首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-breath washouts were performed on 30 Wistar rats postmortem in studies in which breaths of 90% O2-5% He-5% SF6 were given. We investigated the effects of variations in preinspiratory lung volume, inspired volume, end-inspiratory breath-hold time, and inspiratory and expiratory flows on the alveolar plateau slopes for N2, He, and SF6. The main result is that the slope for He was always larger than the slope for SF6, except for large breath-hold times (approximately 15 s), contrary to previous findings in other species. Slopes for the three gases decreased with increasing inspiratory and expiratory flows when flows were greater than 1 ml/s. There was a strong correlation between the magnitude of a slope and its curvilinearity, suggesting that the concentration heterogeneity in the lung that causes the slope is due to interaction between diffusion and convection. The results seem incompatible with heterogeneities of parenchymal elasticity, which have been said to contribute to alveolar slopes in dog lungs but appear to be completely explainable as the result of diffusion-convection interaction in an asymmetric lung structure that has acini widely spread along the tracheobronchial tree.  相似文献   

2.
The purpose of this study was to determine if the increase in ventilation induced by hypoxic stimulation of the carotid bodies (CB) persists after cessation of the stimulus in humans. I reasoned that a short-term potentiation (STP) of breathing, sometimes called an "afterdischarge," could be unmasked by combining hypoxia with exercise, because ventilation increases synergistically under these conditions. Seven young healthy men performed mild bicycle exercise (30% peak power) while breathing O2 for 1.5 min ("control" state), and their CB were then stimulated by 1.5 min of hypoxic exercise (10% O2--balance N2). CB stimulation was then terminated by changing the inspirate back to O2 as exercise continued. Inspiratory and expiratory duration (TI and TE) and inspiratory flow and its time integral [tidal volume (VT)] were measured with a pneumotachometer. Inspired minute ventilation (VI) and mean inspiratory flow (VT/TI) declined exponentially after the cessation of CB stimulation, with first-order time constants of 28.6 +/- 6.7 and 24.6 +/- 1.6 (SD) s, respectively. The slow decay of VI was due primarily to potentiation of both TI and TE, although the effect on the latter predominated. Additional experiments in six subjects showed that brief intense CB stimulation with four to five breaths of N2 during mild exercise induced STP of similar magnitude to that observed in the hypoxic exercise experiments. Finally, the imposition of hyperoxia during air breathing exercise at a level of respiratory drive similar to that induced by the hypoxic exercise did not change VI significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We hypothesized that long-term facilitation (LTF) is due to decreased upper airway resistance (Rua). We studied 11 normal subjects during stable non-rapid eye movement sleep. We induced brief isocapnic hypoxia (inspired O(2) fraction = 8%) (3 min) followed by 5 min of room air. This sequence was repeated 10 times. Measurements were obtained during control, hypoxia, and at 20 min of recovery (R(20)) for ventilation, timing, and Rua. In addition, nine subjects were studied in a sham study with no hypoxic exposure. During the episodic hypoxia study, inspiratory minute ventilation (VI) increased from 7.1 +/- 1.8 l/min during the control period to 8.3 +/- 1.8 l/min at R(20) (117% of control; P < 0.05). Conversely, there was no change in diaphragmatic electromyogram (EMG(dia)) between control (16.1 +/- 6.9 arbitrary units) and R(20) (15.3 +/- 4.9 arbitrary units) (95% of control; P > 0.05). In contrast, increased VI was associated with decreased Rua from 10.7 +/- 7.5 cmH(2)O. l(-1). s during control to 8.2 +/- 4.4 cmH(2)O. l(-1). s at R(20) (77% of control; P < 0.05). No change was noted in VI, Rua, or EMG(dia) during the recovery period relative to control during the sham study. We conclude the following: 1) increased VI in the recovery period is indicative of LTF, 2) the lack of increased EMG(dia) suggests lack of LTF to the diaphragm, 3) reduced Rua suggests LTF of upper airway dilators, and 4) increased VI in the recovery period is due to "unloading" of the upper airway by LTF of upper airway dilators.  相似文献   

4.
Exposure to hypoxia produces long-lasting sympathetic activation in humans.   总被引:9,自引:0,他引:9  
The relative contributions of hypoxia and hypercapnia in causing persistent sympathoexcitation after exposure to the combined stimuli were assessed in nine healthy human subjects during wakefulness. Subjects were exposed to 20 min of isocapnic hypoxia (arterial O(2) saturation, 77-87%) and 20 min of normoxic hypercapnia (end-tidal P(CO)(2), +5.3-8.6 Torr above eupnea) in random order on 2 separate days. The intensities of the chemical stimuli were manipulated in such a way that the two exposures increased sympathetic burst frequency by the same amount (hypoxia: 167 +/- 29% of baseline; hypercapnia: 171 +/- 23% of baseline). Minute ventilation increased to the same extent during the first 5 min of the exposures (hypoxia: +4.4 +/- 1.5 l/min; hypercapnia: +5.8 +/- 1.7 l/min) but declined with continued exposure to hypoxia and increased progressively during exposure to hypercapnia. Sympathetic activity returned to baseline soon after cessation of the hypercapnic stimulus. In contrast, sympathetic activity remained above baseline after withdrawal of the hypoxic stimulus, even though blood gases had normalized and ventilation returned to baseline levels. Consequently, during the recovery period, sympathetic burst frequency was higher in the hypoxia vs. the hypercapnia trial (166 +/- 21 vs. 104 +/- 15% of baseline in the last 5 min of a 20-min recovery period). We conclude that both hypoxia and hypercapnia cause substantial increases in sympathetic outflow to skeletal muscle. Hypercapnia-evoked sympathetic activation is short-lived, whereas hypoxia-induced sympathetic activation outlasts the chemical stimulus.  相似文献   

5.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

6.
Our aim was to isolate the independent effects of 1) inspiratory muscle work (W(b)) and 2) arterial hypoxemia during heavy-intensity exercise in acute hypoxia on locomotor muscle fatigue. Eight cyclists exercised to exhaustion in hypoxia [inspired O(2) fraction (Fi(O(2))) = 0.15, arterial hemoglobin saturation (Sa(O(2))) = 81 +/- 1%; 8.6 +/- 0.5 min, 273 +/- 6 W; Hypoxia-control (Ctrl)] and at the same work rate and duration in normoxia (Sa(O(2)) = 95 +/- 1%; Normoxia-Ctrl). These trials were repeated, but with a 35-80% reduction in W(b) achieved via proportional assist ventilation (PAV). Quadriceps twitch force was assessed via magnetic femoral nerve stimulation before and 2 min after exercise. The isolated effects of W(b) in hypoxia on quadriceps fatigue, independent of reductions in Sa(O(2)), were revealed by comparing Hypoxia-Ctrl and Hypoxia-PAV at equal levels of Sa(O(2)) (P = 0.10). Immediately after hypoxic exercise potentiated twitch force of the quadriceps (Q(tw,pot)) decreased by 30 +/- 3% below preexercise baseline, and this reduction was attenuated by about one-third after PAV exercise (21 +/- 4%; P = 0.0007). This effect of W(b) on quadriceps fatigue occurred at exercise work rates during which, in normoxia, reducing W(b) had no significant effect on fatigue. The isolated effects of reduced Sa(O(2)) on quadriceps fatigue, independent of changes in W(b), were revealed by comparing Hypoxia-PAV and Normoxia-PAV at equal levels of W(b). Q(tw,pot) decreased by 15 +/- 2% below preexercise baseline after Normoxia-PAV, and this reduction was exacerbated by about one-third after Hypoxia-PAV (-22 +/- 3%; P = 0.034). We conclude that both arterial hypoxemia and W(b) contribute significantly to the rate of development of locomotor muscle fatigue during exercise in acute hypoxia; this occurs at work rates during which, in normoxia, W(b) has no effect on peripheral fatigue.  相似文献   

7.
Subpleural concentrations of He and SF6 were measured during multiple-breath washouts from isolated dog lungs. Tidal volume, inspiratory flow, and frequency were in the normal range of canine ventilation. For each gas, there was a local minimum in concentration during inspiration (Cinsp) and a local maximum in concentration during exhalation (Cexp). SF6 exhibited a deeper inspiratory trough than He for each breath of every washout. For large tidal volumes (10-20 ml/kg), Cexp approximated a single exponential decay and He was cleared more rapidly than SF6. For small tidal volumes (2.5 ml/kg), Cexp was multiexponential and SF6 was cleared more rapidly than He. Cinsp/Cexp (a measure of the depth of the inspiratory trough) and the kinetics of Cexp decay were determined for washouts using a tidal volume of 10 and 20 ml/kg and different inspiratory flows. Under all conditions, an increase of inspiratory flow resulted in a deeper inspiratory trough for both He and SF6. For washouts using 10 ml/kg and 60 breaths/min, an increase of inspiratory flow increased the clearance of both gases. In washouts using lower ventilatory frequencies, gas clearance was independent of inspiratory flow. These findings are contrary to predictions of contemporary models of convection and diffusion in the lung. This study suggests that convective axial mixing and radial diffusion in the airways are important determinants of pulmonary gas transport.  相似文献   

8.
We tested whether hyperbaric O2 (HBO) has an adverse effect on the hypoxic ventilatory drive. Four groups of rats were exposed for 550 min to O2 at 1.67, 1.90, and 2.15 ATA and to air at 1.90 ATA, respectively. Ventilatory parameters (frequency, tidal volume, and minute ventilation) were measured using whole-body plethysmography, before the hyperbaric exposure, immediately after the exposure, and up to 20 days after the exposure. Resting ventilation was not affected after exposure at 1.90 ATA to air or at 1.67 ATA to O2. HBO at 1.90 and 2.15 ATA caused a reduction of frequency and an elevation of tidal volume at different inspired gases: air, 5% CO2 balance O2, 80% O2, and 4.5% O2. However, minute ventilation on the day after the hyperoxic exposure was not different from the control at either air, 5% CO2, or 80% O2 but was markedly attenuated on the first three breaths at 4.5% O2. The hypoxic ventilation decreased to 48 +/- 13 (SD) and 32 + 11% after 1.90 and 2.15 ATA, respectively. The ventilatory parameters recovered in the days after HBO. We conclude that HBO reversibly depresses the hypoxic ventilatory drive, most probably by a direct effect on the carotid O2 chemoreceptors.  相似文献   

9.
Effects of hypobaria on lung fluid balance were studied in five awake sheep with chronic lung lymph fistulas using a decompression chamber. Each sheep was exposed to three conditions of 6,600-m-simulated high altitude in random order as follows: 1) 6,600-m-simulated hypoxic hypobaria (barometric pressure 326 Torr, 21% inspired O2 fraction), 2) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction), and 3) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction) after pretreatment with a 2-h pure O2 inhalation (i.e., denitrogenation) to allow elimination of dissolved gases, especially N2, from the blood and tissues. We observed that under both hypoxic hypobaria and normoxic hypobaria, lung lymph flow (Qlym) significantly increased from the base-line values of 6.4 +/- 0.3 to 13.0 +/- 1.0 ml/h and 6.0 +/- 0.2 to 9.4 +/- 0.3 ml/h, respectively (P less than 0.05) and that the lymph-to-plasma protein concentration ratio remained unchanged. Moreover, pretreatment with a 2-h denitrogenation inhibited the increase in Qlym. These results suggest that rapid exposure to hypobaria causes an increase in pulmonary vascular permeability and that intravascular air bubble formation may account for this permeability change.  相似文献   

10.
Recent advances in computed tomographic imaging provide a unique method to serially and directly visualize acute physiological response in the lung. To directly investigate the airway response to hypoxia, high-resolution computed tomographic scans of the lungs of eight intact anesthetized minipigs were serially repeated before, during, and after ventilation with a hypoxic gas mixture (inspired fraction of O2 congruent to 0.07). This approach demonstrated an acute reversible 56 +/- 8% (SE) dilation in large airways (greater than 2 mm diam) and a 90 +/- 15% dilation in small airways (less than 1.99 mm diam) with decreased inspired O2 tension. Of the airways studied, 70 of 76 dilated. Hypoxic bronchodilation may interact with hypoxic pulmonary vasoconstriction in the fundamental physiological process of ventilation-perfusion matching in the lung.  相似文献   

11.
We investigated the effects of chronic intrauterine hypoxaemia produced by prolonged partial umbilical cord compression on the circulation shortly after birth in lambs. Vascular catheters were inserted in 10 fetal sheep at 120 to 130 days gestation to measure descending aortic blood gases, arterial pH, and arterial O2 saturation. An inflatable silicone rubber balloon cuff was also placed around the umbilical cord. After recovery and the return of descending aortic blood gases to the normal range, the balloon was gradually inflated, decreasing the PaO2 from 21.2 +/- 3.6 to 17.5 +/- 1.3 mm Hg and the arterial O2 saturation from 57.1 +/- 9.2% to 37.2% +/- 5.2. After 14.3 +/- 3.7 days of partial umbilical cord compression, the lambs were delivered by Caesarean section, instrumented to measure systemic and pulmonary arterial, right atrial and pulmonary arterial wedge pressures, pulmonary and systemic blood flows, and mechanically ventilated. Five normal lambs were also studied. From 60 to 120 min after delivery, when compared to normal lambs, the umbilical compression lambs had an increased pulmonary arterial pressure (P less than 0.05) pulmonary vascular resistance (P less than 0.05), and right atrial pressure (P less than 0.05) with similar arterial blood gases. In both groups, hypoxic ventilation produced an increase in pulmonary arterial pressure (P less than 0.05) which on return to room air ventilation decreased to baseline in the normal lambs but not in the umbilical cord compression lambs (P less than 0.05). Prolonged partial umbilical cord compression produces chronic fetal hypoxaemia and pulmonary arterial hypertension after birth. This may represent a model to study the pathophysiology of persistent pulmonary hypertension syndrome.  相似文献   

12.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

13.
Diaphragmatic electromyogram (EMG) was obtained in eight 48-h-old unanesthetized monkeys while breathing air and then either of two different hypoxic gas mixtures (12 or 8% O2 in N2) for 5 min. Minute ventilation (VI) rose significantly above control levels by 1 min of hypoxemia while animals were breathing either of the hypoxic gas mixtures as tidal volume (VT) and slope and rate moving average EMG increased. The relative gains in VI were associated with comparable increases in diaphragmatic neural activity per minute (EMG/min = peak EMG X frequency) during this early phase of hypoxemia. VI subsequently fell to control levels (inspired O2 fraction = 12%, arterial PO2 = 23 +/- 3 Torr) or significantly below (inspired O2 fraction = 8%, arterial PO2 = 18 +/- 0.4 Torr) by 5 min of hypoxemia, secondary to changes in VT. Despite the decline in VI, slope and rate moving average EMG, and EMG/min remained statistically above control values by 5 min of hypoxemia, although there was a trend for EMG/min to decrease slightly from the 1-min peak response. These findings demonstrate that hypoxic-induced depression of neural input to the diaphragm is not independently responsible for the biphasic nature of the newborn ventilatory response, although it cannot be ruled out as a contributor. The fall in inspiratory volumes despite constant elevated EMG activity suggests the presence of a change in respiratory mechanics and/or an impairment in diaphragmatic contractile function without offsetting neural compensatory activity.  相似文献   

14.
In response to moderate hypoxia many newborn animals are capable of increasing ventilation only transiently. To examine the hypothesis that changes in brain stem extracellular fluid (ECF) pH explain this transient ventilatory response, we measured brain stem ECF pH and respiratory drive during hypoxia in newborn pigs. The animals were anesthetized with alpha-chloralose-urethan, paralyzed, vagotomized, and mechanically ventilated with a servo-controlled ventilator to regulate end-tidal CO2. Hypoxic ventilation for 6 min was achieved by changing inspired gas from 100% to 10-15% O2. Respiration, measured as integrated phrenic nerve activity, showed a range of responses. In 13 trials increased phrenic activity early in the hypoxic period was sustained or further augmented for the duration of the period. In contrast, in eight other trials phrenic activity increased and then declined. Regardless of the respiratory response, ECF pH (measured with a flat-surface electrode) increased slightly (0.009 +/- 0.002 U) during the first 2.5 min of hypoxia and then declined 0.061 +/- 0.017 U by the 6th min. This acidotic shift in ECF pH is inconsistent with the hypothesis that an alkalotic shift causes the nonsustained respiratory response of newborn pigs.  相似文献   

15.
Typhlonectes natans empty their lungs in a single extended exhalation and subsequently fill their lungs by using a series of 10-20 inspiratory buccal oscillations. These animals always use this breathing pattern, which effectively separates inspiratory and expiratory airflows, unlike most urodele and anuran amphibians that may use one to many buccal oscillations for lung inflation and typically mix expired and inspired gases. Aquatic hypoxia had no significant effect on the breathing pattern or mechanics in these animals. Aerial hypoxia stimulated ventilatory frequency and increased the number of inspiratory oscillations but had little effect on inspiratory and expiratory tidal volume. Aquatic hypercapnia elicited a large significant increase in air-breathing frequency and minute ventilation compared to the small stimulation of minute ventilation seen during aerial hypercapnia. Some animals responded to aquatic hypercapnia with a series of three or four closely spaced breaths separated by long nonventilatory periods. Overall, T. natans showed little capacity to modulate expiratory or inspiratory tidal volumes and depended heavily on changing air-breathing frequency to meet hypoxic and hypercapnic challenges. These responses are different from those of anurans or urodeles studied to date, which modulate both the number of ventilatory oscillations in lung-inflation cycles and the degree of lung inflation when challenged with peripheral or central chemoreceptor stimulation.  相似文献   

16.
Washout of insoluble inert test gases of different diffusivity (He and SF6 or He and Ar) from dog lungs was studied during high-frequency ventilation (HFV). Test gas equilibrium and subsequent washout were performed with HFV, succeeding measurements being performed at different stroke volumes (1.5-2.5 ml/kg body wt), oscillation frequencies (10-30 Hz), and with different lung volumes (32-74 ml X kg-1). Test gas concentrations were continuously measured by a mass spectrometer. The time course of washout could be described as the sum of two exponentials. There were no consistent differences in the time courses of washout between He and SF6 or between He and Ar. It is concluded that gas mixing in the airways during HFV is not significantly limited by diffusion, and this is suggested to apply during HFV to steady-state transport of respiratory gases (e.g., O2 and CO2) as well as to the transient state of inert gas washout.  相似文献   

17.
Activity of the respiratory muscles that are not normally active during eupnea (genioglossal and abdominal) has been shown to be more vulnerable to hypoxic depression than inspiratory diaphragmatic activity. We hypothesized that respiratory muscles that are active at eupnea would be equally vulnerable to isocapnic progressive brain hypoxia (PBH). Phrenic (PHR) and triangularis sterni nerve (TSN) activity were recorded in anesthetized peripherally chemodenervated vagotomized ventilated cats. Hypercapnia [arterial PCO2 (PaCO2) = 57 +/- 3 (SE) Torr] produced parallel increases in peak PHR and TSN activity. PBH [0.5% CO-40% O2-59.5% N2, arterial O2 content (CaO2) reduced from 13.1 +/- 1.0 to 3.7 +/- 0.3 vol%] resulted in parallel decreases of peak PHR and TSN activity to neural apnea. PBH was continued until PHR gasping ensued (CaO2 = 2.9 +/- 0.2 vol%); TSN activity remained silent during gasping. After 6-12 min of recovery (95% O2-5% CO2; CaO2 = 7.8 +/- 0.8 vol%; PaCO2 = 55 +/- 2 Torr), peak PHR activity was increased to 110 +/- 18% (% of activity at 9% CO2) whereas peak TSN activity was augmented to 269 +/- 89%. The greater augmentation of TSN activity during the recovery period could not be explained solely by hypercapnia. In conclusion, we found that 1) TSN expiratory and PHR inspiratory activities are equally vulnerable to hypoxic depression and 2) recovery from severe hypoxia is characterized by a profound augmentation of TSN expiratory activity.  相似文献   

18.
Repetitive hypoxia followed by persistently increased ventilatory motor output is referred to as long-term facilitation (LTF). LTF is activated during sleep after repetitive hypoxia in snorers. We hypothesized that LTF is activated in obstructive sleep apnea (OSA) patients. Eleven subjects with OSA (apnea/hypopnea index = 43.6 +/- 18.7/h) were included. Every subject had a baseline polysomnographic study on the appropriate continuous positive airway pressure (CPAP). CPAP was retitrated to eliminate apnea/hypopnea but to maintain inspiratory flow limitation (sham night). Each subject was studied on 2 separate nights. These two studies are separated by 1 mo of optimal nasal CPAP treatment for a minimum of 4-6 h/night. The device was capable of covert pressure monitoring. During night 1 (N1), study subjects used nasal CPAP at suboptimal pressure to have significant air flow limitation (>60% breaths) without apneas/hypopneas. After stable sleep was reached, we induced brief isocapnic hypoxia [inspired O(2) fraction (FI(O(2))) = 8%] (3 min) followed by 5 min of room air. This sequence was repeated 10 times. Measurements were obtained during control, hypoxia, and at 5, 20, and 40 min of recovery for ventilation, timing (n = 11), and supraglottic pressure (n = 6). Upper airway resistance (Rua) was calculated at peak inspiratory flow. During the recovery period, there was no change in minute ventilation (99 +/- 8% of control), despite decreased Rua to 58 +/- 24% of control (P < 0.05). There was a reduction in the ratio of inspiratory time to total time for a breath (duty cycle) (0.5 to 0.45, P < 0.05) but no effect on inspiratory time. During night 2 (N2), the protocol of N1 was repeated. N2 revealed no changes compared with N1 during the recovery period. In conclusion, 1) reduced Rua in the recovery period indicates LTF of upper airway dilators; 2) lack of hyperpnea in the recovery period suggests that thoracic pump muscles do not demonstrate LTF; 3) we speculate that LTF may temporarily stabilize respiration in OSA patients after repeated apneas/hypopneas; and 4) nasal CPAP did not alter the ability of OSA patients to elicit LTF at the thoracic pump muscle.  相似文献   

19.
This study tested the hypothesis that women would have blunted physiological responses to acute hypoxic exercise compared with men. Fourteen women taking oral contraceptives (28 +/- 0.9 yr of age) and 15 men (30 +/- 1.0 yr of age) with similar peak O(2) consumption (VO(2 peak)) values (56 +/- 1.1 vs. 57 +/- 0.8 ml x kg fat-free mass(-1) x min(-1)) were studied under hypoxic (H; fraction of inspired oxygen = 13%) vs. normoxic (fraction of inspired oxygen = 20.93%) conditions. Cardiopulmonary, metabolic, and neuroendocrine measures were taken before, during, and 30 min after three 5-min consecutive workloads at 30, 45, and 60% VO(2 peak). In women compared with men, glucose levels were greater during recovery from H (P < 0.05) and lactate levels were lower at 45% VO(2 peak), 60% VO(2 peak), and up to 20 min of recovery (P < 0.05), regardless of trial (P < 0.0001). Although the women had greater baseline levels of cortisol and growth hormone (P < 0.0001), gender did not affect these hormones during H or exercise. Catecholamine responses to H were also similar between genders. Thus the endocrine response to hypoxia per se was not blunted in women as we had hypothesized. Other mechanisms must be at play to cause the gender differences in metabolic substrates in response to hypoxia.  相似文献   

20.
Long-term facilitation (LTF) is a prolonged increase in ventilatory motor output after episodic peripheral chemoreceptor stimulation. We have previously shown that LTF is activated during sleep following repetitive hypoxia in snorers (Babcock MA and Badr MS. Sleep 21: 709-716, 1998). The purpose of this study was 1) to ascertain the relative contribution of inspiratory flow limitation to the development of LTF and 2) to determine the effect of eliminating inspiratory flow limitation by nasal CPAP on LTF. We studied 25 normal subjects during stable non-rapid eye movement sleep. We induced 10 episodes of brief repetitive isocapnic hypoxia (inspired O(2) fraction = 8%; 3 min) followed by 5 min of room air. Measurements were obtained during control and at 20 min of recovery (R(20)). During the episodic hypoxia study, inspiratory minute ventilation (Vi) increased from 6.7 +/- 1.9 l/min during the control period to 8.2 +/- 2.7 l/min at R(20) (122% of control; P < 0.05). Linear regression analysis confirmed that inspiratory flow limitation during control was the only independent determinant of the presence of LTF (P = 0.005). Six subjects were restudied by using nasal continuous positive airway pressure to ascertain the effect of eliminating inspiratory flow limitation on LTF. Vi during the recovery period was 97 +/- 10% (P > 0.05). In conclusion, 1) repetitive hypoxia in sleeping humans is followed by increased Vi in the recovery period, indicative of development of LTF; 2) inspiratory flow limitation is the only independent determinant of posthypoxic LTF in sleeping human; 3) elimination of inspiratory flow limitation abolished the ventilatory manifestations of LTF; and 4) we propose that increased Vi in the recovery period was a result of preferential recruitment of upper airway dilators by repetitive hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号