首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of circulating insulin-like growth factor (IGF)-I on increasing insulin sensitivity are well recognized. IGF-I may have a further important role in maintaining beta-cell mass, and lower IGF-I activity could explain links between small size at birth and risk of type 2 diabetes in short, obese adults. In the representative Avon Longitudinal Study of Pregnancy and Childhood birth cohort, whereas insulin sensitivity is related to early postnatal weight gain, insulin secretion is related to IGF-I level and statural growth. Adult studies suggest that lower IGF-I levels at baseline predict increased risk for developing impaired glucose tolerance and type 2 diabetes. A common genetic polymorphism in the IGF1 gene could influence size at birth, postnatal growth and type 2 diabetes risk, but results of studies have been inconsistent. Extrapolation of these data to short children born small for gestational age is complex. Some have evidence of IGF-I and insulin resistance, suggesting inherent defects in IGF-I signalling. These children have poor growth responses to growth hormone (GH) therapy and perhaps the highest type 2 diabetes risk. Where these metabolic abnormalities are less severe, responses to GH therapy are good and diabetes risk may then depend on other genetic factors, indicated by a family history of diabetes or origin from ethnic groups with high diabetes prevalence.  相似文献   

2.
In the past, type 2 diabetes mellitus was considered a disease of adults and older individuals, not a paediatric condition. Over the last decade, however, in the USA and the rest of the world there has been a disturbing trend of increasing cases of type 2 diabetes in children, mirroring increasing rates of obesity. The risk factors for paediatric type 2 diabetes are: (1) obesity and increased body mass index; (2) family history of type 2 diabetes; (3) membership of ethnic minority; (4) puberty (mean age of diagnosis is approximately 13.5 years); (5) female gender; and (6) features of 'syndrome X'. The common link among these risk factors is insulin resistance, which plays a pivotal role in the pathophysiology of type 2 diabetes. Both insulin resistance and beta-cell failure are present in the fully established diabetes state. Data will be presented on how these risk factors impact on insulin sensitivity and insulin secretion in childhood, ultimately leading to type 2 diabetes. The clinical presentation of type 2 diabetes in children and its distinction from type 1 diabetes will be discussed.  相似文献   

3.
Ong KK 《Hormone research》2006,65(Z3):65-69
Epidemiological studies over the last 15 years have shown that size at birth, early postnatal catch-up growth and excess childhood weight gain are associated with an increased risk of adult cardiovascular disease and type 2 diabetes. At the same time, rising rates of obesity and overweight in children, even at pre-school ages, have shifted efforts towards the identification of very early factors that predict risk of subsequent obesity, which may allow early targeted interventions. Overall, higher birth weight is positively associated with subsequent greater body mass index in childhood and later life; however, the relationship is complex. Higher birth weight is associated with greater subsequent lean mass, rather than fat mass. In contrast, lower birth weight is associated with a subsequent higher ratio of fat mass to lean mass, and greater central fat and insulin resistance. This paradoxical effect of lower birth weight is at least partly explained by the observation that infants who have been growth restrained in utero tend to gain weight more rapidly, or 'catch up', during the early postnatal period, which leads to increased central fat deposition. There is still debate as to whether there are critical early periods for obesity: does excess weight gain during infancy, childhood or even very early neonatal life have a greater impact on long-term fat deposition and insulin resistance? Early identification of childhood obesity risk will be aided by identification of maternal and fetal genes that regulate fetal nutrition and growth, and postnatal genes that regulate appetite, energy expenditure and the partitioning of energy intake into fat or lean tissue growth.  相似文献   

4.
Mericq V 《Hormone research》2006,65(Z3):131-136
Premature infants of low and extremely low birth weight represent a challenge for neonatal intensive care units and paediatricians. These neonates may be at increased risk of insulin resistance and diabetes perinatally and during childhood. During the first week of postnatal life, infants born prematurely are at risk of abnormalities in glucose homeostasis. Additionally, there are major differences in their glucose/insulin homeostasis compared with infants born at term. Preterm infants are at risk of hypoglycaemia, due to decreases in deposits of glycogen and fat that occur during the third trimester, and also to transient hyperinsulinaemia. Hyperglycaemia may also be observed in preterm infants during the perinatal period. These infants are unable to suppress glucose production within a large range of glucose and insulin concentrations, insulin secretory response is inappropriate, insulin processing is immature and there is an increased ratio of the glucose transporters Glut-1/Glut-2 in fetal tissues, which limits sensitivity and hepatocyte reaction to increments in glucose/insulin concentration during hyperglycaemia. In addition, increased concentrations of tumour necrosis factor alpha present in intrauterine growth retardation (IUGR) and induce insulin resistance. It has been proposed that the reduced insulin sensitivity may result from adaptation to an adverse in utero environment during a critical period of development. We have investigated postnatal insulin resistance in 60 children born with very low birth weight and either small for gestational age or at an appropriate size for gestational age. This study showed that IUGR, rather than low birth weight itself, was associated with increased fasting insulin levels. As poor fetal growth may be associated with the development of obesity, type 2 diabetes and the metabolic syndrome in later life, it is important that we continue to increase our understanding of the effects of IUGR on postnatal growth and metabolism.  相似文献   

5.
Diagnosis of the metabolic syndrome in children   总被引:12,自引:0,他引:12  
PURPOSE OF REVIEW: The metabolic syndrome, a cluster of potent risk factors for atherosclerotic cardiovascular disease and type 2 diabetes mellitus in adults, is composed of insulin resistance, obesity, hypertension and hyperlipidemia. Of significant impact in the adult population, atherosclerotic cardiovascular disease and death are rarely seen in the young, but the pathologic processes and risk factors associated with its development have been shown to begin during childhood. The current review summarizes the work published during the past year in the following areas: childhood obesity, insulin resistance, dyslipidemia, hypertension and type 2 diabetes mellitus. RECENT FINDINGS: Recent studies have revealed the presence of components of the metabolic syndrome in children and adolescents. Obesity has a central role in the syndrome. There is an increasing amount of data to show that being overweight during childhood and adolescence is significantly associated with insulin resistance, abnormal lipids, and elevated blood pressure in young adulthood. Weight loss in these situations results in a decrease in insulin concentration and an increase in insulin sensitivity toward normalcy. With cardiovascular disease, obesity, and type 2 diabetes reaching epidemic proportions, it is of great importance to understand and control the risk factors at an early age. SUMMARY: The information obtained during the past year has improved our understanding of the pathogenesis, diagnosis and treatment of components of the metabolic syndrome in children, and potentially could improve the risk profiles for cardiovascular disease as children make the transition toward adolescence and young adulthood.  相似文献   

6.
Although there is now substantial evidence linking low birthweight with impaired glucose tolerance and type 2 diabetes in adult life, the extent to which reduced fetal growth is associated with impaired insulin sensitivity, defective insulin secretion, or a combination of both factors is not clear. We have therefore examined the relationships between birth size and both insulin sensitivity and insulin secretion as assessed by an intravenous glucose tolerance test with minimal model analysis in 163 men and women, aged 20 yr, born at term in Adelaide, South Australia. Birth size did not correlate with body mass index or fat distribution in men or women. Men who were lighter or shorter as babies were less insulin sensitive (P = 0.03 and P = 0.01, respectively), independently of their body mass index or body fat distribution. They also had higher insulin secretion (P = 0.007 and P = 0.006) and increased glucose effectiveness (P = 0.003 and P = 0.003). Overall glucose tolerance, however, did not correlate with birth size, suggesting that the reduced insulin sensitivity was being compensated for by an increase in insulin secretion and insulin-independent glucose disposal. There were no relationships between birth size and insulin sensitivity or insulin secretion in women. These results show that small size at birth is associated with increased insulin resistance and hyperinsulinemia in young adult life but that these relationships are restricted to the male gender in this age group.  相似文献   

7.
Low birth weight is associated with both later adult diseases such as type 2 diabetes mellitus and a number of metabolic abnormalities, the foremost of which is insulin resistance. Indeed the link between an adverse perinatal environment, manifested by low birth weight, and adult life pathology may be an early, permanent reduction in insulin sensitivity. A reduction in insulin sensitivity has been demonstrated in small for gestational age (SGA), term subjects from childhood through to adulthood. Less is known about children born premature into an adverse neonatal environment. We present data demonstrating that premature infants also have metabolic abnormalities similar to those observed in term, SGA children and that these occur irrespective of whether they are SGA or appropriate for gestational age (AGA).  相似文献   

8.
Dunger D  Yuen K  Ong K 《Hormone research》2004,62(Z1):101-107
The effects of circulating insulin-like growth factor I (IGF-I) on glucose metabolism are well recognized. IGF-I is also important in maintaining beta-cell mass and regulating endogenous growth hormone (GH) levels. Low IGF-I levels could explain links between small birth size and the risk of developing type 2 diabetes mellitus in short, obese adults. In a recent prospective study, childhood insulin secretion was related to IGF-I levels and statural growth, whereas insulin sensitivity was related to early post-natal weight gain. Common genetic polymorphisms in the IGF1 gene have been linked to small birth size, post-natal growth and future diabetes risk, but these results have been inconsistent. Recent adult studies have demonstrated that lower baseline IGF-I levels predict the subsequent development of impaired glucose tolerance (IGT), type 2 diabetes and cardiovascular disease. Administration of low-dose GH therapy, at a dose that minimizes the lipolytic effects of GH and has the ability to increase IGF-I levels, enhances insulin sensitivity in young healthy adults and in GH-deficient adults and increases insulin secretion in individuals with IGT. Whether the administration of low-dose GH, recombinant IGF-I or combined IGF-I/IGF-binding protein 3 therapy prevents future development of IGT or type 2 diabetes in high-risk normoglycaemic and GH-deficient individuals merits further long-term studies.  相似文献   

9.
ObjectiveTo investigate the association between birth weight of offspring and mothers'' insulin resistance in late adulthood.DesignCross sectional survey.SettingGeneral practitioner''s surgeries in 23 towns in Great Britain.Participants4286 women aged 60-79 years.ResultsBirth weight of offspring was inversely related to maternal insulin resistance in late adulthood. For each 1 kg higher birth weight of offspring, women had a 15% reduction in the odds of being in the fourth with highest insulin resistance, compared to other fourths (odds ratio 0.85; 95% confidence interval 0.71 to 1.00). This increased to 27% (0.73; 0.60 to 0.90) after adjusting data for potential confounders. A U shaped relation between birth weight of offspring and diabetes in older age was found; women with the lightest and heaviest offspring had the highest prevalence of diabetes.ConclusionsBirth weight of offspring is inversely related to the mother''s insulin resistance in late adulthood, despite the association of glucose intolerance during pregnancy with heavier offspring at birth. Common genetic factors contribute to the relation between birth weight and risk of cardiovascular disease and diabetes in adults.

What is already known on this topic

Small birth weight is related to increased risk of cardiovascular disease and diabetes in adulthood; the underlying mechanisms are unclearSmall birth weight of offspring is related to parental cardiovascular disease, suggesting that common genetic factors affect birth weight and the risk of disease in adulthoodGenetic factors associated with the metabolism of insulin are plausible in linking birth weight and cardiovascular disease (the fetal insulin hypothesis)

What this study adds

Birth weight of offspring is inversely related to maternal insulin resistance in older ageGenetic factors related to both insulin resistance and birth weight explain at least part of the association between birth weight and risk of cardiovascular disease and diabetes in adulthood  相似文献   

10.
Until recently, the principal causes of degenerative disease were thought to act in adult life and to accelerate destructive processes, such as the formation of atheroma and rise in blood pressure. Recent observations that people who develop coronary heart disease grow differently to other people during fetal life and childhood have, however, led to a new 'developmental' model for the disease. Low birthweight has been shown to be associated with increased rates of coronary heart disease, type 2 diabetes mellitus and altered glucose tolerance. These associations with low birthweight extend across the normal range of birthweight and reflect slow fetal growth rather than premature birth. The associations are thought to be consequences of developmental plasticity, the phenomenon by which one genotype can give rise to a range of different physiological or morphological states in response to different environmental conditions during development. Recent observations suggest that low birthweight, thinness at 2 years of age and an increase in body mass index (BMI) after the age of 2 years are each associated with the development of insulin resistance in later life. The prevention of a substantial proportion of type 2 diabetes and other disorders linked to insulin resistance may, therefore, depend on interventions during development. These include protecting the growth of babies during the first 2 years after birth by good infant feeding practices and preventing a rapid increase in BMI after the age of 2 years. Improving fetal nutrition remains an important long-term goal.  相似文献   

11.
Numerous studies have shown an association between low weight at birth and being born small for gestational age (SGA) on the one hand and risk of developing insulin resistance and type 2 diabetes on the other. Our studies in twins have indicated a non-genetic age-dependent origin of insulin resistance and type 2 diabetes associated with being born SGA. In order to gain insight into the molecular metabolic defects and mechanisms linking SGA with insulin resistance and type 2 diabetes, we performed a series of experiments in young and elderly twins, and, in particular, in young men (aged 19-23 years) with a weight at birth at term in the lowest 10th percentile with no family history of diabetes. The control group included age-matched men with birth weights at term in the upper normal range. While body mass index and waist-to-hip ratios were similar in the individuals born SGA and controls, dual-energy X-ray absorptiometry studies documented a higher degree of abdominal obesity in the men who had a low weight at birth. Using the gold standard hyperinsulinaemic-euglycaemic clamp technique combined with glucose tracers and studies of forearm glucose uptake, we found an impairment of insulin-stimulated glycolytic flux and reduced forearm (muscle) glucose uptake in the face of normal whole-body glucose uptake. In addition, we found a significantly decreased insulin secretion rate during oral glucose ingestion after correction for insulin action (disposition index), a paradoxical enhanced insulin suppression of hepatic glucose production and lower fasting plasma glycerol levels, suggesting impaired lipolysis. Finally, analysis of skeletal muscle biopsies showed reduced muscle expression of several key proteins involved in insulin signalling and glucose transport, including protein kinase C-zeta, the two subunits of phosphoinositol 3-kinase (i.e., p85alpha and p110beta) and the insulin-sensitive glucose transporter, Glut-4, in individuals of low birth weight. In conclusion, being born SGA and of low birth weight is associated with type 2 diabetes in a non-genetic manner, and programming of muscle insulin action and signalling represents an early mechanism responsible for this association.  相似文献   

12.
Obesity, insulin resistance, and endothelial dysfunction closely coexist throughout the natural history of type 2 diabetes. They all can be identified not only in people with type 2 diabetes, but also in various groups at risk for the disease, such as individuals with impaired glucose tolerance, family history of type 2 diabetes, hypertension, dyslipidemia, prior gestational diabetes, or polycystic ovary syndrome. Whereas their evident association cannot fully establish a cause‐effect relationship, fascinating mechanisms that bring them closer together than ever before are rapidly emerging. Central or abdominal obesity leads to insulin resistance and endothelial dysfunction through fat‐derived metabolic products, hormones, and cytokines. Insulin resistance leads to endothelial dysfunction through the frequent association with traditional cardiovascular risk factors and through some more direct novel mechanisms. Some specific and shared insulin signaling abnormalities in muscle, fat, and endothelial cells, as well as some new genetic and nontraditional factors, may contribute to this interesting association. Some recent clinical studies demonstrate that nonpharmacological and pharmacological strategies targeting obesity and/or insulin resistance ameliorate endothelial function and low‐grade inflammation. All these findings have added a new dimension to the association of obesity, insulin resistance, and endothelial dysfunction that may become a key target in the prevention of type 2 diabetes and cardiovascular disease.  相似文献   

13.
The metabolic and cardiovascular complications associated with in-utero undernutrition have been identified during the past 10 years. Reduced fetal growth is independently associated with an increased risk of development of cardiovascular diseases, the insulin-resistance syndrome or one of its components (i.e., hypertension, dyslipidaemia, impaired glucose tolerance and type 2 diabetes). Insulin resistance appears to be a key component underlying these metabolic complications. Although the mechanism remains unclear, several pieces of evidence support an active role of adipose tissue in the emergence of insulin resistance (an abnormal growth pattern and repartition, hypersensitivity to catecholamines, regulation of leptin and adiponectin secretion and modulation of peroxisome proliferator-activated receptor gamma). Among individuals born SGA, those who are more at risk of gaining excess adiposity are those who are thin at birth following a period of fetal growth restriction. This period of undernutrition is followed by a neonatal period of catch-up growth and renutrition. This pattern induces important modifications in adipose tissue, with long-term consequences, among which is a high risk of early development of insulin resistance. Not all individuals born SGA will show such modifications in adipose tissue, meaning that not all of those born SGA are at risk of insulin resistance and diabetes. From a broader point of view, several hypotheses have been proposed over the past 10 years to explain this unexpected association between being born SGA and the later development of disease. Each of them points to a detrimental fetal environment, to a genetic susceptibility or to interactions between these two components playing a critical role in this context. Although not confirmed, the hypothesis suggesting that this association could be the consequence of genetic/environmental interactions remains the most attractive.  相似文献   

14.
The incidence of type 2 diabetes mellitus is steadily escalating throughout the world in people from a wide range of ethnic groups and all social and economic levels. Type 2 diabetes is no longer a disease only of adults: parallel with the global epidemic of type 2 diabetes in adults, an 'emerging epidemic' of type 2 diabetes has been observed in youth over the last decade. Research and clinical experience in adults have established that insulin resistance is a major risk factor for type 2 diabetes. However, insulin resistance alone is not sufficient to cause diabetes, which will develop only when insulin secretion by the beta-cells fails. This review discusses the recent emergence of type 2 diabetes in children and adolescents, its risk factors, pathophysiologic mechanisms and treatment modalities.  相似文献   

15.
Dunger D  Ahmed L  Ong K 《Hormone research》2002,58(Z1):66-71
Over the last 50 years the prognosis for growth and pubertal development in children with type 1 diabetes mellitus (T1DM) has improved considerably. The early reports of Mauriac's syndrome were related not only to relative deficiency of insulin but also reduced caloric intake. Improved insulin delivery and liberalisation of caloric intake has resulted in improved growth, but subtle abnormalities persist. The frequently reported increased height at diagnosis may relate to prior hyperinsulinaemia and genetic background with respect to lDDM2 the insulin gene VNTR. Subsequent growth faltering is thought to be related to impairment of the GH/IGF-1 axis but children with T1DM are also more at risk of hypothyroidism and coeliac disease. At puberty, persisting abnormalities of the GH/IGF-1 axis and our inability to reverse these totally, even with intensified insulin therapy, contribute to the blunted pubertal growth in the girls but abnormal sex steroid concentrations may also be important. Intensification of insulin therapy may result in leptin resistance and excessive gains in fat mass, particularly in girls. Although it is likely that most children with T1DM will have normal final heights, this excessive weight gain in girls may lead to problems with compliance. Furthermore, hyperinsulinaemia in these subjects may also lead to ovarian hyperandrogenism, increased early risk of microvascular complications and long-term risk of cardiovascular disease.  相似文献   

16.
Individuals born with a low birth weight (LBW) have an increased prevalence of type 2 diabetes, but the mechanisms responsible for this association are unknown. Given the important role of insulin resistance in the pathogenesis of type 2 diabetes, we examined insulin sensitivity in a rat model of LBW due to intrauterine fetal stress. During the last 7 days of gestation, rat dams were treated with dexamethasone and insulin sensitivity was assessed in the LBW offspring by a hyperinsulinemic euglycemic clamp. The LBW group had liver-specific insulin resistance associated with increased levels of PEPCK expression. These changes were associated with pituitary hyperplasia of the ACTH-secreting cells, increased morning plasma ACTH concentrations, elevated corticosterone secretion during restraint stress, and an approximately 70% increase in 24-h urine corticosterone excretion. These data support the hypothesis that prenatal stress can result in chronic hyperactivity of the hypothalamic-pituitary-adrenal axis, resulting in increased plasma corticosterone concentrations, upregulation of hepatic gluconeogenesis, and hepatic insulin resistance.  相似文献   

17.
PURPOSE OF REVIEW: The prevalence of type 2 diabetes globally is reaching epidemic proportions. Type 2 diabetes is strongly associated with increased risk of cardiovascular disease. Atherosclerosis is thought to arise as a result of a chronic inflammatory process within the arterial wall. Insulin resistance is central to the pathogenesis of type 2 diabetes and may contribute to atherogenesis, either directly or through associated risk factors. The peroxisome proliferator-activated receptor-gamma agonists, the thiazolidinediones, pioglitazone and rosiglitazone, are insulin sensitizing agents, that are licensed for the management of hyperglycaemia. Growing evidence supports an array of additional effects of thiazolidinedione therapy, both immunomodulatory and antiinflammatory, which may attenuate atherogenesis in type 2 diabetes. RECENT FINDINGS: Studies have shown that thiazolidinedione therapy may lead to risk factor modulation in type 2 diabetes. Thiazolidinediones treatment has been shown to reduce blood pressure, modify the atherogenic lipid profile associated with type 2 diabetes, reduce microalbuminuria and ameliorate the prothrombotic diathesis. Further evidence suggests that thiazolidinediones therapy inhibits the inflammatory processes which may be involved in atherosclerotic plaque initiation, propagation and destabilization. SUMMARY: Modification of insulin resistance by thiazolidinedione therapy in type 2 diabetes and the range of pleiotropic effects may not only impact on incident type 2 diabetes, but also on associated cardiovascular disease. Numerous large clinical endpoint studies are under way to investigate these issues.  相似文献   

18.
The purpose of this study was to apply the new approach for Metabolic Individual Risk-factor And Clustering Estimation (MIRACLE) score in a group of Spanish obese children and adolescents and to describe its relationship with other metabolic risk factors. 153 children with simple obesity were studied: 79 males and 74 females, mean age 11.2 +/- 2.2. Obesity was defined when BMI was higher than the age and sex specific equivalent to 30 kg/m2 in adults. MIRACLE score included: family history (early cardiovascular disease, type 2 diabetes, and hypertension), individual history (small for gestational age and ethnic origin), clinical features (BMI, waist circumference > 90th percentile and blood pressure > 95th percentile) and metabolic abnormalities (glucose intolerance or type 2 diabetes). It was assigned a value of 1 to "presence" and 0 to" absence" in every patient. The children were considered as having metabolic risk when at least 5 items were present. Triglycerides, HDL-cholesterol, apolipoprotein B, apolipoprotein A1, glucose and HOMA index, were measured too. The most frequent clinical features of MIRACLE score were: excess waist circumference (95.4%) and hypertension (41.8%). Family history criteria were frequent (55.3% for type 2 diabetes, 39.1% for hypertension and 31.3% for early cardiovascular disease). Individual risk factors were not frequent. Glucose intolerance was detected in 22.2% of the obese patients. A MIRACLE score > or = 5 was found in 37.4% of the children studied, being associated with a significant risk of dyslipidemia (triglycerides, p = 0.040; HDL-cholesterol, p = 0.006; LDL-cholesterol p = 0.038; apolipoprotein B, p = 0.008) only in females. In conclusion, the MIRACLE score is useful in order to detect metabolic risk in obese children but it seems necessary to improve the score, by including other features of the metabolic syndrome like lipid profile or indirect indicators of insulin resistance.  相似文献   

19.
OBJECTIVES: To clarify the type of fetal growth impairment associated with increased blood pressure in adult life, and to establish whether this association is influenced by obesity and is mediated through impairment of insulin action. DESIGN: Cross sectional survey with retrospective ascertainment of size at birth from obstetric archives. SUBJECTS: 1333 men resident in Uppsala, Sweden, who took part in a 1970 study of coronary risk factors at age 50 and for whom birth weight was traced. MAIN OUTCOME MEASURES: Systolic and diastolic blood pressure at age 50. RESULTS: In the full study population for a 1000g increase in birth weight there was a small change in systolic blood pressure of -2.2mmHg (95% confidence interval -4.2 to - 0.3mmHg) and in diastolic blood pressure of -1.0mmHg (-2.2 to 0.1mmHg). Much stronger effects were observed among men who were born at term and were in the top third of body mass index at age 50, for whom a 1000g increase in birth weight was associated with a change of -9.1mmHg (-16.4 to-1.9mmHg) systolic and -4.2mmHg (-8.3 to -0.1mmHg) diastolic blood pressure. Men who were light at birth (<3250g) but were above median adult height had particularly high blood pressure. Adjustment for insulin concentrations reduced the associations of birth weight with systolic and diastolic blood pressure. CONCLUSIONS: A failure to realise growth potential in utero (as indicated by being light at birth but tall as an adult) is associated with raised adult blood pressure. Impaired fetal growth may lead to substantial increases in adult blood pressure among only those who become obese. Metabolic disturbances, possibly related to insulin resistance, may provide a pathway through which fetal growth affects blood pressure.  相似文献   

20.
Suba Z  Ujpál M 《Magyar onkologia》2006,50(2):127-135
Insulin resistance is a worldwide risk factor for the two most dangerous human disease groups; namely, for cardiovascular lesions and malignancies. The insulin resistance syndrome have five basic criteria: hyperglycemia, visceral obesity, elevated serum triglyceride level, low HDL-cholesterol level (dyslipidemia) and hypertension. Each of these criteria alone are risk factors for cancer, and they mean together a multiple risk. Insulin resistance of the liver, skeletal muscles, and fatty tissue leads to a reactive hyperinsulinemia by the increased secretory activity of the beta-cells. Insulin has diverse metabolic effects, and at the same time is a growth factor. It enhances the production and mitogenic activity of other, insulin-like growth factors, and leads to pathological cell proliferation. In the uncompensated phase of insulin resistance hyperglycemia appears, which promotes tumor genesis by several pathways. The elevated serum glucose level is advantageous for the increased DNA synthesis of the tumor cells. It provokes deliberation of free radicals, which will cause derangement of both the DNA and the enzymes having a role in the repair mechanisms. Hyperglycemia leads to a nonenzymatic glycation of protein structures, and the glycated products enhance the deliberation of free radicals, cytokines and growth factors. Insulin resistance means an enhanced risk for breast, pancreas, liver, colon, bladder, prostate and oral cavity cancers. The moderately increased fasting glucose level is also a risk factor for breast, stomach and colon cancers, even without manifestation of type 2 diabetes. Insulin resistance promotes tumor progression as well. In cancer patients with hyperglycemia or type 2 diabetes, the rate of tumor recurrence, metastatic spread and fatal outcome is higher as compared with the tumor patients without metabolic disease. The correlation between insulin resistance and tumor promotion reveals new possibilities in the prevention and treatment of cancer. The healthy diet, physical activity and weight loss increase insulin sensitivity, and decrease the risk for both cardiovascular diseases and malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号