共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium is taken up by maize (Zea mays L.) coleoptile cells via a typical plant inward rectifier (K
ir
). Sufficient conductance of this channel is essential in order to maintain auxin-stimulated cell elongation. It was therefore
investigated whether the activity of this channel is subject to direct or indirect control by this growth hormone. Patch-clamp
measurements of whole coleoptile protoplasts revealed no appreciable effect of externally applied 10 μM or 100 μM α-naphthaleneacetic
acid (NAA) on the activity of K
ir
over test periods of ≥ 18 or ≥ 8 min, respectively. When, however, K
ir
was recorded in the cell-attached configiuration and 10 μM NAA administered to the bath medium, the conductance of K
ir
increased significantly in 13 out of 18 protoplasts over the control. This rise occurred at a fixed protoplast voltage after
a lag period of less than 10 min and exhibited no voltage dependency. The absence of response to NAA of protoplasts in the
whole-cell configuration indicates that auxin perception and channel control is linked via a soluble cytoplasmic factor and
that this mediator is washed out or modified upon perfusion of the cytoplasm with pipette solution. To search for this expected
diffusible factor the K
ir
current was recorded before and after elevation of Ca2+ and H+ in the cytoplasm. In the whole-cell configuration the increase in Ca2+ from a nanomolar value to >1 μM by means of Ca2+-release from the caged precursor Na2-DM-nitrophen left K
ir
unaffected. The whole-cell K
ir
conductance was also not affected upon addition of 10 mM Na+-acetate to the bath medium, an operation used to lower the cytoplasmic pH. This excludes a primary role for the known auxin-evoked
rise in cytoplasmic Ca2+ and H+ in K
ir
activity. We postulate that another, as yet unknown, mechanism mediates the auxin-evoked stimulation of the number of active
K
ir
channels in the plasma membrane.
Received: 13 May 1998 / Accepted: 9 November 1998 相似文献
2.
Climent B Zsiros E Stankevicius E de la Villa P Panyi G Simonsen U García-Sacristán A Rivera L 《Biochemical and biophysical research communications》2011,(3):501-507
Background and purpose
Vascular endothelial and smooth muscle cell phenotypes may change dramatically after isolation and in cell cultures. This study was designed to investigate gap junctions coupling in an integrated intact preparation and to test if KIR channels modulate resting membrane conductance in “in situ” endothelial cells (EC), and acetylcholine (ACh)-evoked relaxation of the rat superior mesenteric artery.Experimental approach
Whole cell blind patch recordings of ionic currents from in situ EC, dye-coupling experiments, and functional studies were performed in rat superior mesenteric artery.Key results
EC were dye-coupled through gap junctions. 18β-glycyrretinic acid (25 μM) decreased outward and inward currents, the 80% decay of time and time constant of the capacitative transients, capacitance, and increased input resistance. Barium chloride (30 μM) decreased resting and ACh-evoked inward currents, the sensitivity of ACh-evoked relaxation, and decreased both the sensitivity and the maximal relaxation to S-nitroso-N-acetyl penicillamine in arteries with, but not in arteries without endothelium.Conclusions
The present results suggest that the EC layer of this large artery is electrically coupled, and that KIR channels regulate resting inward conductance, hence suggesting that they are of importance for resting membrane potential in in situ EC. Moreover, EC KIR channels are involved in ACh-evoked relaxation. 相似文献3.
Strongly inwardly rectifying potassium channels exhibit potent and steeply voltage-dependent block by intracellular polyamines. To locate the polyamine binding site, we have examined the effects of polyamine blockade on the rate of MTSEA modification of cysteine residues strategically substituted in the pore of a strongly rectifying Kir channel (Kir6.2[N160D]). Spermine only protected cysteines substituted at a deep location in the pore, between the "rectification controller" residue (N160D in Kir6.2, D172 in Kir2.1) and the selectivity filter, against MTSEA modification. In contrast, blockade with a longer synthetic polyamine (CGC-11179) also protected cysteines substituted at sites closer to the cytoplasmic entrance of the channel. Modification of a cysteine at the entrance to the inner cavity (169C) was unaffected by either spermine or CGC-11179, and spermine was clearly "locked" into the inner cavity (i.e., exhibited a dramatically slower exit rate) following modification of this residue. These data provide physical constraints on the spermine binding site, demonstrating that spermine stably binds at a deep site beyond the "rectification controller" residue, near the extracellular entrance to the channel. 相似文献
4.
Inhibition of inward rectifier K(+) channels under ischemic conditions may contribute to electrophysiological consequences of ischemia such as cardiac arrhythmia. Ischemia causes metabolic inhibition, and the use of metabolic inhibitors is one experimental method of simulating ischemia. The effects of metabolic inhibitors on the activity of inward rectifier K(+) channels K(ir)2.1, K(ir)2.2, and K(ir)2.3 were studied by heterologous expression in Xenopus oocytes and two-electrode voltage clamp. 10 microm carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) inhibited K(ir)2.2 and K(ir)2.3 currents but was without effect on K(ir)2.1 currents. The rate of decline of current in FCCP was faster for K(ir)2.3 than for K(ir)2.2. K(ir)2.3 was inhibited by 3 mm sodium azide (NaN(3)), whereas K(ir)2.1 and K(ir)2.2 were not. K(ir)2.2 was inhibited by 10 mm NaN(3). All three of these inward rectifiers were inhibited by lowering the pH of the solution perfusing inside-out membrane patches. K(ir)2.3 was most sensitive to pH (pK = 6.9), whereas K(ir)2.1 was least sensitive (pK = 5.9). For K(ir)2.2 the pK was 6.2. These results demonstrate the differential sensitivity of these inward rectifiers to metabolic inhibition and internal pH. The electrophysiological response of a particular cell type to ischemia may depend on the relative expression levels of different inward rectifier genes. 相似文献
5.
Recent investigations have demonstrated substantial reductions in internal [K+] in cardiac Purkinje fibers during myocardial ischemia (Dresdner, K.P., R.P. Kline, and A.L. Wit. 1987, Circ. Res. 60: 122-132). We investigated the possible role these changes in internal K+ might play in abnormal electrical activity by studying the effects of both internal and external [K+] on the gating of the inward rectifier iK1 in isolated Purkinje myocytes with the whole-cell patch-clamp technique. Increasing external [K+] had similar effects on the inward rectifier in the Purkinje myocyte as it does in other preparations: increasing peak conductance and shifting the activation curve in parallel with the potassium reversal potential. A reduction in pipette [K+] from 145 to 25 mM, however, had several dramatic previously unreported effects. It decreased the rate of activation of iK1 at a given voltage by several-fold, reversed the voltage dependence of recovery from deactivation, so that the deactivation rate decreased with depolarization, and caused a positive shift in the midpoint of the activation curve of iK1 that was severalfold smaller than the associated shift of reversal potential. These changes suggest an important role of internal K+ in gating iK1 and may contribute to changes in the electrical properties of the myocardium that occur during ischemia. 相似文献
6.
Jang SS Park J Hur SW Hong YH Hur J Chae JH Kim SK Kim J Kim HS Kim SJ 《American journal of physiology. Cell physiology》2011,301(1):C150-C161
Since the first isolation of endothelial progenitor cells (EPCs) from human peripheral blood in 1997, many researchers have conducted studies to understand the characteristics and therapeutic effects of EPCs in vascular disease models. Nevertheless, the electrophysiological properties of EPCs have yet to be clearly elucidated. The inward rectifier potassium channel (Kir) performs a major role in controlling the membrane potential and cellular events. Here, via the whole cell patch-clamp technique, we found inwardly rectifying currents in EPCs and that these currents were inhibited by Ba(2+) (100 μM) and Cs(+) (1 mM), known as Kir blockers, in a dose-dependent manner (Ba(2+), 91.2 ± 1.4% at -140 mV and Cs(+), 76.1 ± 6.9% at -140 mV, respectively). Next, using DiBAC(3), a fluorescence indicator of membrane potential, we verified that Ba(2+) induced an increase of fluorescence in EPCs (10 μM, 123 ± 2.8%), implying the depolarization of EPCs. At the mRNA and protein levels, we confirmed the existence of several Kir subtypes, including Kir2.x, 3.x, 4.x, and 6.x. In a functional experiment, we observed that, in the presence of Ba(2+), the number of tubes on Matrigel formed by EPCs was dose-dependently reduced (10 μM, 62.3 ± 6.5%). In addition, the proliferation of EPCs was increased in a dose-dependent fashion (10 μM, 157.9 ± 17.4%), and specific inhibition of Kir2.1 by small interfering RNA also increased the proliferation of EPCs (116.2 ± 2.5%). Our results demonstrate that EPCs express several types of Kir which may modulate the endothelial function and proliferation of EPCs. 相似文献
7.
Rectification of macroscopic current through inward-rectifier K+ (Kir) channels reflects strong voltage dependence of channel block by intracellular cations such as polyamines. The voltage dependence results primarily from the movement of K+ ions across the transmembrane electric field, which accompanies the binding-unbinding of a blocker. Residues D172, E224, and E299 in IRK1 are critical for high-affinity binding of blockers. D172 appears to be located somewhat internal to the narrow K+ selectivity filter, whereas E224 and E299 form a ring at a more intracellular site. Using a series of alkyl-bis-amines of varying length as calibration, we investigated how the acidic residues in IRK1 interact with amine groups in the natural polyamines (putrescine, spermidine, and spermine) that cause rectification in cells. To block the pore, the leading amine of bis-amines of increasing length penetrates ever deeper into the pore toward D172, while the trailing amine in every bis-amine binds near a more intracellular site and interacts with E224 and E299. The leading amine in nonamethylene-bis-amine (bis-C9) makes the closest approach to D172, displacing the maximal number of K+ ions and exhibiting the strongest voltage dependence. Cells do not synthesize bis-amines longer than putrescine (bis-C4) but generate the polyamines spermidine and spermine by attaching an amino-propyl group to one or both ends of putrescine. Voltage dependence of channel block by the tetra-amine spermine is comparable to that of block by the bis-amines bis-C9 (shorter) or bis-C12 (equally long), but spermine binds to IRK1 with much higher affinity than either bis-amine does. Thus, counterintuitively, the multiple amines in spermine primarily confer the high affinity but not the strong voltage dependence of channel block. Tetravalent spermine achieves a stronger interaction with the pore by effectively behaving like a pair of tethered divalent cations, two amine groups in its leading half interacting primarily with D172, whereas the other two in the trailing half interact primarily with E224 and E299. Thus, nature has optimized not only the blocker but also, in a complementary manner, the channel for producing rapid, high-affinity, and strongly voltage-dependent channel block, giving rise to exceedingly sharp rectification. 相似文献
8.
HEK293 cells were transfected with cDNAs for Gbeta1(W332A) [a mutant Gbeta1], Ggamma2, and inward rectifier K+ channels (Kir3.1/Kir3.2). Application of Gbeta1gamma2 protein to these cells activated the K+ channels only slightly. When mu-opioid receptors and Kir3.1/Kir3.2 were transfected, application of a mu-opioid agonist induced a Kir3 current. However, co-expression of Gbeta1(W332A) suppressed this current. Most likely, Gbeta1(W332A) inhibited the action of the endogenous Gbeta. Such a dominant negative effect of Gbeta1(W332A) was also observed in neuronal Kir3 channels in locus coeruleus. The mutant, Gbeta1(W332A) protein, although inactive, retains its ability to bind Kir3 and prevents the wild type Gbeta from activating the channel. 相似文献
9.
Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have studied interactions between polyamines and the polyamine toxins philanthotoxin and argiotoxin on inward rectification in Kir2.1. We present evidence that high affinity polyamine block is not consistent with direct open channel block, but instead involves polyamines binding to another region of the channel (intrinsic gate) to form a blocking complex that occludes the pore. This interaction defines a novel mechanism of ion channel closure. 相似文献
10.
The mechanistic link between mitochondrial metabolism and inward rectifier K+ channel activity was investigated by studying the effects of a mitochondrial inhibitor, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) on inward rectifiers of the Kir2 subfamily expressed in Xenopus oocytes, using two-electrode voltage-clamp, patch-clamp, and intracellular pH recording. FCCP inhibited Kir2.2 and Kir2.3 currents and decreased intracellular pH, but the pH change was too small to account for the inhibitory effect by itself. However, pre-incubation of oocytes with imidazole prevented both the pH decrease and the inhibition of Kir2.2 and Kir2.3 currents by FCCP. The pH dependence of Kir2.2 was shifted to higher pH in membrane patches from FCCP-treated oocytes compared to control oocytes. Therefore, the inhibition of Kir2.2 by FCCP may involve a combination of intracellular acidification and a shift in the intracellular pH dependence of these channels. To investigate the sensitivity of heteromeric channels to FCCP, we studied its effect on currents expressed by heteromeric tandem dimer constructs. While Kir2.1 homomeric channels were insensitive to FCCP, both Kir2.1-Kir2.2 and Kir2.1-Kir2.3 heterotetrameric channels were inhibited. These data support the notion that mitochondrial dysfunction causes inhibition of heteromeric inward rectifier K+ channels. The reduction of inward rectifier K+ channel activity observed in heart failure and ischemia may result from the mitochondrial dysfunction that occurs in these conditions. 相似文献
11.
Himmel HM Rauen U Ravens U 《Physiological research / Academia Scientiarum Bohemoslovaca》2001,50(6):547-555
In most macrovascular endothelial cell (EC) preparations, resting membrane potential is determined by the inwardly rectifying K+ current (I(K1)), whereas in microvascular EC the presence of I(K1) varies markedly. Cultured microvascular EC from small vessels of human omentum were examined by means of the voltage-clamp technique to elucidate the putative role of I(K1) in maintaining resting membrane potential. Macrovascular EC from human iliac artery and bovine aorta served as reference. Human omentum EC showed an outwardly rectifying current-voltage relation. Inward current was hardly sensitive to variations of extracellular [K+] and Ba2+ block suggesting lack of I(K1). However, substitution of extracellular [Na+] and/or [Cl-] affected the current-voltage relation indicating that Na+ and Cl- contribute to basal current. Furthermore, outward current was reduced by tetraethylammonium (10 mM), and cell-attached recordings suggested the presence of a Ca2+-activated K+ current. In contrast to human omentum EC, EC from human iliac artery and bovine aorta possessed inwardly rectifying currents which were sensitive to variations of extracellular [K+] and blocked by Ba2+. Thus, the lack of I(K1) in human omentum EC suggests that resting membrane potential is determined by Na+ and Cl- currents in addition to K+ outward currents. 相似文献
12.
Effects of external Rb+ on inward rectifier K+ channels of bovine pulmonary artery endothelial cells
《The Journal of general physiology》1994,103(4):519-548
Inward rectifier (IR) K+ channels of bovine pulmonary artery endothelial cells were studied using the whole-cell, cell-attached, and outside-out patch-clamp configurations. The effects of Rb+ on the voltage dependence and kinetics of IR gating were explored, with [Rb+]o + [K+]o = 160 mM. Partial substitution of Rb+ for K+ resulted in voltage-dependent reduction of inward currents, consistent with Rb+ being a weakly permeant blocker of the IR. In cells studied with a K(+)- free pipette solution, external Rb+ reduced inward IR currents to a similar extent at large negative potentials but block at more positive potentials was enhanced. In outside-out patches, the single-channel i-V relationship was approximately linear in symmetrical K+, but rectified strongly outwardly in high [Rb+]o due to a reduced conductance for inward current. The permeability of Rb+ based on reversal potential, Vrev, was 0.45 that of K+, whereas the Rb+ conductance was much lower, 0.034 that of K+, measured at Vrev-80 mV. The steady state voltage- dependence of IR gating was determined in Rb(+)-containing solutions by applying variable prepulses, followed by a test pulse to a potential at which outward current deactivation was observed. As [Rb+]o was increased, the half-activation potential, V1/2, changed less than Vrev. In high [K+]o solutions V1/2 was Vrev-6 mV, while in high [Rb+]o V1/2 was Vrev + 7 mV. This behavior contrasts with the classical parallel shift of V1/2 with Vrev in K+ solutions. Steady state IR gating was less steeply voltage-dependent in high [Rb+]o than in K+ solutions, with Boltzmann slope factors of 6.4 and 4.4 mV, respectively. Rb+ decreased (slowed) both activation and deactivation rate constants defined at V1/2, and decreased the steepness of the voltage dependence of the activation rate constant by 42%. Deactivation of IR channels in outside-out patches was also slowed by Rb+. In summary, Rb+ can replace K+ in setting the voltage-dependence of IR gating, but in doing so alters the kinetics. 相似文献
13.
Qamirani E Razavi HM Wu X Davis MJ Kuo L Hein TW 《American journal of physiology. Heart and circulatory physiology》2006,290(4):H1617-H1623
Sodium azide (NaN(3)), a potent vasodilator, causes severe hypotension on accidental exposure. Although NaN(3) has been shown to increase coronary blood flow, the direct effect of NaN(3) on coronary resistance vessels and the mechanism of the NaN(3)-induced response remain to be established. To address these issues without confounding influences from systemic parameters, subepicardial coronary arterioles were isolated from porcine hearts for in vitro study. Arterioles developed basal tone at 60 cmH(2)O intraluminal pressure and dilated acutely, in a concentration-dependent manner, to NaN(3) (0.1 microM to 50 microM). The NaN(3) response was not altered by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester or endothelial removal. Neither inhibition of phosphoinositol 3-kinase and tyrosine kinases nor blockade of ATP-sensitive, Ca(2+)-activated, and voltage-dependent K(+) channels affected NaN(3)-induced dilation. However, the vasomotor action of NaN(3) was significantly attenuated in a similar manner by the inward rectifier K(+) (K(IR)) channel inhibitor Ba(2+), the Na(+)-K(+) ATPase inhibitor ouabain, or the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Ba(2+), in combination with either ouabain or ODQ, nearly abolished the vasodilatory response. However, there was no additive inhibition by combining ouabain and ODQ. The NaN(3)-mediated vasodilation was also attenuated by morin, an inhibitor of phosphatidylinositolphosphate (PIP) kinase, which can regulate K(IR) channel activity. With the use of whole cell patch-clamp methods, NaN(3) acutely enhanced Ba(2+)-sensitive K(IR) current in isolated coronary arteriolar smooth muscle cells. Collectively, this study demonstrates that NaN(3), at clinically toxic concentrations, dilates coronary resistance vessels via activation of both K(IR) channels and guanylyl cyclase/Na(+)-K(+)-ATPase in the vascular smooth muscle. The K(IR) channels appear to be modulated by PIP kinase. 相似文献
14.
ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells 总被引:15,自引:0,他引:15
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K– channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6
m internal Ca2+ and blocked by 5–10mm external TEA. 相似文献
15.
Qu Z Yang Z Cui N Zhu G Liu C Xu H Chanchevalap S Shen W Wu J Li Y Jiang C 《The Journal of biological chemistry》2000,275(41):31573-31580
Ion channels play an important role in cellular functions, and specific cellular activity can be produced by gating them. One important gating mechanism is produced by intra- or extracellular ligands. Although the ligand-mediated channel gating is an important cellular process, the relationship between ligand binding and channel gating is not well understood. It is possible that ligands are involved in the interactions of different protein domains of the channel leading to opening or closing. To test this hypothesis, we studied the gating of Kir2.3 (HIR) by intracellular protons. Our results showed that hypercapnia or intracellular acidification strongly inhibited these channels. This effect relied on both the N and C termini. The CO(2)/pH sensitivities were abolished or compromised when one of the intracellular termini was replaced. Using purified N- and C-terminal peptides, we found that the N and C termini bound to each other in vitro. Although their binding was weak at pH 7.4, stronger binding was seen at pH 6.6. Two short sequences in the N and C termini were found to be critical for the N/C-terminal interaction. Interestingly, there was no titratable residue in these motifs. To identify the potential protonation sites, we systematically mutated most histidine residues in the intracellular N and C termini. We found that mutations of several histidine residues in the C but not the N terminus had a major effect on channel sensitivities to CO(2) and pH(i). These results suggest that at acidic pH, protons appear to interact with the C-terminal histidine residues and present the C terminus to the N terminus. Consequentially, these two intracellular termini bound to each other through two short motifs and closed the channel. Thus, a novel mechanism for K(+) channel gating is demonstrated, which involves the N- and C-terminal interaction with protons as the mediator. 相似文献
16.
Filter flexibility and distortion in a bacterial inward rectifier K+ channel: simulation studies of KirBac1.1 下载免费PDF全文
The bacterial channel KirBac1.1 provides a structural homolog of mammalian inward rectifier potassium (Kir) channels. The conformational dynamics of the selectivity filter of Kir channels are of some interest in the context of possible permeation and gating mechanisms for this channel. Molecular dynamics simulations of KirBac have been performed on a 10-ns timescale, i.e., comparable to that of ion permeation. The results of five simulations (total simulation time 50 ns) based on three different initial ion configurations and two different model membranes are reported. These simulation data provide evidence for limited (<0.1 nm) filter flexibility during the concerted motion of ions and water molecules within the filter, such local changes in conformation occurring on an approximately 1-ns timescale. In the absence of K(+) ions, the KirBac selectivity filter undergoes more substantial distortions. These resemble those seen in comparable simulations of other channels (e.g., KcsA and KcsA-based homology models) and are likely to lead to functional closure of the channel. This suggests filter distortions may provide a mechanism of K-channel gating in addition to changes in the hydrophobic gate formed at the intracellular crossing point of the M2 helices. The simulation data also provide evidence for interactions of the "slide" (pre-M1) helix of KirBac with phospholipid headgroups. 相似文献
17.
Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels 下载免费PDF全文
Kir2.1 (IRK1) is the complementary DNA for a component of a cardiac inwardly rectifying potassium channel. When Kir2.1 is expressed in Xenopus oocytes or human embryonic kidney (HEK) cells (150 mM external KCl), the unitary conductances form a broad distribution, ranging from 2 to 33 pS. Channels with a similarly broad distribution of unitary conductance amplitudes are also observed in recordings from adult mouse cardiac myocytes under similar experimental conditions. In all three cell types channels with conductances smaller, and occasionally larger, than the ~30 pS ones are found in the same patches as the ~30 pS openings, or in patches by themselves. The unitary conductances in patches with a single active channel are stable for the durations of the recordings. Channels of all amplitudes share several biophysical characteristics, including inward rectification, voltage sensitivity of open probability, sensitivity of open probability to external divalent cations, shape of the open channel i-V relation, and Cs(+) block. The only biophysical difference found between large and small conductance channels is that the rate constant for Cs(+) block is reduced for the small-amplitude channels. The unblocking rate constant is similar for channels of different unitary conductances. Apparently there is significant channel-to-channel variation at a site in the outer pore or in the selectivity filter, leading to variability in the rate at which K(+) or Cs(+) enters the channel. 相似文献
18.
Park WS Han J Kim N Ko JH Kim SJ Earm YE 《American journal of physiology. Heart and circulatory physiology》2005,289(6):H2461-H2467
We examined the effects of acute hypoxia on Ba2+-sensitive inward rectifier K+ (K(IR)) current in rabbit coronary arterial smooth muscle cells. The amplitudes of K(IR) current was definitely higher in the cells from small-diameter (<100 microm) coronary arterial smooth muscle cells (SCASMC, -12.8 +/- 1.3 pA/pF at -140 mV) than those in large-diameter coronary arterial smooth muscle cells (>200 microm, LCASMC, -1.5 +/- 0.1 pA pF(-1)). Western blot analysis confirmed that Kir2.1 protein was expressed in SCASMC but not LCASMC. Hypoxia activated much more KIR currents in symmetrical 140 K+. This effect was blocked by the adenylyl cyclase inhibitor SQ-22536 (10 microM) and mimicked by forskolin (10 microM) and dibutyryl-cAMP (500 microM). The production of cAMP in SCASMC increased 5.7-fold after 6 min of hypoxia. Hypoxia-induced increase in KIR currents was abolished by the PKA inhibitors, Rp-8-(4-chlorophenylthio)-cAMPs (10 microM) and KT-5720 (1 microM). The inhibition of G protein with GDPbetaS (1 mM) partially reduced (approximately 50%) the hypoxia-induced increase in KIR currents. In Langendorff-perfused rabbit hearts, hypoxia increased coronary blood flow, an effect that was inhibited by Ba2+. In summary, hypoxia augments the KIR currents in SCASMC via cAMP- and PKA-dependent signaling cascades, which might, at least partly, explain the hypoxia-induced coronary vasodilation. 相似文献
19.
External [K+] and the block of the K+ inward rectifier by external Cs+ in frog skeletal muscle. 下载免费PDF全文
O Senyk 《Biophysical journal》1986,50(4):677-683
Frog skeletal muscle has a K+ channel called the inward rectifier, which passes inward current more readily than outward current. Gay and Stanfield (1977) described a voltage-dependent block of inward K+ currents through the inward rectifier by external Cs+ in frog muscle. Here, frog single muscle fibers were voltage clamped using the vaseline-gap voltage-clamp technique to study the effect of external [K+] on the voltage-dependent block of inward K+ currents through the inward rectifier by external Cs+. The block of inward K+ currents through the channel by external Cs+ was found to depend on external [K+], such that increasing the external concentration of the permeant ion K+ potentiated the block produced by the impermeant external Cs+. These findings are not consistent with a one-ion channel model for the inward rectifier. The Eyring rate theory formalism for channels, viewed as single-file multi-ion pores (Hille and Schwarz, 1978), was used to develop a two-site multi-ion model for the inward rectifier. This model successfully reproduced the experimentally observed potentiation of the Cs+ block of the channel by external K+, thus lending further support to the view of the inward rectifier as a multi-ion channel. 相似文献