首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanine phosphoribosyltransferase (GPRTase) from Giardia lamblia, an enzyme required for guanine salvage and necessary for the survival of this parasitic protozoan, has been kinetically characterized. Phosphoribosyltransfer proceeds through an ordered sequential mechanism common to many related purine phosphoribosyltransferases (PRTases) with alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) binding to the enzyme first and guanosine monophosphate (GMP) dissociating last. The enzyme is a highly unique purine PRTase, recognizing only guanine as its purine substrate (K(m) = 16.4 microM) but not hypoxanthine (K(m) > 200 microM) nor xanthine (no reaction). It also catalyzes both the forward (kcat = 76.7 s-1) and reverse (kcat = 5.8.s-1) reactions at significantly higher rates than all the other purine PRTases described to date. However, the relative catalytic efficiencies favor the forward reaction, which can be attributed to an unusually high K(m) for pyrophosphate (PPi) (323.9 microM) in the reverse reaction, comparable only with the high K(m) for PPi (165.5 microM) in Tritrichomonas foetus HGXPRTase-catalyzed reverse reaction. As the latter case was due to the substitution of threonine for a highly conserved lysine residue in the PPi-binding loop [Munagala et al. (1998) Biochemistry 37, 4045-4051], we identified a corresponding threonine residue in G. lamblia GPRTase at position 70 by sequence alignment, and then generated a T70K mutant of the enzyme. The mutant displays a 6.7-fold lower K(m) for PPi with a twofold increase in the K(m) for PRPP. Further attempts to improve PPi binding led to the construction of a T70K/A72G double mutant, which displays an even lower K(m) of 7.9 microM for PPi. However, mutations of the nearby Gly71 to Glu, Arg, or Ala completely inactivate the GPRTase, suggesting the requirement of flexibility in the putative PPi-binding loop for enzyme catalysis, which is apparently maintained by the glycine residue. We have thus tentatively identified the PPi-binding loop in G. lamblia GPRTase, and attributed the relatively higher catalytic efficiency in the forward reaction to the unusual loop structure for poor PPi binding in the reverse reaction.  相似文献   

2.
A flexible loop of amino acids (loop II) closes over the active site of hypoxanthine phosphoribosyltransferase (HPRT) as the enzyme approaches the transition state [Biochemistry 37 (1998) 17120]. Formerly, the deletion of much of loop II from the HPRT of Trypanosoma cruzi resulted in a 2-3 order of magnitude reduction in k(cat) values with relatively modest changes in the Michaelis constants for substrates [Biochim. Biophys. Acta 1537 (2001) 63-70]. However, the contributions of individual loop II residues to catalysis remained poorly understood or have been disputed. Herein, saturation mutagenesis was used to generate relatively random sets of mutations in the 12 residues of active site loop II in the HPRT from T. cruzi and steady-state kinetics was used to investigate reactions catalyzed by the mutants. The results of analyses of 18 different mutations in an evolutionarily invariant Ser-Tyr dipeptide are consistent with interactions, between main chain nitrogen atoms of these residues and the O1A atom of phosphoribosylpyrophosphate (PRPP) or pyrophosphate (PPi), being essential for efficient enzyme chemistry. The results of analyses of 55 mutations in the nine other amino acids in loop II are inconsistent with these residues participating directly in enzyme chemistry, but are consistent with several of their side chains influencing loop flexibility and folding, as well as the efficiency for nucleotide formation relative to pyrophosphorolysis.  相似文献   

3.
Enzymes that salvage 6-oxopurines, including hypoxanthine phosphoribosyltransferases (HPRTs), are potential targets for drugs in the treatment of diseases caused by protozoan parasites. For this reason, a number of high-resolution X-ray crystal structures of the HPRTs from protozoa have been reported. Although these structures did not reveal why HPRTs need to form dimers for catalysis, they revealed the existence of potentially relevant interactions involving residues in a loop of amino acid residues adjacent to the dimer interface, but the contributions of these interactions to catalysis remained poorly understood. The loop, referred to as active-site loop I, contains an unusual non-proline cis-peptide and is composed of residues that are structurally analogous with Leu67, Lys68, and Gly69 in the human HPRT. Functional analyses of site-directed mutations (K68D, K68E, K68N, K68P, and K68R) in the HPRT from Trypanosoma cruzi, etiologic agent of Chagas' disease, show that the side-chain at position 68 can differentially influence the K(m) values for all four substrates as well as the k(cat) values for both IMP formation and pyrophosphorolysis. Also, the results for the K68P mutant are inconsistent with a cis-trans peptide isomerization-assisted catalytic mechanism. These data, together with the results of structural studies of the K68R mutant, reveal that the side-chain of residue 68 does not participate directly in reaction chemistry, but it strongly influences the relative efficiencies for IMP formation and pyrophosphorolysis, and the prevalence of lysine at position 68 in the HPRT of the majority of eukaryotes is consistent with there being a biological role for nucleotide pyrophosphorolysis.  相似文献   

4.
Site-directed mutagenesis was used to replace Lys68 of the human hypoxanthine phosphoribosyltransferase (HGPRTase) with alanine to exploit this less reactive form of the enzyme to gain additional insights into the structure activity relationship of HGPRTase. Although this substitution resulted in only a minimal (one- to threefold) increase in the Km values for binding pyrophosphate or phosphoribosylpyrophosphate, the catalytic efficiencies (k(cat)/Km) of the forward and reverse reactions were more severely reduced (6- to 30-fold), and the mutant enzyme showed positive cooperativity in binding of alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) and nucleotide. The K68A form of the human HGPRTase was cocrystallized with 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and Mg PRPP, and the refined structure reported. The PRPP molecule built into the [(Fo - Fc)phi(calc)] electron density shows atomic interactions between the Mg PRPP and enzyme residues in the pyrophosphate binding domain as well as in a long flexible loop (residues Leu101 to Gly111) that closes over the active site. Loop closure reveals the functional roles for the conserved SY dipeptide of the loop as well as the molecular basis for one form of gouty arthritis (S103R). In addition, the closed loop conformation provides structural information relevant to the mechanism of catalysis in human HGPRTase.  相似文献   

5.
6.
Crystal structures of Thermoanaerobacter tengcongensis hypoxanthine-guanine phosphoribosyltransferase (HGPRT) apoenzyme and the enzyme-inosine monophosphate (IMP) complex have been determined to 2.5A and 2.2A resolution, respectively. The active form of the enzyme was identified as a tetramer in solution and the K(i) value of IMP was measured to be 45 microM for alpha-D-phosphoribosyl-1-pyrophosphate (PRPP). Conformation of the flexible loop in T.tengcongensis HGPRT, which is involved in substrate PRPP binding, is different from that observed in phosphoribosyltransferases (PRTs). It contains a 3-10 helix, and a unique double serine repeat. This loop is ordered even in the apoenzyme and assumes a half-closed conformation. The primary magnesium ion is directly coordinated by side-chains of Glu101 and Asp102, and water molecules in the apoenzyme, suggesting a possible prerequisite role for substrate PRPP binding. Most interestingly, an alternative IMP binding mode is found in the structure of T.tengcongensis HGPRT-IMP complex. The 5'-phosphate of IMP occupies the PPi position usually seen in PRT-PRPP complexes. This new observation is consistent with the lower K(i) value of IMP and may suggest a mechanism involving multiple modes of interactions between IMP and T.tengcongensis HGPRT in product release and feedback inhibition. The structure of T.tengcongensis HGPRT is compared with those of mesophilic HPRTs, and several possible features contributing to its thermostability are elucidated. Overall, T.tengcongensis HGPRT appears to be more diverged from other PRTs.  相似文献   

7.
Canyuk B  Focia PJ  Eakin AE 《Biochemistry》2001,40(9):2754-2765
The role of an invariant aspartic acid (Asp137) in hypoxanthine phosphoribosyltransferases (HPRTs) was examined by site-directed and saturation mutagenesis, functional analysis, and X-ray crystallography using the HPRT from Trypanosoma cruzi. Alanine substitution (D137A) resulted in a 30-fold decrease of k(cat), suggesting that Asp137 participates in catalysis. Saturation mutagenesis was used to generate a library of mutant HPRTs with random substitutions at position 137, and active enzymes were identified by complementation of a bacterial purine auxotroph. Functional analyses of the mutants, including determination of steady-state kinetic parameters and pH-rate dependence, indicate that glutamic acid or glutamine can replace the wild-type aspartate. However, the catalytic efficiency and pH-rate profile for the structural isosteric mutant, D137N, were similar to the D137A mutant. Crystal structures of four of the mutant enzymes were determined in ternary complex with substrate ligands. Structures of the D137E and D137Q mutants reveal potential hydrogen bonds, utilizing several bound water molecules in addition to protein atoms, that position these side chains within hydrogen bond distance of the bound purine analogue, similar in position to the aspartate in the wild-type structure. The crystal structure of the D137N mutant demonstrates that the Asn137 side chain does not form interactions with the purine substrate but instead forms novel interactions that cause the side chain to adopt a nonfunctional rotamer. The results from these structural and functional analyses demonstrate that HPRTs do not require a general base at position 137 for catalysis. Instead, hydrogen bonding sufficiently stabilizes the developing partial positive charge at the N7-atom of the purine substrate in the transition-state to promote catalysis.  相似文献   

8.
9.
The structure of the N-terminal domain of enzyme I complexed with histidine-containing protein (HPr) has been described by multi-dimensional NMR. Residues in HPr involved in binding were identified by intermolecular nuclear Overhauser effects (Garrett et al. 1999). Most of these residues have been mutated, and the effect of these changes on binding has been assessed by enzyme I kinetic measurement. Changes to Thr16, Arg17, Lys24, Lys27, Ser46, Leu47, Lys49, Gln51, and Thr56 result in increases to the HPr Km of enzyme I, which would be compatible with changes in binding. Except for mutations to His15 and Arg17, very little or no change in Vmax was found. Alanine replacements for Gln21, Thr52, and Leu55 have no effect. The mutation Lys40Ala also affects HPr Km of enzyme I; residue 40 is contiguous with the enzyme I binding site in HPr and was not identified by NMR. The mutations leading to a reduction in the size of the side chain (Thr16Ala, Arg17Gly, Lys24Ala, Lys27Ala, and Lys49Gly) caused relatively large increases in Km (>5-fold) indicating these residues have more significant roles in binding to enzyme I. Acidic replacement at Ser46 caused very large increases (>100-fold), while Gln51Glu gave a 3-fold increase in Km. While these results essentially concur with the identification of residues by the NMR experiments, the apparent importance of individual residues as determined by mutation and kinetic measurement does not necessarily correspond with the number of contacts derived from observed intermolecular nuclear Overhauser effects.  相似文献   

10.
Most of the nitrogen transported from the nodules of nitrogen-fixing soybean plants is in the form of the ureides allantoin and allantoic acid. Recent work has shown that ureides are formed in the plant fraction of the nodule from de novo purine biosynthesis and purine oxidation. 5-Phosphoribosylpyrophosphate amidotransferase (PRAT), which catalyzes the first committed step of purine biosynthesis, has been purified 1500-fold from soybean root nodules. The enzyme had an apparent Mr of 8 X 10(6), but this estimate may have been for an aggregation of several purine biosynthetic activities. PRAT showed a pH optimum of pH 8.0, and Km values were 18 and 0.4 mM for glutamine and 5-phosphoribosyl-1-pyrophosphate (PRPP), respectively. The reaction required Mg2+, and PRPPMg3- was shown to be the reactive molecular species of PRPP. Ammonia could replace glutamine as a substrate, and the Vm with ammonia was twice that obtained when glutamine was the substrate. The initial-rate kinetics showed sequential addition of substrates to the enzyme. Product inhibition data was consistent with the order of product release being phosphoribosylamine, PPi, and glutamate. The enzyme was subject to regulation by end products of the purine biosynthetic pathway. IMP and GMP inhibited competitively with PRPP and promoted cooperativity in the binding of this substrate; there was no cooperativity in the binding of IMP to the enzyme. XMP was a linear competitive inhibitor with PRPP. The results are discussed in terms of the key regulatory point occupied by PRAT in the pathway of ureide biogenesis.  相似文献   

11.
Hypoxanthine‐guanine‐xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1‐3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5‐fold under activated condition as compared to that of the wild‐type enzyme. The W181T mutant showed 10‐fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross‐correlation analyses show a communication between loop III' and the substrate binding site. Differential cross‐correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Winged bean chymotrypsin inhibitor (WCI) has an intruding residue Asn14 that plays a crucial role in stabilizing the reactive site loop conformation. This residue is found to be conserved in the Kunitz (STI) family of serine protease inhibitors. To understand the contribution of this scaffolding residue on the stability of the reactive site loop, it was mutated in silico to Gly, Ala, Ser, Thr, Leu and Val and molecular dynamics (MD) simulations were carried out on the mutants. The results of MD simulations reveal the conformational variability and range of motions possible for the reactive site loop of different mutants. The N-terminus side of the scissile bond, which is close to a beta-barrel, is conformationally less variable, while the C-terminus side, which is relatively far from any such secondary structural element, is more variable and needs stability through hydrogen-bonding interactions. The simulated structures of WCI and the mutants were docked in the peptide-binding groove of the cognate enzyme chymotrypsin and the ability to form standard hydrogen-bonding interactions at P3, P1 and P2' residues were compared. The results of the MD simulations coupled with docking studies indicate that hydrophobic residues like Leu and Val at the 14th position are disruptive for the integrity of the reactive site loop, whereas a residue like Thr, which can stabilize the C-terminus side of the scissile bond, can be predicted at this position. However, the size and charge of the Asn residue made it most suitable for the best maintenance of the integrity of the reactive site loop, explaining its conserved nature in the family.  相似文献   

13.
In a previous study, it was shown that replacing Asp158 in papain by Asn had little effect on activity and that the negatively charged carboxylate of Asp158 does not significantly stabilize the active site thiolate-imidazolium ion pair of papain (Ménard et al., 1990). In this paper, we report the kinetic characterization of three more mutants at this position: Asp158Gly, Asp158Ala, and Asp158Glu. From the pH-activity profiles of these and other mutants of papain, it has been possible to develop a model that enables us to dissect out the contribution of the various mutations toward (i) intrinsic activity, (ii) ion pair stability, and (iii) the electrostatic potential at the active site. Results obtained with mutants that place either Gly or Ala at position 158 indicate that the hydrogen bonds involving the side chain of Asp158 in wild-type papain are indirectly important for enzyme activity. When CBZ-Phe-Arg-MCA is used as a substrate, the (kcat/KM)obs values at pH 6.5 are 3650 and 494 M-1 s-1 for Asp158Gly and Asp158Ala, respectively, as compared to 119,000 M-1 s-1 for papain. Results with the Asp158Glu mutant suggest that the side chain of Glu moves closer to the active site and cannot form hydrogen bonds similar to those involving Asp158 in papain. From the four mutations introduced at position 158 in papain, we can conclude that it is not the charge but the hydrogen-bonding interactions involving the side chain of Asp158 that contribute the most to the stabilization of the thiolate-imidazolium ion pair in papain. However, the charge and the hydrogen bonds of Asp158 both contribute to the intrinsic activity of the enzyme.  相似文献   

14.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a key enzyme of the purine recycling pathway that catalyzes the conversion of 5-phospho-ribosyl-α-1-pyrophosphate and guanine or hypoxanthine to guanosine monophosphate (GMP) or inosine monophosphate (IMP), respectively, and pyrophosphate (PPi). We report the first crystal structure of a fungal 6-oxopurine phosphoribosyltransferase, the Saccharomyces cerevisiae HGPRT (Sc-HGPRT) in complex with GMP. The crystal structures of full length protein with (WT1) or without (WT2) sulfate that mimics the phosphate group in the PPi binding site were solved by molecular replacement using the structure of a truncated version (Δ7) solved beforehand by multiwavelength anomalous diffusion. Sc-HGPRT is a dimer and adopts the overall structure of class I phosphoribosyltransferases (PRTs) with a smaller hood domain and a short two-stranded parallel β-sheet linking the N- to the C-terminal end. The catalytic loops in WT1 and WT2 are in an open form while in Δ7, due to an inter-subunit disulfide bridge, the catalytic loop is in either an open or closed form. The closure is concomitant with a peptide plane flipping in the PPi binding loop. Moreover, owing the flexibility of a GGGG motif conserved in fungi, all the peptide bonds of the phosphate binding loop are in trans conformation whereas in nonfungal 6-oxopurine PRTs, one cis-peptide bond is required for phosphate binding. Mutations affecting the enzyme activity or the previously characterized feedback inhibition by GMP are located at the nucleotide binding site and the dimer interface.  相似文献   

15.
Recently, we have shown that the α-helix present at the N-termini of α7 nicotinic acetylcholine receptors plays a crucial role in their biogenesis. Structural data suggest that this helix interacts with the loop linking β-strands β2 and β3 (loop 3). We studied the role of this loop as well as its interaction with the helix in membrane receptor expression. Residues from Asp62 to Val75 in loop 3 were mutated. Mutations of conserved amino acids, such as Asp62, Leu65 and Trp67 abolished membrane receptor expression in Xenopus oocytes. Others mutations, at residues Asn68, Ala69, Ser70, Tyr72, Gly74, and Val 75 were less harmful although still produced significant expression decreases. Steady state levels of wild-type and mutant α7 receptors (L65A, W67A, and Y72A) were similar but the formation of pentameric receptors was impaired in the latter (W67A). Mutation of critical residues in subunits of heteromeric nicotinic acetylcholine receptors (α3β4) also abolished their membrane expression. Complementarity between the helix and loop 3 was evidenced by studying the expression of chimeric α7 receptors in which these domains were substituted by homologous sequences from other subunits. We conclude that loop 3 and its docking to the α-helix is an important requirement for receptor assembly.  相似文献   

16.
The scaffold of serine protease inhibitors plays a significant role in the process of religation which resists proteolysis of the inhibitor in comparison to a substrate. Although the role of the conserved scaffolding Asn residue was previously implicated in the maintenance of the binding loop conformation of Kunitz (STI) inhibitors, its possible involvement in the prevention of proteolysis is still unexplored. In this paper, we have investigated the specific role of the spacer Asn in the prevention of proteolysis through structural and biochemical studies on the mutants where Asn14 of winged bean chymotrypsin inhibitor (WCI) has been replaced by Gly, Ala, Thr, Leu, and Gln. A residue having no side chain or beta-branching at the 14th position creates deformation and insufficient protrusion of the binding loop, and as a result N14G and N14T lose the ability to recognize proteases. Although the reactive site loop conformation of N14A and N14Q are almost identical to WCI, biochemical results present N14A as a substrate indicating that the methyl group of Ala14 is not suitable to capture the cleaved parts together for religation. The poor inhibitory power of N14L points toward the chemical incompatibility of Leu at the 14th position, although its size is the same as Asn; on the other hand, slight loss of inhibitory potency of N14Q is attributed to the inappropriate placement of the Gln14 polar head, caused by the strained accommodation of its bigger side chain. These observations collectively allow us to conclude that the side chain of spacer Asn fits snugly into the concave space of the reactive site loop cavity and its ND2 atom forms hydrogen bonds with the P2 and P1' carbonyl O at either side of the scissile bond holding the cleaved products together for religation. Through database analysis, we have identified such spacer asparagines in five other families of serine protease inhibitors with a similar disposition of their ND2 atoms, which supports our proposition.  相似文献   

17.
Uracil phosphoribosyltransferase catalyzes the conversion of 5-phosphoribosyl-α-1-diphosphate (PRPP) and uracil to uridine monophosphate (UMP) and diphosphate (PPi). The tetrameric enzyme from Sulfolobus solfataricus has a unique type of allosteric regulation by cytidine triphosphate (CTP) and guanosine triphosphate (GTP). Here we report two structures of the activated state in complex with GTP. One structure (refined at 2.8-Å resolution) contains PRPP in all active sites, while the other structure (refined at 2.9-Å resolution) has PRPP in two sites and the hydrolysis products, ribose-5-phosphate and PPi, in the other sites. Combined with three existing structures of uracil phosphoribosyltransferase in complex with UMP and the allosteric inhibitor cytidine triphosphate (CTP), these structures provide valuable insight into the mechanism of allosteric transition from inhibited to active enzyme. The regulatory triphosphates bind at a site in the center of the tetramer in a different manner and change the quaternary arrangement. Both effectors contact Pro94 at the beginning of a long β-strand in the dimer interface, which extends into a flexible loop over the active site. In the GTP-bound state, two flexible loop residues, Tyr123 and Lys125, bind the PPi moiety of PRPP in the neighboring subunit and contribute to catalysis, while in the inhibited state, they contribute to the configuration of the active site for UMP rather than PRPP binding. The C-terminal Gly216 participates in a hydrogen-bond network in the dimer interface that stabilizes the inhibited, but not the activated, state. Tagging the C-terminus with additional amino acids generates an endogenously activated enzyme that binds GTP without effects on activity.  相似文献   

18.
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 A resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 A resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 A resolution. Comparisons of these three hAPRT structures with other 'type I' PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPP. Comparative analyses presented here provide structural evidence to propose the role of Glu104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.  相似文献   

19.
Shi W  Tanaka KS  Crother TR  Taylor MW  Almo SC  Schramm VL 《Biochemistry》2001,40(36):10800-10809
Adenine phosphoribosyltransferase (APRTase) is a widely distributed enzyme, and its deficiency in humans causes the accumulation of 2,8-dihydroxyadenine. It is the sole catalyst for adenine recycling in most eukaryotes. The most commonly expressed APRTase has subunits of approximately 187 amino acids, but the only crystal structure is from Leishmania donovani, which expresses a long form of the enzyme with 237 residues. Saccharomyces cerevisiae APRTase was selected as a representative of the short APRTases, and the structure of the apo-enzyme and sulfate bound forms were solved to 1.5 and 1.75 A, respectively. Yeast APRTase is a dimeric molecule, and each subunit is composed of a central five-stranded beta-sheet surrounded by five alpha-helices, a structural theme found in all known purine phosphoribosyltransferases. The structures reveal several important features of APRTase function: (i) sulfate ions bound at the 5'-phosphate and pyrophosphate binding sites; (ii) a nonproline cis peptide bond (Glu67-Ser68) at the pyrophosphate binding site in both apo-enzyme and sulfate-bound forms; and (iii) a catalytic loop that is open and ordered in the apo-enzyme but open and disordered in the sulfate-bound form. Alignment of conserved amino acids in short-APRTases from 33 species reveals 13 invariant and 15 highly conserved residues present in hinges, catalytic site loops, and the catalytic pocket. Mutagenesis of conserved residues in the catalytic loop, subunit interface, and phosphoribosylpyrophosphate binding site indicates critical roles for the tip of the catalytic loop (Glu106) and a catalytic site residue Arg69, respectively. Mutation of one loop residue (Tyr103Phe) increases k(cat) by 4-fold, implicating altered dynamics for the catalytic site loop.  相似文献   

20.
Heavy chain only antibodies of camelids bind their antigens with a single domain, the VHH, which acquired adaptations relative to classical VHs to function in the absence of a VL partner. Additional CDR loop conformations, outside the canonical loop structures of VHs, broaden the repertoire of the antigen-binding site. The combined effects of part of the CDR3 that folds over the "former" VL binding site and framework-2 mutations to more hydrophilic amino acids, enhance the solubility of VHH domains and prevent VL pairing. cAbAn33, a VHH domain specific for the carbohydrate moiety of the variant surface glycoprotein of trypanosomes, has a short CDR3 loop that does not cover the former VL binding site as well as a VH-specific Trp47 instead of the VHH-specific Gly47. Resurfacing its framework-2 region (mutations Tyr37Val, Glu44Gly and Arg45Leu) to mimic that of a human VH restores the VL binding capacity. In solution, the humanised VHH behaves as a soluble, monomeric entity, albeit with reduced thermodynamic stability and affinity for its antigen. Comparison of the crystal structures of cAbAn33 and its humanised derivative reveals steric hindrance exerted by VHH-specific residues Tyr37 and Arg45 that prevent the VL domain pairing, whereas Glu44 and Arg45 are key elements to avoid insolubility of the domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号