatively constant capillary-venular PO(2) levels, as a consequence of a rightward shift of the O(2)Hb dissociation curve determined by the onset of lactic acidosis.  相似文献   

4.
The effect of different muscle shortening velocity was studied during cycling at a pedalling rate of 60 and 120 rev.min(-1) on the [K+]v in humans. Twenty-one healthy young men aged 22.5+/-2.2 years, body mass 72.7+/-6.4 kg, VO2 max 3.720+/-0.426 l. min(-1), performed an incremental exercise test until exhaustion. The power output increased by 30 W every 3 min, using an electrically controlled ergometer Ergoline 800 S (see Zoladz et al. J. Physiol. 488: 211-217, 1995). The test was performed twice: once at a cycling frequency of 60 rev.min(-1) (test A) and a few days later at a frequency of 120 rev. min(-1) (test B). At rest and at the end of each step (i.e. the last 15 s) antecubital venous blood samples for [K+]p were taken. Gas exchange variables were measured continuously (breath-by-breath) using Oxycon Champion Jaeger. The pre-exercise [K+]v in both tests was not significantly different amounting to 4.24+/-0.36 mmol.l(-1) in test A, and 4.37+/-0.45 mmol.l(-1) in test B. However, the [K+]p during cycling at 120 rev. min(-1) was significantly higher (p<0.001, ANOVA for repeated measurements) at each power output when compared to cycling at 60 rev.min(-1). The maximal power output reached 293+/-31 W in test A which was significantly higher (p<0.001) than in test B, which amounted to 223+/-40 W. The VO2max values in both tests reached 3.720+/-0.426 l. min(-1) vs 3.777+/-0.514 l. min(-1). These values were not significantly different. When the [K+]v was measured during incremental cycling exercise, a linear increase in [K+]v was observed in both tests. However, a significant (p<0.05) upward shift in the [K+]v and a % VO2max relationship was detected during cycling at 120 rev.min(-1). The [K+]v measured at the VO2max level in tests A and B amounted to 6.00+/-0.47 mmol.l-1 vs 6.04+/-0.41 mmol.l-1, respectively. This difference was not significant. It may thus be concluded that: a) generation of the same external mechanical power output during cycling at a pedalling rate of 120 rev.min(-1) causes significantly higher [K+]v changes than when cycling at 60 rev.min(-1), b) the increase of venous plasma potassium concentration during dynamic incremental exercise is linearly related to the metabolic cost of work expressed by the percentage of VO2max (increase as reported previously by Vollestad et al. J. Physiol. 475: 359-368, 1994), c) there is a tendency towards upward up shift in the [K+]v and % VO2max relation during cycling at 120 rev.min(-1) when compared to cycling at 60 rev.min(-1).  相似文献   

5.
The purpose of the present study was to investigate whether combined ingestion of two carbohydrates (CHO) that are absorbed by different intestinal transport mechanisms would lead to exogenous CHO oxidation rates of >1.0 g/min. Nine trained male cyclists (maximal O(2) consumption: 64 +/- 2 ml x kg body wt(-1) x min(-1)) performed four exercise trials, which were randomly assigned and separated by at least 1 wk. Each trial consisted of 150 min of cycling at 50% of maximal power output (60 +/- 1% maximal O(2) consumption), while subjects received a solution providing either 1.8 g/min of glucose (Glu), 1.2 g/min of glucose + 0.6 g/min of sucrose (Glu+Suc), 1.2 g/min of glucose + 0.6 g/min of maltose (Glu+Mal), or water. Peak exogenous CHO oxidation rates were significantly higher (P < 0.05) in the Glu+Suc trial (1.25 +/- 0.07 g/min) compared with the Glu and Glu+Mal trials (1.06 +/- 0.08 and 1.06 +/- 0.06 g/min, respectively). No difference was found in (peak) exogenous CHO oxidation rates between Glu and Glu+Mal. These results demonstrate that, when a mixture of glucose and sucrose is ingested at high rates (1.8 g/min) during cycling exercise, exogenous CHO oxidation rates reach peak values of approximately 1.25 g/min.  相似文献   

6.
OBJECTIVE: As part of our studies of the metabolic effects of ingested proteins, we are currently investigating the effects of ingestion of individual amino acids. The objective of the present study was to determine whether ingested phenylalanine stimulates insulin and/or glucagon secretion, and if phenylalanine ingested with glucose modifies the insulin, glucagon or glucose response to the ingested glucose. DESIGN: Six healthy subjects were tested on 4 separate occasions. Plasma phenylalanine, glucose, insulin, glucagon, and total alpha amino nitrogen (AAN) (i.e., total amino acids) concentrations were measured at various times during a 2.5 h period after ingestion of 1 mmol phenylalanine/kg lean body mass, 25 g glucose, 1 mmol phenylalanine/kg lean body mass+25 g glucose, or water only, given in random order. RESULTS: Following phenylalanine ingestion, the circulating phenylalanine concentration increased approximately 14 fold and remained elevated for the duration of the experiment. Glucagon and AAN increased, insulin increased modestly, and glucose was unchanged when compared to water ingestion. When glucose was ingested with phenylalanine, the circulating phenylalanine, glucagon, AAN, and insulin area responses were approximately the sum of the responses to phenylalanine alone and glucose alone. However, the plasma glucose area response was decreased 66% when phenylalanine was co-ingested with glucose. CONCLUSION: In summary, phenylalanine in an amount moderately greater than that in a large protein meal stimulates an increase in insulin and glucagon concentration. It markedly attenuates the glucose-induced rise in plasma glucose when ingested with glucose.  相似文献   

7.
After parturition, dairy cows suffer from an intense energy deficit caused by the onset of copious milk secretion and an inadequate increase in voluntary food intake. We previously showed that this energy deficit contributes to a decline in plasma leptin. This decline mirrors that of plasma insulin but is reciprocal to the profile of plasma growth hormone (GH), suggesting that both hormones may regulate plasma leptin in periparturient dairy cows. To study the role of insulin, hyperinsulinemic-euglycemic clamps were performed on six dairy cows in late pregnancy (LP, 31 days prepartum) and early lactation (EL, 7 days postpartum). Infusion of insulin (1 microg.kg body wt-1.h-1) caused a progressive rise in the plasma concentration of leptin that reached maximum levels at 24 h during both physiological states. At steady states, the absolute increase in plasma leptin was greater in LP than in EL cows (2.4 vs. 0.4 ng/ml). Insulin infusion increased leptin mRNA in adipose tissue during LP but not during EL. During lactation, mammary epithelial cells expressed leptin mRNA but insulin did not increase milk leptin output. In contrast, a 3-day period of GH administration had no effect on plasma leptin during LP or EL. Therefore, insulin increases plasma leptin in LP by stimulating adipose tissue synthesis but has only marginal effects in EL, when cows are in negative energy balance. Other factors, such as increased response of adipose tissue to beta-adrenergic signals, probably contribute to the reduction of plasma leptin in early lactating dairy cows.  相似文献   

8.
Plasma growth hormone, insulin and blood glucose levels were measured longitudinally during the first 60 days of life in 21 premature infants (8 males and 13 females) born between the 6th and 8th month of gestation. When these variables were related to age it was found that insulin and glucose, which are lower than in the prepubertal children and adults, rise simultaneously. Whereas growth hormone, which is higher than in older prepubertal children, decreases during the first 2 weeks of life. The decrease in growth hormone continues during the first 2 months of life, in contrast to the increases in insulin and glucose which do not persist in as long a period.  相似文献   

9.
10.
Glucose transport activity was found to increase over 5 h in rat epitrochlearis muscle in response to a moderate concentration (50-100 microunits/ml) of insulin. This process was examined using 3-methylglucose. The increase in permeability to 3-methylglucose was 2- to 4-fold greater after 5 h than after 1 h in muscles incubated with 50 microunits/ml of insulin and 1 or 8 mM glucose. The increase in permeability to 3-methylglucose during the period between 1 and 5 h of exposure to 50 microunits/ml of insulin and 1 mM glucose was due to an increase in the apparent Vmax of sugar transport. There were two components to this activation of glucose transport. One, which was not influenced by inhibition of protein synthesis, resulted in activation of sugar transport to the same extent by 50 microunits/ml as by 20,000 microunits/ml of insulin; however, this activation took approximately 20 times longer with 50 microunits/ml insulin. The other, which was blocked by cycloheximide, resulted in a further activation of sugar transport to a level higher than that attained in response to 20,000 microunits/ml of insulin. Glucose had no effect on activation of sugar transport during the first hour, but a high concentration (20-36 mM) of glucose prevented the further activation of glucose transport during prolonged treatment with 50 microunits/ml of insulin. It appears from these results that prolonged exposure to a moderate concentration of insulin has previously unrecognized effects that include: a progressive activation of glucose transport over a long time that eventually results in as great a response as a "supramaximal" insulin concentration, and in the presence of low glucose concentration, further activation of glucose transport by an additional, protein synthesis-dependent mechanism. The results also show that a high concentration of glucose can, under some conditions, inhibit stimulation of its own transport.  相似文献   

11.
In an attempt to know the role of the pineal gland on glucose homeostasis, the blood plasma concentrations of glucose, insulin and glucagon under basal conditions or after the administration of nutrients were studied in the jugular vein of conscious pinealectomized (Pn), melatonin-treated pinealectomized (Pn + Mel) and control (C) rats. Glucose levels were smaller in C than in Pn rats, while immunoreactive insulin (IRI) concentrations were significantly greater in C than in Pn rats. Contrary to this, immunoreactive glucagon (IRG) levels were significantly greater in Pn than in C animals. Melatonin treatment of Pn rats induces an increase of IRI concentrations and a reduction in IRG levels. Similar changes were obtained when hormonal determinations were carried out in portal blood plasma. Although ether anesthesia increases circulating glucagon levels in the porta and cava veins, the qualitative changes of plasma insulin and glucagon in Pn and Pn + Mel were similar to those found in conscious rats. To determine the effects of nutrients on pancreatic hormone release, intravenous arginine or oral glucose were administered to the animals of the three experimental groups. In C rats, both glucose and IRI levels reached a peak 30 minutes after glucose ingestion, decreasing thereafter. However, in Pn rats a glucose intolerance was observed, with maximum glucose and insulin concentrations at 60 minutes, while in Pn + Mel animals, glucose and IRI concentrations were in between the data obtained with the other two groups. Furthermore, glucose ingestion induced a significant reduction of IRG levels in all the groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The hepatic response to glucagon was investigated in five groups of animals: (1) controls; (2) excess growth hormone (GH; tumor-bearing); (3) streptozotocin-induced diabetic; (4) cortisol-treated, and (5) insulin-treated animals. Blood samples were collected from the animal models and hepatocytes were prepared and used for glucagon-binding studies and studies of total glucose production, gluconeogenesis and glycogen determinations. Glucagon binding was elevated in GH-tumor-bearing and cortisol-treated hepatocytes but lower in hepatocytes from diabetic animals. Basal total glucose production wash higher in hepatocytes from diabetic rats but not changed in hepatocytes from GH-tumor-bearing, insulin-treated or cortisol-treated animals. Glucagon significantly stimulated total glucose production in hepatocytes from control, insulin-treated and cortisol-treated but not diabetic and GH tumor models. Gluconeogenesis as evaluated by alanine conversion to glucose was significantly increased in hepatocytes from diabetic and cortisol-treated animals and was significantly lower in hepatocytes from GH-tumor-bearing animals. Glucagon failed to significantly stimulate gluconeogenesis in hepatocytes from diabetic and tumor-bearing animals. Hepatic glycogen content was significantly decreased in diabetic and GH-tumor-bearing animals but not changed in insulin-treated and cortisol-treated animals. We conclude that increased glucagon binding was not always correlated with an increase in glucagon-stimulated glycogenolysis, gluconeogenesis or increased sensitivity to glucagon. Persistent hyperinsulinism may effectively suppress glucagon- or cortisol-stimulated pathways.  相似文献   

14.
15.
16.
17.
Previous studies suggest that adrenal catecholamines mediate, in part, the glucose and pancreatic hormonal responses to exercise in sheep. This was examined in sheep whose adrenals were denervated to prevent stress-induced changes in catecholamine secretion. The innervation to the right adrenal gland was severed and the left adrenal was removed. Adrenal denervation was associated with a reduction in exercise-induced hyperglycemia and impairment, as measured by [2-3H]glucose, of the increase in glucose appearance during the first 10 min of exercise and increased metabolic clearance rate of glucose after 20 min of exercise. Insulin concentrations were significantly higher during exercise after adrenal denervation than in the controls. Adrenal denervation did not alter the rise in glucagon due to exercise. These effects are consistent with adrenomedullary hormonal stimulation of hepatic and muscular glycogenolysis, either directly or indirectly through the regulation of insulin secretion during exercise in sheep.  相似文献   

18.
Hyperglycemia and increased hepatic glucose output are characteristic responses to exercise in sheep. They appear to be due in part to alpha-adrenergic stimulation. To delineate the contributions of sympathetic innervation and adrenal catecholamines to the hormonal and metabolic responses to exercise, adrenal-denervated sheep were exercised with and without alpha-blockade (phentolamine treatment). Alpha blockade exaggerated the hyperinsulinemia during exercise (increment of 61 +/- 8 vs. 34 +/- 7 microU/mL for the control). This was associated with a reduction in glucose appearance (increments of 63 +/- 8 vs. 236 +/- 23 mumol/min, respectively). The metabolic clearance rates were not altered by alpha-blockade. It appears that both the adrenal catecholamines and adrenergic innervation to the pancreas contribute to the prevention of a rise in insulin concentrations during exercise in sheep. While this may not be essential for glucose appearance to rise during exercise, it appears necessary for an optimal response.  相似文献   

19.
The purpose of this investigation was to examine the effect of low body glycogen stores on plasma ammonia concentration and sweat ammonia excretion during prolonged, nonexhausting exercise of moderate intensity. On two occasions seven healthy untrained men pedalled on a cycle ergometer for 60 min at 50% of their predetermined maximal O2 uptakes ( max) firstly, following 3 days on a normal mixed diet (N-diet) (60% carbohydrates, 25% fat and 15% protein) and secondly, following 3 days on a low-carbohydrate diet (LC-diet) (less than 5% carbohydrates, 50% fat and 45% protein) of equal energy content. Blood was collected from the antecubital vein immediately before, at 30th and at 60th min of exercise. Sweat was collected from the hypogastric region using gauze pads. It was shown that plasma ammonia concentrations after the LC-diet were higher than after the N-diet at both the 30th and 60th min of exercise. Sweat ammonia concentration and total ammonia loss through the sweat were also higher after the LC-diet. The higher ammonia concentrations in plasma and sweat after the LC-diet would seem to indicate an increased ammonia production, which may be related to reduced initial carbohydrate stores.  相似文献   

20.
We investigated whether secretion of insulin occurred in the absence of feeding in a ruminant. Serum insulin, glucose and lactate concentrations were measured in three adult non-pregnant reindeer at hourly intervals during an 18-h fast (17:30-11:30 h) in October. Mean serum insulin concentration was 39+/-3 micro/ml (range 2-100). The insulin profile of two animals was characterized by a nocturnal rise and an early morning trough, followed by a mid-morning rise. Within the larger peaks, short-term oscillations occurred at 2-3-h intervals. Serum glucose concentrations significantly increased during the fast and exceeded feeding values by 31-45% at 18 h post feeding. Serum lactate concentrations declined significantly in all three animals. Residuals for serum glucose concentrations were significantly negatively correlated to residuals of serum lactate in two animals, but not the third. Serum glucose and lactate concentrations were not related to serum insulin. In conclusion, insulin secretion in reindeer shows a 2-3-h periodicity in the absence of feeding. The periodicity is of similar duration as the inter-meal interval for pen-fed reindeer during winter (2.5 h). Although not necessarily causal, the results are consistent with a hypothesized role for insulin in meal initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号