首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurocatin, a small (about 2,000 Dalton) neuroregulator isolated from mammalian brain, is a powerful effector of monoamine oxidase B in rat brain synaptosomes. Incubation of intact synaptosomes with neurocatin caused an inhibition of the enzyme dependent on the concentration of neurocatin. This inhibition became statistically significant at a neurocatin concentration of 10 ng/200 l and was significant at all higher neurocatin concentrations. At 40 ng/200 l, neurocatin inhibited monoamine oxidase B activity by about 60%. This inhibitory effect was almost completely abolished by breaking the synaptosomal membrane by hypotonic buffer prior to incubation with neurocatin. In addition, incubation of the synaptosomes in calcium free medium almost completely abolished the inhibitory effect of neurocatin on monoamine oxidase B. The inhibition appeared to involve covalent modification of the enzyme mediated by a neurocatin receptor(s). Measurements of the kinetic parameters of the enzyme showed that 20 ng of neurocatin caused a statistically significant decrease in Vmax (by 20%) with no significant change in KM, compared to controls. Inhibition of monoamine oxidase by neurocatin is potentially of great clinical importance because this enzyme plays a major role in catabolism of the biogenic amines and alterations in its activity is believed to contribute to several neurological disorders.  相似文献   

2.
Neurocatin, a neuroregulatory factor isolated from mammalian brain, is a powerful affector of dopamine synthesis in striatal rat synaptosomes. Incubation of intact synaptosomes with neurocatin caused an increase in the rate of dopamine synthesis measured by accumulation of DOPA. The increase is rapid (within two minutes) and dependent on the concentration of added neurocatin. The stimulatory effect of neurocatin on dopamine synthesis occurred only in intact synaptosomes and was almost completely abolished by lysis of the synaptosomes with Triton X-100 or sonification prior to neurocatin addition. The kinetic parameters of tyrosine hydroxylase were measured in lysates prepared from synaptosomes preincubated with neurocatin. These showed that with increasing neurocatin concentration there was an increase in Vmax with no significant change in KM for the pteridine cofactor, compared to control. Activation of tyrosine hydroxylase by neurocatin is at least partially caused by a receptor mediated increase in phosphorylation of the enzyme. Protein kinase C and protein kinase II may be involved in this process.  相似文献   

3.
Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) and its 8-methylthio derivative stimulate the incorporation of 32P into proteins endogenous to a homogenate of rat caudate nucleus when 4 μM [γ?32P] ATP is usedas substrate. Higher concentrations of ATP reduced the effect of the cyclic nucleotide until at 400 μM no significant increase in protein phosphorylation was seen.Incubation of the homogenate with 400 μM ATP and 100 μM dopamine resulted in an approx. 2-fold increase in cyclic AMP but did not alter caudate protein phosphorylation suggesting that the catecholamine could not stimulate protein phosphorylation under the experimental conditions used in the present study.  相似文献   

4.
Diphenylhydantoin (DPH) in therapeutic concentrations caused a decrease in the net level of endogenous phosphorylation of two specific proteins from rat brain cerebri, while not significantly affecting the phosphorylation of other protein substrates. The apparent molecular weights of the DPH- specific substrate proteins were 60-63,000 and 49-52,000, and were designated proteins DPH-L and DPH-M, respectively. DPH decreased both the initial rate and the net level of [32P] phosphate incorporation from [γ-32P] ATP into proteins DPH-L and DPH-M. The concentrations of DPH required to produce a half maximal decrease in the levels of phosphorylation of proteins DPH-L and DPH-M was 3 × 10-4 and 8 × 10 -4 M, respectively. The effects of DPH on the incorporation of [32P] phosphate into these specific brain proteins were independent of the concentration of ATP over a wide range of ATP concentrations. The DPH-specific proteins were demonstrated to be present in synaptosomal preparations. The results are compatible with the hypothesis that some of the stabilizing actions of DPH on neuronal tissue and seizure discharge may be mediated by the effect of this anticonvulsant on the phosphorylation of specific brain protein substrates.  相似文献   

5.
The present study was undertaken to examine calmodulin-dependent effect of thyroid hormones (THs) on synaptosomal protein phosphorylation in mature rat brain. Effect of L-triiodothyronine (L-T3) on in vitro protein phosphorylation was measured in a hypotonic lysate of synaptosomes prepared from adult male rat cerebral cortex, incubated in presence and absence of calcium ion (Ca2+) and calmodulin. L-T3 significantly enhanced incorporation of 32P into synaptosomal proteins as compared to basal level of phosphorylation in the presence of Ca2+ and calmodulin. Under these conditions, increase in protein phosphorylation was 47, 74 and 52% for 10 nM, 100 nM and 1 microM L-T3, respectively. Chelation of Ca2+ using ethylene glycol-bis (2-aminoethylether)-N, N, N', N'-tetraacetic acid (EGTA) inhibited the effects of Ca2+/calmodulin on TH-stimulated protein phosphorylation levels. This study suggests that a high proportion of L-T3-stimulated protein phosphorylation involves Ca2+/calmodulin-dependent pathways in adult rat cerebrocortical synaptosomes.  相似文献   

6.
Preincubation of intact, purely cholinergic Torpedo synaptosomes with [32P]Pi results in the incorporation of 32P into about 10 specific proteins. Depolarizing the Torpedo synaptosomes by a high K+ buffer or treatment with the Ca2+ ionophore A23187 result in Ca2+ uptake, in acetylcholine (ACh) release, and in a marked increase of 32P incorporation into a specific protein band with an apparent subunit molecular weight of 100,000 (band alpha). The kinetics of synaptosomal 45Ca2+ uptake, of 32P incorporation into band alpha, and of ACh release is similar and reach maximal values about 45 s after the synaptosomes have been treated. Sr2+ and Ba2+ can replace Ca2+ in evoking both K+ depolarization-dependent ACh release and 32P incorporation into band alpha. The effectiveness of these ions (Ca2+ greater than Sr2+ greater than Ba2+) is similar in both cases. The data presented suggest that Ca2+ accumulation by Torpedo synaptosomes leads to an increase in the phosphorylation of a specific protein and to ACh release. This phosphoprotein may be involved in the regulation of presynaptic processes which underly ACh release.  相似文献   

7.
A three-fold increased 32P incorporation was observed when S-100 protein was added to a nuclear protein kinase preparation (NPKP) from brain. The specificity of the reaction was indicated by two observations: an increase in 32P incorporation was not found either with 14–302 protein or when S-100 was added to liver NPKP. SDS-gel analysis shows prominent incorporation of 32P by brain NPKP into an endogenous brain protein having a molecular weight near 45000 daltons, and, in the presence of S-100, predominantly into S-100 protein itself. Liver NPKP in the presence of S-100, showed an increased incorporation of 32P into endogenous proteins without any phosphorylation of S-100.  相似文献   

8.
We studied the phosphorylation of tyrosine hydroxylase in the superior cervical ganglion of the rat. Ganglia were preincubated with [32P]Pi and were then incubated in non-radioactive medium containing a variety of agents that are known to activate tyrosine hydroxylase in this tissue. Tyrosine hydroxylase was isolated from homogenates of the ganglia by immunoprecipitation followed by polyacrylamide gel electrophoresis. 32P-labelled tyrosine hydroxylase was visualized by radioautography, and the incorporation of 32P into the enzyme was quantitated by densitometry of the autoradiograms. Veratridine produced a concentration-dependent increase in the incorporation of 32P into tyrosine hydroxylase, with 50 μM veratridine producing a 5-fold increase in 32P incorporation. The nicotinic agonist, dimethylphenylpiperazinium (100 μM), caused a 7-fold increase in the phosphorylation of tyrosine hydroxylase. The effect of dimethylphenylpiperazinium was maximal within 1 min and decreased upon continued exposure of the ganglia to this agent. The actions of dimethylphenylpiperazinium and of veratridine were dependent on extracellular Ca2+. Muscarine, 8-Br-cAMP, forskolin, vasoactive intestinal peptide, isoproterenol, deoxycholate and phospholipase C also stimulated the incorporation of 32P into tyrosine hydroxylase. These data support the hypothesis that phosphorylation plays a role in activation of tyrosine hydroxylase produced by all of these agents.  相似文献   

9.
The incorporation of [-32P]ATP into proteins of rat brain polyribosomes was studied in vitro. The effects of cyclic nucleotides, calcium, hemin, ACTH, GTP, and spermine were examined. The incorporation of phosphate into proteins increased with time and phosphatase activity was very low; thus, the extent of phosphorylation was predominantly a reflection of protein kinase activity. Phosphorylation of proteins was not sensitive to Ca2+ in the presence or absence of either calmodulin or phosphatidylserine. Phosphorylation was also unaffected by cyclic nucleotides in the absence of exogenous enzymes. However, addition of a cMAP-dependent protein kinase together with cAMP resulted in a stimulation of the incorporation of phosphate into 4 phosphoproteins (pp70, pp58, pp43, and pp32); phosphorylation of pp32 was completely dependent on the addition of the kinase. ACTH (1–24), (11–24), and spermine inhibited the endogenous phosphorylation of one protein band (pp30). The phosphorylation of this 30 kD band was also selectively increased by hemin (5 M). Higher concentrations of hemin exerted an inhibitory effect on the majority of the phosphoproteins. Protein phosphatase activity was not influenced by ACTH or spermine. The specific inhibition of pp30 phosphorylation by ACTH or spermine is most probably explained by an interaction with a cyclic nucleotide- and Ca2+-independent protein kinase.  相似文献   

10.
Synaptosomes prepared from guinea-pig cerebral cortex were suspended in a medium containing [32P]orthophosphate and subjected to electrical stimulation. When the synaptosomal phospholipids were subsequently separated, the most highly labelled was phosphatidic acid and electrical stimulation over a 10 min period increased incorporation of 32P1 into this lipid. Stimulated synaptosomes were osmotically lysed and subsynaptosomal fractions isolated. The electrically stimulated increase in phosphatidic acid labelling was localized in a fraction enriched in synaptic vesicles. This phospholipid effect was not merely a reflection of an increased specific radioactivity of synaptosomal ATP, due to the electrically stimulated increase in respiration. The time course of the phosphatidic acid effect suggests that it is synchronous with release of transmitter.  相似文献   

11.
The catecholamine-induced phosphorylation of cardiac muscle protein was investigated using a rat ventricular muscle slice preparation. Slices 0.5 mm thick and weighing 40–50 mg were incubated for 40 min in oxygenated bathing medium containing 32P to partially label intracellular ATP. Subsequent addition of 10?5 M isoproterenol for 10 min resulted in a 44–63% (based on protein) or a 63–70% (based on inorganic phosphate) increase in 32P incorporation into 100 000 × g particulate and 100 000 × g supernatant (soluble) fractions without an increase into homogenates, 1000 and 29 000 × g particulate fractions prepared from the slices. The catecholamines also produced a 93% increase in 32P incorporation ans a 27% increase in inorganic phosphate in trichloroacetic acid-insoluble protein that was obtained from ventricular slice homogenates. A significant increase in the incorporation of 32P occurred in the 100 000 × g particulate and supernatant fractions and the acid-insoluble protein within 2 and 1 min, respectively. While the β-adrenergic blocking agent propanolol had no effect by itself on 32P incorporation, it prevented the isoproterenol-induced incorporation of 32P into the 100 000 × g particulate and supernatant fractions and the acid-insoluble protein. Removal of isoproterenol from the bathing medium eliminated the differences in 32P incorporation, indicating that the effects of the catecholamine were reversible. Norepinephrine and ipinephrine at 10?5 M caused phosphorylation effects similar to that of isoproterenol. When the slices were bathed under anoxic conditions isoproterenol failed to enhance the incorporation of 32P into proteins of the 100 000 ×g particulate and supernatant fractions or acid-insoluble protein. SDS gel eloectrophoresis of ventricular slice homogenates revealed that isoproterenol enhanced the 32P incorporation into several myocardial proteins having molecular weights of 155, 94 (glycogen phosphorylase), 79, 68–77, and 54–59 · 103 and decreased the incorporation into a 30 · 103 dalton protein(s). These results are consistent with the notion that catecholamines may increase the phosphorylation of myocardial proteins in the intact myocardium which in turn may play a role in catecholamine-induced glycogenolysis and augmentation of contractility.  相似文献   

12.
The optimal conditions for the endogenous phosphorylation of hen spinal cord cytosolic and membrane proteins with 5 μM [γ-32P]ATP, 10 mM MgCl2, were determined by 10% SDS-polyacrylamide gel electrophoresis, autoradiography, and microdensitometry. Phosphate incorporation increased linearly with concentrations ranging from 35–75 μg/100 μl for cytosolic proteins and 21–125 μg/200 μl for membrane proteins. Optimal incubation times, temperatures, and pH values were 60 s, 30°C, and 6.0, respectively, for spinal cord cytosolic proteins and 15 s, 45°C, and 8.0, respectively, for spinal cord membranes. Prominent species differences in protein phosphorylation between these fractions in hens and similarly prepared fractions in rats, co-electrophoresed, include 80K and 30K protein phosphate acceptors unique to rat spinal cord cytosol, 60K and 16K protein phosphate acceptors characteristic of rat spinal cord membranes, a 50K protein phosphate acceptor present only in hen spinal cord membranes, and greater phosphorylation of a more abundant 20K protein in both hen spinal cord fractions. The functional significance of these differences is presently unclear. However, their characterization provides a basis from which to launch future investigations of the biochemistry, pharmacology, and toxicology of spinal cord protein phosphorylation and indicates that caution should be exercised in the choice of an animal model with characteristics appropriate to those of the system it is representing.  相似文献   

13.
Tyrosine hydroxylase, which catalyzes the initial step in catecholamine biosynthesis, is phosphorylated at serines 8, 19, 31, and 40 in intact pheochromocytoma (PC12) cells (Haycock, J.W. (1990) J. Biol. Chem. 265, 11682-11691). After 32Pi labeling of rat corpus striata in vivo or rat corpus striatal synaptosomes, 32P incorporation into tyrosine hydroxylase occurred predominantly at serines 19, 31, and 40. Electrical stimulation (30 Hz, 20 min) of the medial forebrain bundle (containing the afferent dopaminergic fibers) increased 32P incorporation into each of the three sites. Brief depolarization of the synaptosomes with elevated [K+]o (20-60 mM, 5-30 s) or veratridine (50 microM, 2 min) produced a selective increase in 32P incorporation into Ser19. Phorbol 12,13-dibutyrate (1 microM, 5 min) increased 32P incorporation into Ser31, and cAMP-acting agents such as forskolin (10 microM, 5 min) increased 32P incorporation into Ser40. In contrast, 32P incorporation into Ser8, which was usually detectable but very low, was not regulated either in vivo or in situ by any of the activators of signal transduction pathways. In synaptosomes, the only treatment found to increase Ser8 phosphorylation was okadaic acid (a protein phosphatase inhibitor), which increased 32P incorporation into all four phosphorylation sites. Thus, three different signal transduction systems appear to mediate the physiological regulation of tyrosine hydroxylase phosphorylation at three different sites.  相似文献   

14.
Characteristics of Protein Carboxyl Methylation in the Rat Hypothalamus   总被引:2,自引:2,他引:0  
Abstract: The formation of methyl-labeled S-adenosylmethionine (AdoMet) and methyl esters of endogenous methyl-acceptor proteins (MAPs) was studied in a synaptosomal preparation from the rat hypothalamus labeled with L-[methyl-3H]methionine. Incubation of synaptosomes with l -[methyl-3H]methi-onine resulted in a rapid labeling of the AdoMet pool and a less rapid formation of 3H-methyl-MAPs. Accumulation of 3H-methyl-MAPs was linear over a 30-min period. The effects of various inhibitors of AdoMet-dependent trans-methylation reactions on the formation of carboxylmethylated MAPs were examined. When hypothalamic synaptosomes were preincubated with l -[methyl-3H]methionine and subsequently incubated for 30 min in the presence of S-adenosyl-l -homocysteine (AdoHcy, 100 μm ), 3H-methyl-MAP formation was inhibited by approximately 70%. 100 μm -l -homocysteine thiolactone (HTL) as well as 100 μm -3-deazaadenosine (c3Ado) also caused a 60–70% inhibition of 3H-methyl-MAP formation; the combination of both c3Ado and HTL produced a slightly but not significantly greater inhibition than either agent alone. 10 μm -adenosine or 10 μm -HTL each produced an approximately 40% inhibition of 3H-methyl-MAP formation: the inhibitory effect of the two agents in combination was additive. Sinefungin and A9145C, potent inhibitors of bovine adrenomedullary protein carboxyl methylase, had no effect on 3H-methyl-MAP formation in hypothalamic synaptosomes at concentrations up to 1 mM. However, these compounds were potent inhibitors of 3H-methyl-MAP formation in lysed synaptosomes incubated with [3H-methyl]AdoMet. These results demonstrate that hypothalamic synaptosomes are capable of methio-nine activation and protein carboxyl methylation.  相似文献   

15.
Abstract: In an attempt to clarify the mechanisms by which dopamine (DA) autoreceptor activation inhibits DA synthesis, the efficacy and potency of the D2 DA agonists bromocriptine, lisuride, and pergolide, and the D1,-D2 DA agonist apomorphine were studied in rat striatal synapto- somes, in which the rate of DA synthesis (formation of 14CO2 from l -[1–14C]tyrosine) was increased 103% by treating the animals from which the synaptosomes were obtained with reserpine (5 mg/kg i.p. twice, 24 and 2 h before they were killed), using the striatal total homogenate as the standard synaptosomal preparation. The increase in DA synthesis evoked by reserpine was additive with that produced by treatment of the synaptosomes with dibutyryl cyclic AMP, suggesting that, not a cyclic AMP-dependent, but possibly a Ca2+-dependent mechanism was involved. The DA agonists showed a concentration-dependent inhibition of DA synthesis in the control synaptosomes, which was antagonized by the selective D2 DA antagonist (-)-sulpiride. In the synaptosomes with increased rate of DA synthesis obtained from the rats treated with reserpine, the concentration-response curves of DA synthesis inhibition for the other DA agonists were shifted to the right, and the effect of bromocriptine was completely eliminated, whereas bromocriptine antagonized the effect of apomorphine. The increased rate of DA synthesis was not preserved in the striatal P1+ P2 fraction obtained from the reserpine-treated rats, but the effects of the DA agonists were still reduced to the same degree as those in the total homogenate. (-)-Sulpiride did not enhance DA synthesis in synaptosomes from the reserpine- treated rats. The results presented indicate that the reduced effect of the DA agonists in synaptosomes from the reserpine-treated rats was not due to endogenous DA occupying the DA autoreceptors. Because it is known from the literature that reserpine in vivo increases impulse activity in DA neurons and, as a result, increases the Ca2+ concentration, these results suggest that the effect of DA agonists was reduced because DA autoreceptors may normally control DA synthesis by decreasing the free intraneuronal Ca2+ concentration, and consequently, the Ca2+-dependent phosphorylation of tyrosine hydroxylase.  相似文献   

16.
The effect of hypoglycemia on the uptake of [1-14C]arachidonate and [1-14C]oleate into a synaptosomal and microsomal glycerophospholipids was investigated. In the presence of ATP, Mg2+ and CoA, rat brain synaptosomes and micorsomes catalyze the transfer of arachidonate and oleatc into glycerophospholipids. Arachidonate was mainly incorporated into phosphatidylinositol (PI) and phosphatidylcholine (PC), whereas oleate was incorporated into phosphatidylcholine and phosphatidylethanolamine (PE).Hypoglycemia was produced by intraperitoneal injection of 10 or 100 units of crystalline insulin per kg body weight. Two hours after injection the blood glucose level decreased to 10–20 mg%. The content of brain phospholipids was slightly decreased but the change was not statistically significant. The level of free fatty acids (FFA) was increased. More pronounced and reproducible changes were found when hypoglycemia was produced by injection of 100 units of insulin per/kg body weight. Changes in brain cortex were similar to those observed in microsomes and synaptosomes. Hypoglycemia affected the incorporation of arachidonic acid into glycerophospholipids of brain membranes. Uptake of [1-14C]arachidonate was decreased selectively by 50% (into phosphatidic acid /PA/) when hypogiycemia was produced by injection of 10 units of insulin per kg body weight. The Higher dose of insulin 100 units per kg body weight produced a 20% inhibition of arachidonate incorporation into synaptosomal PI and a 13% decrease of incorporation into microsomal phosphatidylcholine. Incorporation of [1-14C]oleate into membrane phospholipids was not changed by hypoglycemic insult. It is proposed that the disturbances in fatty acid level, particularly arachidonate, and decreased uptake of arachidonic acid by synaptosomal glycerophospholipids may be responsible for alteration of membrane function and changes of synaptic processes.  相似文献   

17.
Activation of Ca2+-calmodulin- and cyclic AMP-dependent protein kinases has been suggested to be involved in stimulus-secretion coupling in the pancreatic β-cell. To study the properties of such kinases and their endogenous protein substrates homogenates of rat islets of Langerhans were incubated with [γ-32P]ATP. Phosphorylated proteins were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and detected by autoradiography. The phosphorylation of certain proteins could be enhanced by Ca2+ plus calmodulin or by cyclic AMP. The major effect of Ca2+ and calmodulin was to stimulate the phosphorylation of a protein (P53) of molecular weight 53 100±500 (n = 15). Maximum phosphorylation of protein P53 occurred within 2 min with 2 μM free Ca2+ and 0.7 μM calmodulin. Incorporation of label into protein P53 was inhibited by trifluoperazine or W7 but not by cyclic AMP-dependent protein kinase inhibitor. Phosphorylation of a protein of similar molecular weight could be enhanced to a lesser extent in the absence of Ca2+ but in the presence of cyclic AMP and 3-isobutylmethylxanthine: this phosphorylation was blocked by cyclic AMP-dependent protein kinase inhibitor. Cyclic AMP also stimulated incorporation of label into polypeptides of molecular weights 55 000 and 70–80 000. The results are consistent with the hypothesis that protein phosphorylation mechanisms may play a role in the regulation of insulin secretion.  相似文献   

18.
Abstract— Synthesis of phosphatidylcholine, phosphatidylinositol and palmityl carnitine in synaptosomes isolated from rat brain was investigated and compared with the synthesis of these compounds in microsomes and mitochondria. Electron microscopic and marker enzyme studies showed the contaminants in the synaptosomal preparation to consist of a few microsomes and almost no free mitochondria. In synaptosomes, addition of 1,2-diglyceride exerted no effect on the incorporation of [14C]choline into phosphatidylcholine or on the incorporation of [3H]myo-inositol into phosphatidylinositol, but it stimulated the incorporation of CDP[1,2-14C]choline into phosphatidylcholine by more than 50 per cent. The incorporation of the latter in intact synaptosomes, lysed synaptosomes and purified mitochondria was 15-6, 27 and 9-9 per cent, respectively, of that in the microsomes. The incorporation of [3H]myo-inositol into the phosphatidylinositol of synaptosomes and purified mitochondria was 15-8 and 11-1 per cent, respectively, of that in the microsomes. Maximal incorporation of [3H]myo-inositol occurred at pH 7–5 in a medium containing Mg2+ and CTP; it was linear with time and protein concentration and was inhibited by 1 mM Ca2 + but unaffected by the presence of ATP. This incorporation of myo-inositol appeared to occur through the reversal of the CDP-diglyceride: inositol transferase reaction. The demonstration of carnitine palmityl transferase in synaptosomes indicated that, as in mitochondrial and erythrocyte membranes, fatty acids can be transported across the synaptosomal membrane. In contrast to mitochondria where maximal incorporation of [14C]carnitine into palmityl carnitine was observed after 20 min of incubation, the incorporation in synaptosomes increased as a function of time up to 60 min of incubation. We conclude that synaptosomes can carry on de novo synthesis of lipids, although at a limited rate. From the present data we cannot state with certainty how much of this synthesis is attributable to membranes originating from the endoplasmic reticulum.  相似文献   

19.
When intact synaptosomes were incubated with [gamma-32P]ATP, maximal protein phosphorylation was attained 2 min after the start of incubation. Protein phosphorylation under basal conditions was dependent on external Ca2+, and the dominant peak of phosphorylation was a 50-kd protein. Incubation of intact synaptosomes in the presence of 3-6 mM 4-aminopyridine (4-AP) caused a markedly enhanced phosphorylation of high molecular weight proteins of 90, 100, 130, and 180 kd, with no increase in the 50 or 38 kd proteins. This effect of 4-AP was dependent on external calcium ions in the incubation medium. The 4-AP effect on the high molecular weight proteins was also found in synaptosomal plasma membranes isolated from the synaptosomes. Tetraethylammonium (TEA) ions did not produce this enhancement of phosphorylation.  相似文献   

20.
The phosphorylation of specific substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was examined in striatal synaptosomal cytoplasm. The phosphoprotein substrata were termed group C phosphoprotems and were divided into two subgroups: group C1 phosphoproteins (P83, P45A, P21 and P18) were found in both cytoplasm and synaptosomal membranes and, although stimulated by phosphatidylserine, only required exogamous calcium for their labeling; group C2 phosphoproteins (P120, P96, P21.5, P18.5 and P16) were found predominantly in the cytoplasm and were absolutely dependent upon exogenous calcium and phosphatidylserme for their labeling. Several criteria were used to identify these proteins as specific protein kinase C substrates: (a) their phosphorylation was stimulated to a greater extent by Ca2+ /phosphatidylserine/diolein than by Ca2+ alone or Cal2+ /calmodulin (group C1) or was completely dependent upon Ca2+ /phosphatdylserine/diolein (group C2); (b) supermaximal concentrations of the cAMP-dependent protein kinase inhibitor were without effect; (c) their phosphorylation was stimulated by oleic acid, which selectively activates protein kinase C in the absence of Ca2+; (d) NaCl, which inhibited cAMP- and Ca2+/calmodulindependent phosphorylation, slightly increased phosphorylation of group C1 and slightly decreased phosphorylation of group C2 phosphoproteins. Maximal phosphorylation of P96 and other group C phosphoproteins occurred within 60 s and was followed by a slow decay rate while substrata of calmodulin-dependent protein kinase were maximally labeled within 20–30 s and rapidly dephosphorylated. The phosphorylation of all group C phosphoproteins was inhibited by the calcium channel agomst BAY K 8644, however, group C2 phosphoproteins were considerably more sensitive. The IC50 for inhibition of P96 labeling was 19 μM. but for P83 was 190 μM. Group B phosphoproteins were also slightly inhibited, and the IC50 for P63 was 290 μM. No inhibitory effects of another dihydropyridine, nifedipine, or of verapamil were detected in this concentration range. BAY K 8644 did not displace [3H]phorbol-12,13-dibutyrate binding, nor was the inhibition decreased by increasing phosphatidylserine concentrations. BAY K 8644 had no effect on the rate of dephosphorylation of any phosphoprotein, indicating that it is unlikely to inhibit a protein phosphatase. BAY K 8644 may, therefore, prove to be a valuable tool for discriminating protein kinase C activity from the activity of other protein kinases. We conclude that BAY K 8644 interacts either with a specific subgroup of protein kinase C substrata or with one of two putative forms of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号