首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(4):607-608
The phosphoinositide 3-kinase (PI3K) pathway plays a crucial role in cell proliferation and survival and is frequently activated by genetic and epigenetic alterations in human cancer. An arsenal of pharmacological inhibitors of key signaling enzymes in this pathway, including class IA PI3K isoforms, has been developed in the past decade and several compounds have entered clinical testing in cancer patients. The PIK3CA/p110α isoform is the most studied enzyme of the family and a validated cancer target. The induction of autophagy by PI3K pathway inhibitors has been documented in various cancers, although a clear picture about the significance of this phenomenon is still missing, especially in the in vivo situation. A better understanding of the contribution of autophagy to the action of PI3K inhibitors on tumors cells is important, since it may limit or enhance the action of these compounds, depending on the cellular context.  相似文献   

2.
Our previous studies showed that oridonin could induce both apoptosis and autophagy in HeLa cells, and this autophagy might be a protective mechanism against apoptosis. In this study, the roles of PKC signal pathways in oridonin-induced HeLa cell autophagy and apoptosis were further investigated. We found that inhibition of PKC significantly reduced oridonin-induced autophagy whereas markedly increased apoptosis, while pretreatment with PKC activator caused opposite results. Subsequently, the oridonin-induced autophagy was also suppressed by Raf-1 or JNK inhibition accompanied by the increase of apoptosis, but it was not affected by ERK or p38 inhibition. In addition, oridonin-induced protein levels of Raf-1, JNK and p-JNK were sharply downregulated by PKC inhibitor, and they were enhanced by PKC activator. Taken together, these results demonstrate that PKC enhances oridonin-induced autophagy against apoptosis through regulating its downstream factors Raf-1 and JNK in HeLa cells.  相似文献   

3.
Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.  相似文献   

4.
《Autophagy》2013,9(2):214-224
Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.  相似文献   

5.
Beat Nyfeler 《Autophagy》2016,12(7):1206-1207
Inhibition of autophagy has been widely explored as a potential therapeutic intervention for cancer. Different factors such as tumor origin, tumor stage and genetic background can define a tumor's response to autophagy modulation. Notably, tumors with oncogenic mutations in KRAS were reported to depend on macroautophagy in order to cope with oncogene-induced metabolic stress. Our recent report details the unexpected finding that autophagy is dispensable for KRAS-driven tumor growth in vitro and in vivo. Additionally, we clarify that the antitumorigenic effects of chloroquine, a frequently used nonspecific inhibitor of autophagy, are not connected to the inhibition of macroautophagy. Our data suggest that caution should be exercised when using chloroquine and its analogs to decipher the roles of autophagy in cancer.  相似文献   

6.
Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would “fuel” enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial “power” in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or “metabolic oncogenes.” Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial “poison”) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.  相似文献   

7.
Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would “fuel” enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial “power” in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or “metabolic oncogenes.” Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial “poison”) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.  相似文献   

8.
Autophagy is mostly a nonselective bulk degradation system within cells. Recent reports indicate that autophagy can act both as a protector and killer of the cell depending on the stage of the disease or the surrounding cellular environment (for review see Cuervo, A.M. 2004. Trends Cell Biol. 14:70-77). We found that cytoplasmic vacuoles induced in pancreatic acinar cells by experimental pancreatitis were autophagic in origin, as demonstrated by microtubule-associated protein 1 light chain 3 expression and electron microscopy experiments. To analyze the role of macroautophagy in acute pancreatitis, we produced conditional knockout mice lacking the autophagy-related 5 gene in acinar cells. Acute pancreatitis was not observed, except for very mild edema in a restricted area, in conditional knockout mice. Unexpectedly, trypsinogen activation was greatly reduced in the absence of autophagy. These results suggest that autophagy exerts devastating effects in pancreatic acinar cells by activation of trypsinogen to trypsin in the early stage of acute pancreatitis through delivering trypsinogen to the lysosome.  相似文献   

9.
Manganese (Mn) plays an important role in many physiological processes. Nevertheless, Mn accumulation in the brain can cause a parkinsonian-like syndrome known as manganism. Unfortunately, the therapeutic options for this disease are scarce and of limited efficacy. For this reason, a great effort is being made to understand the cellular and molecular mechanisms involved in Mn toxicity in neuronal and glial cells. Even though evidence indicates that Mn activates autophagy in microglia, the consequences of this activation in cell death remain unknown. In this study, we demonstrated a key role of reactive oxygen species in Mn-induced damage in microglial cells. These species generated by Mn2+ induce lysosomal alterations, LMP, cathepsins release and cell death. Besides, we described for the first time the kinetic of Mn2+-induced autophagy in BV-2 microglial cells and its relevance to cell fate. We found that Mn promotes a time-dependent increase in LC3-II and p62 expression levels, suggesting autophagy activation. Possibly, cells trigger autophagy to neutralize the risks associated with lysosomal rupture. In addition, pre-treatment with both Rapamycin and Melatonin enhanced autophagy and retarded Mn2+ cytotoxicity. In summary, our results demonstrated that, despite the damage inflicted on a subset of lysosomes, the autophagic pathway plays a protective role in Mn-induced microglial cell death. We propose that 2 h Mn2+ exposure will not induce disturbances in the autophagic flux. However, as time passes, the accumulated damage inside the cell could trigger a dysfunction of this mechanism. These findings may represent a valuable contribution to future research concerning manganism therapies.  相似文献   

10.
《Autophagy》2013,9(6):979-981
While anti-angiogenic therapy was initially greeted enthusiastically by the cancer community, initial successes with this therapeutic modality were tempered by the failure of angiogenesis inhibitors to produce sustained clinical responses in most patients, with resistance to the inhibitors frequently developing. We recently reported that hypoxia increases after the devascularization caused by anti-angiogenic therapy, consistent with the goals of these therapies, but that some tumor cells become resistant and survive the hypoxic insult elicited by anti-angiogenic therapy through autophagy by activating both AMPK and HIF1A pathways. These findings suggest that modulating the autophagy pathway may someday allow anti-angiogenic therapy to fulfill its therapeutic potential. However, further work will clearly be needed to develop more potent and specific autophagy inhibitors and to better understand the regulators of autophagy in malignant cells.  相似文献   

11.
Hu YL  Jahangiri A  De Lay M  Aghi MK 《Autophagy》2012,8(6):979-981
While anti-angiogenic therapy was initially greeted enthusiastically by the cancer community, initial successes with this therapeutic modality were tempered by the failure of angiogenesis inhibitors to produce sustained clinical responses in most patients, with resistance to the inhibitors frequently developing. We recently reported that hypoxia increases after the devascularization caused by anti-angiogenic therapy, consistent with the goals of these therapies, but that some tumor cells become resistant and survive the hypoxic insult elicited by anti-angiogenic therapy through autophagy by activating both AMPK and HIF1A pathways. These findings suggest that modulating the autophagy pathway may someday allow anti-angiogenic therapy to fulfill its therapeutic potential. However, further work will clearly be needed to develop more potent and specific autophagy inhibitors and to better understand the regulators of autophagy in malignant cells.  相似文献   

12.
Various antitumor agents induce apoptotic cell death in tumor cells. Since the apoptosis program in tumor cells plays a critical role in the chemotherapy-induced tumor cell killing, it is suggested that the defect in the signaling pathway of apoptosis could cause a new form of multidrug resistance in tumor cells. This article describes the recent findings concerning the mechanisms of chemotherapy-induced apoptosis and discusses the implication of apoptosis resistance in cancer chemotherapy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Sepsis/endotoxemia is elicited by the circulatory distribution of pathogens/endotoxins into whole bodies, and causes profound effects on human health by causing inflammation in multiple organs. Mitochondrial damage is one of the characteristics of the cellular degeneration observed during sepsis/endotoxemia. Elimination of damaged mitochondria through the autophagy-lysosome system has been reported in the liver, indicating that autophagy should play an important role in liver homeostasis during sepsis/endotoxemia. An increased appearance of mitochondrial DNA and proteins in the plasma is another feature of sepsis/endotoxemia, suggesting that damaged mitochondria are not only eliminated within the cells, but also extruded through currently unknown mechanisms. Here we provide evidence for the secretion of mitochondrial proteins and DNA from lipopolysaccharide (LPS)-stimulated rat hepatocytes as well as mouse embryonic fibroblasts (MEFs). The secretion of mitochondrial contents is accompanied by the secretion of proteins that reside in the lumenal space of autolysosomes (LC3-II and CTSD/cathepsin D), but not by a lysosomal membrane protein (LAMP1). The pharmacological inhibition of autophagy by 3MA blocks the secretion of mitochondrial constituents from LPS-stimulated hepatocytes. LPS also stimulates the secretion of mitochondrial as well as autolysosomal lumenal proteins from wild-type (Atg5+/+) MEFs, but not from atg5−/− MEFs. Furthermore, we show that direct exposure of purified mitochondria activates polymorphonuclear leukocytes (PMNs), as evident by the induction of IL1B/interlekin-1β, a pro-inflammatory cytokine. Taken together, the data suggest the active extrusion of mitochondrial contents, which provoke an inflammatory response of immune cells, through the exocytosis of autolysosomes by cells stimulated with LPS.  相似文献   

14.
Kim MR  Lee JY  Park MT  Chun YJ  Jang YJ  Kang CM  Kim HS  Cho CK  Lee YS  Jeong HY  Lee SJ 《FEBS letters》2001,505(1):179-184
Although the majority of cancer cells are killed by TRAIL (tumor necrosis factor-related apoptosis-inducing ligand treatment), certain types show resistance to it. Ionizing radiation also induces cell death in cancer cells and may share common intracellular pathways with TRAIL leading to apoptosis. In the present study, we examined whether ionizing radiation could overcome TRAIL resistance in the variant Jurkat clones. We first selected TRAIL-resistant or -sensitive Jurkat clones and examined cross-responsiveness of the clones between TRAIL and radiation. Treatment with gamma-radiation induced significant apoptosis in all the clones, indicating that there seemed to be no cross-resistance between TRAIL and radiation. Combined treatment of radiation with TRAIL synergistically enhanced killing of TRAIL-resistant cells, compared to TRAIL or radiation alone. Apoptosis induced by combined treatment of TRAIL and radiation in TRAIL-resistant cells was associated with cleavage of caspase-8 and the proapoptotic Bid protein, resulting in the activation of caspase-9 and caspase-3. No changes in the expressions of TRAIL receptors (DR4 and DR5) and Bcl-2 or Bax were found after treatment. The caspase inhibitor z-VAD-fmk completely counteracted the synergistic cell killing induced by combined treatment of TRAIL and gamma-radiation. These results demonstrated that ionizing radiation in combination with TRAIL could overcome resistance to TRAIL in TRAIL-resistant cells through TRAIL receptor-independent synergistic activation of the cascades of the caspase-8 pathway, suggesting a potential clinical application of combination treatment of TRAIL and ionizing radiation to TRAIL-resistant cancer cells.  相似文献   

15.
Mathew R  White E 《Autophagy》2007,3(5):502-505
Cells exploit autophagy for survival to metabolic stress in vitro as well as in tumors where it localizes to regions of metabolic stress suggesting its role as a survival pathway. Consistent with this survival function, deficiency in autophagy impairs cell survival, but also promotes tumor growth, creating a paradox that the loss of a survival pathway leads to tumorigenesis. There is evidence that autophagy is a homeostatic process functioning to limit the accumulation of poly-ubiquitinated proteins and mutant protein aggregates associated with neuronal degeneration. Interestingly, we found that deficiency in autophagy caused by monoallelic loss of beclin1 or deletion of atg5 leads to accelerated DNA damage and chromosomal instability demonstrating a mutator phenotype. These cells also exhibit enhanced chromosomal gains or losses suggesting that autophagy functions as a tumor suppressor by limiting chromosomal instability. Thus the impairment of survival to metabolic stress due to deficiency in autophagy may be compensated by an enhanced mutation rate thereby promoting tumorigenesis. The protective role of autophagy may be exploited in developing novel autophagy modulators as rational chemotherapeutic as well as chemopreventive agents.  相似文献   

16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5), promote the selective clearing of various malignancies by inducing apoptosis, holding the promise as a potent therapeutic agent for anticancer. Though DR4 and DR5 have high sequence similarity, differential regulation of both receptors in human tumor cells remains largely unexplored. Here, we repot that golgi-specific Asp-His-His-Cys (DHHC) zinc finger protein (GODZ) regulates TRAIL/DR4-mediated apoptosis. Using the SOS protein recruitment-yeast two-hybrid screening, we isolated GODZ that interacted with the death domain of DR4. GODZ binds to DR4, but not to DR5, through the DHHC and the C-terminal transmembrane domain. Expression level of GODZ affects apoptosis of tumor cells triggered by TRAIL, but not that induced by TNF-α/cycloheximide (CHX) or DNA-damaging drugs. In parallel, GODZ functions to localize DR4 to the plasma membrane (PM) via DHHC motif. Also, introduction of mutation into the cysteine-rich motif of DR4 results in its mistargeting and attenuates TRAIL- or GODZ-mediated apoptosis. Interestingly, GODZ expression is highly downregulated in Hep-3B tumor cells, which show resistance to TRAIL. However, reconstitution of GODZ expression enhances the targeting of DR4 to cell surface and sensitizes Hep-3B cells to TRAIL. Taken together, these data establish that GODZ is a novel DR4-selective regulator responsible for targeting of DR4 to the PM, and thereby for TRAIL-induced apoptosis.  相似文献   

17.
18.
Wu YC  Wang XJ  Yu L  Chan FK  Cheng AS  Yu J  Sung JJ  Wu WK  Cho CH 《PloS one》2012,7(5):e37572
Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.  相似文献   

19.
Zhang N  Qi Y  Wadham C  Wang L  Warren A  Di W  Xia P 《Autophagy》2010,6(8):1157-1167
FTY720, a sphingosine analog, is a novel immunosuppressant currently undergoing multiple clinical trials for the prevention of organ transplant rejection and treatment of various autoimmune diseases. Recent studies indicate an additional cytotoxic effect of FTY720 and its preclinical efficacy in a variety of cancer models, yet the underlying mechanisms remain unclear. We demonstrate here for the first time that FTY720 exhibits a potent, dose- and time-dependent cytotoxic effect in human ovarian cancer cells, even in the cells that are resistant to cisplatin, a commonly prescribed chemotherapeutic drug for treatment of ovarian cancer. In contrast to the previously reported cytotoxicity of FTY720 in many other cancer cell types, FTY720 kills ovarian cancer cells independent of caspase 3 activity and induces cellular swelling and cytoplasmic vacuolization with evident features of necrotic cell death. Furthermore, the presence of autophagic hallmarks, including an increased number of autophagosomes and the formation and accumulation of LC3-II, are observed in FTY720-treated cells before cell death. FTY720 treatment enhances autophagic flux as reflected in the increased LC3 turnover and p62 degradation. Notably, blockade of autophagy by either specific chemical inhibitors or siRNAs targeting Beclin 1 or LC3 resulted in aggravated necrotic cell death in response to FTY720, suggesting that FTY720-induced autophagy plays a self-protective role against its own cytotoxic effect. Thus, our findings not only demonstrate a new death pathway underlying the cytotoxic effect of FTY720, but also suggest that targeting autophagy could augment the anticancer potency, providing the framework for further development of FTY720 as a new chemotherapeutic agent for ovarian cancer treatment.  相似文献   

20.
《Autophagy》2013,9(8):1157-1167
FTY720, a sphingosine analog, is a novel immunosuppressant currently undergoing multiple clinical trials for the prevention of organ transplant rejection and treatment of various autoimmune diseases. Recent studies indicate an additional cytotoxic effect of FTY720 and its preclinical efficacy in a variety of cancer models, yet the underlying mechanisms remain unclear. We demonstrate here for the first time that FTY720 exhibits a potent, dose- and time-dependent cytotoxic effect in human ovarian cancer cells, even in the cells that are resistant to cisplatin, a commonly prescribed chemotherapeutic drug for treatment of ovarian cancer. In contrast to the previously reported cytotoxicity of FTY720 in many other cancer cell types, FTY720 kills ovarian cancer cells independent of caspase 3 activity and induces cellular swelling and cytoplasmic vacuolization with evident features of necrotic cell death. Furthermore, the presence of autophagic hallmarks, including an increased number of autophagosomes and the formation and accumulation of LC3-II, are observed in FTY720-treated cells before cell death. FTY720 treatment enhances autophagic flux as reflected in the increased LC3 turnover and p62 degradation. Notably, blockade of autophagy by either specific chemical inhibitors or siRNAs targeting Beclin 1 or LC3 resulted in aggravated necrotic cell death in response to FTY720, suggesting that FTY720-induced autophagy plays a self-protective role against its own cytotoxic effect. Thus, our findings not only demonstrate a new death pathway underlying the cytotoxic effect of FTY720, but also suggest that targeting autophagy could augment the anticancer potency, providing the framework for further development of FTY720 as a new chemotherapeutic agent for ovarian cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号