首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese Uptake by Excised Oat Roots   总被引:2,自引:0,他引:2  
Uptake of 54Mn by excised oat roots from dilute manganese chloridesolutions has been investigated. The time-course of uptake hasbeen analysed into the customary but somewhat arbitrary fastand slow phases. Uptake is not metabolic in either of these.The fast phase (‘exchangeable’ manganese) is essentiallycomplete in about 30 minutes and represents the attainment ofequilibrium in a process of ion-exchange. It is shown that analysesappropriate for enzyme kinetics cannot be applied in this situation,and an alternative formulation is based on Donnan equilibration,taking account of the selectivity of the ion exchanger towardsdifferent counter-ions; the predictions of this latter theoryare compared with the experimentally determined uptake. Theslow phase (‘absorbed’ manganese) may also involveexchange sites, either chemically different from, or more difficultof access than, those involved in the fast phase, or both. Equilibriumwas certainly not reached in three hours in this slow-phaseprocess. Release of manganese, taken up by the roots from manganese chloridesolutions, into calcium chloride solutions does not seem tobe simply the reversal of uptake, particularly with very dilutesolutions. This is particularly shown by the kinetics of uptakeand release, uptake being a much faster process than release.Manganese may transfer from the first phase to the second phase,but there is no evidence that uptake by the roots proceeds inseries from first to second phase. It is considered more likelythat the two phases function independently, linked by the surroundingsolution.  相似文献   

2.
The kinetics of uptake of K+ and Mg2+ were studied by using intact soybean [Glycine max (L.) Merr. cv. Amsoy] roots. Uptake of K+ in the concentration range 1.29 × 10?5 to 1.82 × 10?3 M can be represented by two phases of a single, multiphasic mechanism. Similarly, uptake of Mg2+ in the concentration range 4.10 × 10?6 to 2.49 × 10?4M was biphasic.  相似文献   

3.
Nutrient Uptake by Different Parts of the Intact Roots of Plants   总被引:4,自引:0,他引:4  
An apparatus is described for studying the uptake of ions byshort segments of intact root systems grown in water culture. When the entire root systems of young cereal plants are suppliedwith o'I ppm, P or Sr the quantities of both ions accumulatedin segments 3–5 mm long, or translocated from them toother tissues, are considerably smaller than those which movelongitudinally in the cortex for short distances. This process,which is under metabolic control, causes ions to be releasedto the external solution from parts of the root a few mm distantfrom the site of entry. The contribution, to the nutrition of barley plants 3–4weeks old, of different parts of the root system has been investigated.Between seminal axes, nodal axes, and laterals total uptakeper unit length of root varies largely, though not entirely,with volume. The ratio in which phosphate and strontium areabsorbed is not constant throughout the root system, the absorptionof phosphate being relatively greater by laterals. Little translocationoccurs from the apical 3 mm of roots and the fraction of theabsorbed ions translocated to shoots from older root segmentsis considerably greater for nodal axes than for seminal axesor laterals. The significance of the distribution of absorbing power throughoutthe root system is considered in relation to the nutrition ofplants grown in soil, especially when the rate of diffusionto the root surface may limit nutrient uptake.  相似文献   

4.
The dual role of glutathione as a transducer of S status (A.G. Lappartient and B. Touraine [1996] Plant Physiol 111: 147-157) and as an antioxidant was examined by comparing the effects of S deprivation, glutathione feeding, and H2O2 (oxidative stress) on SO42- uptake and ATP sulfurylase activity in roots of intact canola (Brassica napus L.). ATP sulfurylase activity increased and SO42- uptake rate severely decreased in roots exposed to 10 mM H2O2, whereas both increased in S-starved plants. In split-root experiments, an oxidative stress response was induced in roots remote from H2O2 exposure, as revealed by changes in the reduced glutathione (GSH) level and the GSH/oxidized glutathione (GSSG) ratio, but there was only a small decrease in SO42- uptake rate and no effect on ATP sulfurylase activity. Feeding plants with GSH increased GSH, but did not affect the GSH/GSSG ratio, and both ATP sulfurylase activity and SO42- uptake were inhibited. The responses of the H2O2-scavenging enzymes ascorbate peroxidase and glutathione reductase to S starvation, GSH treatment, and H2O2 treatment were not to glutathione-mediated S demand regulatory process. We conclude that the regulation of ATP sulfurylase activity and SO42- uptake by S demand is related to GSH rather than to the GSH/GSSG ratio, and is distinct from the oxidative stress response.  相似文献   

5.
The extent to which phosphate can be absorbed directly fromthe outer medium by stolon internodes and contribute to thetotal accumulation of phosphate by intact plants of white clover(Trifolium repens L. cv. Blanca) was assessed in hydroponicexperiments in a controlled environment room. The uptake ofphosphate by intact roots or stolons was measured by sealinga segment (6-0 mm long) across a flow-cell in which 32P-labellednutrient solution was circulated for 24 h, the rest of the rootsystem receiving unlabelled nutrient solution. The rate of uptakeof phosphate (µmol g–1 d–1 dry wt. basis)by roots was more than 300 times that by intact stolons. Pretreatmentof stolons by gentle abrasion to remove cuticle, so as to simulatethe condition of stolons in the field, increased the uptakeof phosphate 7-fold compared with that of intact stolons. However,the potential of stolons to contribute to the P status of whitedover in the field was calculated to be small (5%). When an incision was made through the hypodermal layer of stolons,the rate of phosphate uptake greatly increased, attaining 71%of that by root segments. This increase, which was greater athigher phosphate concentrations, indicates that the suberi.zedhypodermis constitutes a major barrier to the influx of phosphatein the stolon. After withholding phosphate for different time intervals, thesubsequent rate of phosphate uptake by roots was increased 2-3-foldafter 2 d phosphate deprivation and 3-4-fold after 6 d or 13d phosphate deprivation. A higher proportion of absorbed phosphatewas transported to shoots in phosphate-deprived plants. After1 d of uptake following restoration of the phosphate supply,the concentrations of labelled phosphate in shoots were greaterthan in control plants, although the concentrations of labelin roots was less. However, the rate of uptake of phosphateby stolons, following deprivation, was not significantly increased.These results suggest that the mechanism regulating the enhancedrate of phosphate loading into the xylem, initiated by a periodof phosphate deprivation, is specific to roots and is not inducedin stolons. The results are discussed in relation to the growth and acquisitionof phosphate by white clover in the field. Key words: Nutrient deficiency, phosphate, stolons, transport (ions), Trifolium repens  相似文献   

6.
7.
8.
In soybean (Glycine max L. Merr. cv Kingsoy), NO3 assimilation in leaves resulted in production and transport of malate to roots (B Touraine, N Grignon, C Grignon [1988] Plant Physiol 88: 605-612). This paper examines the significance of this phenomenon for the control of NO3 uptake by roots. The net NO3 uptake rate by roots of soybean plants was stimulated by the addition of K-malate to the external solution. It was decreased when phloem translocation was interrupted by hypocotyl girdling, and partially restored by malate addition to the medium, whereas glucose was ineffective. Introduction of K-malate into the transpiration stream using a split root system resulted in an enrichment of the phloem sap translocated back to the roots. This treatment resulted in an increase in both NO3 uptake and C excretion rates by roots. These results suggest that NO3 uptake by roots is dependent on the availability of shoot-borne, phloem-translocated malate. Shoot-to-root transport of malate stimulated NO3 uptake, and excretion of HCO3 ions was probably released by malate decarboxylation. NO3 uptake rate increased when the supply of NO3 to the shoot was increased, and decreased when the activity of nitrate reductase in the shoot was inhibited by WO42−. We conclude that in situ, NO3 reduction rate in the shoot may control NO3 uptake rate in the roots via the translocation rate of malate in the phloem.  相似文献   

9.
Aluminum impairs uptake of Mg2+, but the mechanisms of this inhibition are not understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solution by intact, 23-day-old plants of ryegrass (Lolium multiflorum Lam., cv Gulf and Wilo). Activities of Mg2+ and monomeric Al species in nutrient solution were calculated and used as the basis for expressing the results. The kinetics of net Mg2+ absorption was resolved into (a) a transpiration-dependent uptake component, (b) a metabolically mediated, discontinuous saturable component that is Al3+ sensitive and p-chloromercuribenzene sulfonic acid (PCMBS) resistant, and (c) a linear, carbonyl cyanide m-chlorophenylhydrazone resistant, Al3+ sensitive component that might be a type of facilitated diffusion. Lowering the pH from 6.0 to 4.2 exerted a noncompetitive inhibition of net Mg2+ uptake, while aluminum at 6.6 micromolar Al3+ activity exerted competitive inhibition of net Mg2+ uptake at pH 4.2. The Al3+-induced effect was obvious after 30 minutes. Cultivar-specific ability to retain a higher affinity for Mg2+ by postulated transport proteins in the presence of Al3+ might be one of the mechanisms of differential Al tolerance among ryegrass cultivars.  相似文献   

10.
11.
12.
J. B. Bole 《Plant and Soil》1977,46(2):297-307
Summary Direct measurements were made of 3HHO and 32P taken up from labelled soil by roots of wheat (Triticum aestivum L.) and rape (Brassica campestris L.). Single roots were encased in labelled soil for 3 days, and the amount of 3HHO and 32P retained in the shoots was determined. Plants were grown to five stages of maturity in growth boxes under controlled conditions. Roots were labelled at up to four depths (to 90 cm) depending on the rooting depth at each stage of maturity. Uptake of 3HHO per unit length of root increased as the plant age increased, while uptake of 32P decreased to below detection levels by 45 days after germination. Larger amounts of both nutrients were translocated to and retained in the shoots from surface roots than from roots located deeper in the soil although the soil was uniform in temperature, bulk density, and composition throughout the growth boxes. Wheat roots were more efficient than rape roots in absorbing 3HHO; however, rape roots took up larger amounts of 32P per unit length of root. Neither native nor added P located more than 30 cm deep is of much importance to these annual crops, since uptake is minimal and the main demand for this nutrient occurs at early growth stages when the root system is restricted to the surface layers. re]19750812  相似文献   

13.
Uptake of l-[1-14C]ascorbate by intact ascorbate-free spinach (Spinacia oleracea L. cv Vitalr) chloroplasts has been investigated using the technique of silicone oil filtering. Rates greater than 100 micromoles per milligram chlorophyll per hour (external concentration, 10 millimolar) of ascorbate transport were observed. Ascorbate uptake into the sorbitol-impermeable space (stroma) followed the Michaelis-Menten-type characteristic for substrate saturation. A Km of 18 to 40 millimolar was determined. Transport of ascorbate across the chloroplast envelope resulted in an equilibrium of the ascorbate concentrations between stroma and medium. A pH optimum of 7.0 to 7.5 and the lack of alkalization of the medium upon ascorbate uptake suggest that only the monovalent ascorbate anion is able to cross the chloroplast envelope. The activation energy of ascorbate uptake was determined to be 65.8 kilojoules (16 kilocalories) per mole (8 to 20°C). Interference of ascorbate transport with substrates of the phosphate or dicarboxylate translocator could not be detected, but didehydroascorbate was a competitive inhibitor. Preloading of chloroplasts with didehydroascorbate resulted in an increase of Vmax but did not change the Km for ascorbate. Millimolar concentrations of the sulfhydryl reagent p-chloromercuriphenyl sulfonate inhibited ascorbate uptake. The data are interpreted in terms of ascorbate uptake into chloroplasts by the mechanism of facilitated diffusion mediated by a specific translocator.  相似文献   

14.
FALADE  J. A. 《Annals of botany》1973,37(2):341-344
The effect of bicarbonate on the absorption and translocationof P32 by tomato and runner bean has been investigated. Whilebicarbonate stimulated phosphorus uptake from potassium phosphatesolutions it inhibited it from Hoagland solution. Translocationof absorbed phosphorus was inhibited in the single salt solutionbut stimulated in Hoagland solution. Bicarbonate caused morephosphorus to be concentrated in the stems and less in the leavesin Hoagland solution and the reverse was true in the single-saltsolution. It is concluded that the effect of bicarbonate onphosphorus in causing iron chlorosis in some plants is indirect.  相似文献   

15.
16.
Uptake of Proteins by Plant Roots   总被引:1,自引:0,他引:1  
The patterns of uptake of fluorescein-labelled lysozyme (Fl-lysozyme) by barley, maize, onion, tomato and vetch are similar as revealed by fluorescence microscopy. Penetration of the root cap and through the epidermis into the cortex increases with time of exposure and decreases with higher salt concentrations. In fact, one molar ethylammonium chloride can remove most of the absorbed protein from treated roots and the space observed to be stained by Fl-lysozyme in this manner can be visualized as “free space”. Results with sterile and non-sterile barley roots were indistinguishable. At low ionic strength, Fl-lysozyme can penetrate cells and complex with nucleoli. Such cell protoplasts appear “coagulated”. Uptake results with fluorescein per se were unlike those with protein. The uptake of a much larger molecule, ferritin, is confined to the epidermis and root cell walls. Localized, absorbed protein and root growth inhibition by basic proteins have yet to be related.  相似文献   

17.
Rengel Z 《Plant physiology》1990,93(3):1261-1267
Rhizotoxicity of Al is more pronounced in younger plants. Effects of Al on nutrient uptake by plants of different age are poorly understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solutions by intact 15- and 35-day-old plants of two ryegrass (Lolium multiflorum Lam.) cultivars. Lowering the pH from 6.0 to 4.2 decreased the maximum net ion influx without affecting Km. Aluminum at 6.6 micromolar Al3+ activity increased Km indicating competitive inhibition. The effects of pH and 6.6 micromolar Al3+ on net Mg2+ uptake were much larger in 15- than in 35-day-old plants. Aluminum at 26 micromolar Al3+ activity competitively inhibited net Mg2+ uptake by 35-day-old plants, while causing time- and external Mg2+ activity-dependent net Mg2+ efflux from 15-day-old plants. The equilibrium constant (Ki) of a reversible combination of postulated plasmalemma Mg2+ transporter and Al3+ was calculated to be 2 and 5 micromolar Al3+ activity for 15-day-old plants of Wilo and Gulf ryegrass, respectively, and 21 micromolar Al3+ activity for 35-day-old plants of both cultivars. The Al3+-mediated increase in Km was larger for 15-day-old plants of the Al-sensitive cultivar `Wilo' than of the more Al-tolerant cultivar `Gulf,' while Al3+ affected 35-day-old plants of both cultivars to the same extent.  相似文献   

18.
Holmsen, J. D. and Hess, F. D. 1985. Comparison of the disruptionof mitosis and cell plate formation in oat roots by DCPA, colchicineand propham.—J. exp. Bot. 36: 1504–1513. Concentrationsof DCPA, propham and colchicine were selected to cause from0% to greater than 60% inhibition of oat (Avena sativa L. ‘Victory’)root growth after 24 h exposure. Root growth progressively declinedas concentrations were raised from 1·0 to 5·6mmol m–3 DCPA, 1·0–5·0 mmol m–3propham, and 50–500 mmol m–3 colchicine. In additionto inhibiting root growth each mitotic disrupter caused theroot tips to swell to an extent dependent upon concentration.All three compounds effectively disrupted mitosis at concentrationsthat caused less than maximal root growth inhibition. Mitoticdisruption was manifest as a reduction in the number of normalmitotic figures and an increase in the number of condensed prophase,multipolar and anaphase bridge division figures. The frequencyof each type of division figure was different for each of thethree compounds. DCPA disrupted mitosis more effectively whencompared with propham and colchicine at concentrations whichcaused the same amount of root growth inhibition. Each mitoticdisrupter also induced the formation of aberrant cell walls.DCPA was the most effective at disrupting cell plate formation,whereas colchicine was least effective. These data suggest thatthe mechanism of action of DCPA is distinct from the mechanismof colchicine or propham Key words: Avena sativa L., mitotic disruption, DCPA, colchicine, propham  相似文献   

19.
Uptake of manganese by intact citrus seedlings can be represented by three phases of a single, multiphasic isotherm in the range 10?8M–2× 10?4M. The phases are separated by marked jumps and the kinetic constants increase upon transition to higher phases.  相似文献   

20.
Multiphasic kinetics were indicated for uptake of ammonium and potassium by intact cirtrus seedlings as measured by a continuous flow technique. Uptake at low concentration, below 10?3M, was biphasis. The patterns for ammonium uptake by 60-day-old and 180-day-old seedlings were similar, but the rates of uptake per g dry weight of root were greater for the younger plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号